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Abstract

Reliability is a key issue of the Service-Oriented Archi-
tecture (SOA) which is widely employed in critical domains
such as e-commerce and e-government. Redundancy-based
fault tolerance strategies are usually employed for build-
ing reliable SOA on top of unreliable remote Web services.
Based on the idea of user-collaboration, this paper pro-
poses a QoS-aware middleware for fault tolerant Web ser-
vices. Based on this middleware, service-oriented applica-
tions can dynamically adjust their optimal fault tolerance
strategy to achieve good service reliability as well as good
overall performance. A dynamic fault tolerance replica-
tion strategy is designed and evaluated. Experiments are
conducted to illustrate the advantage of the proposed mid-
dleware as well as the dynamic fault tolerance replication
strategy. Comparison of the effectiveness of the proposed
dynamic fault tolerance strategy and various traditional
fault tolerance strategies are also provided.

1. Introduction

Web services are self-contained, self-describing, cross-
platform and loosely-coupled computational components
designed to support machine to machine interaction via net-
works, including the Internet. They are identified by Uni-
fied Resource Identifiers (URIs) and widely employed to
implement the increasingly popular Service-Oriented Ar-
chitectures/Applications (SOA). Employing the Extensible
Markup Language (XML) for interface and message de-
scription, Web services provide unprecedented opportuni-
ties for building agile and versatile applications by integrat-
ing Web services provided by various service providers.

Reliability is a key issue of SOA which are widely
employed in critical domains such as e-commerce and e-
government. The highly dynamic nature of Web services
and the Internet post a new challenge for application relia-
bility improvement, which is not encountered in traditional
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stand-alone software. For example, Web services can be
developed and published by anonymous developers without
any quality guarantee, and may become unavailable easily.
Moreover, the Internet traffic and server workload are also
unpredictable, which will greatly influence the quality of
Web services.

Fault tolerance is a major approach to achieve high re-
liability in traditional software reliability engineering [1].
Critics of software fault tolerance state that developing re-
dundant software components for fault tolerance purpose is
too expensive and the reliability improvement is question-
able when comparing to a single system with all the effects
of developing multiple redundant components. In the mod-
ern era of service-oriented computing, however, the cost
of developing multiple version softwares and systems is
greatly reduced. Because different companies compete with
each other to provide their diversely designed/implemented
Web services with identical or similar interfaces using var-
ious programming languages. Design diversity and cross-
language implementation are therefore the natural outcome
of Web services, making fault tolerance an attractive choice
for SOA reliability enhancement. A number of static fault
tolerance strategies for Web services have been proposed in
the recent literature [2, 3, 4, 5, 6]. However, these static
strategies are not feasible enough to be used in the highly
dynamic Web environment. We need some “smart” replica-
tion strategies, which can be self-aware of the dynamic QoS
changes of the target Web services and automatically deter-
mine the corresponding optimal fault tolerance strategy for
service users.

Gaining inspiration from the user-participation and user-
collaboration concepts of Web 2.0, we propose a user-
participated QoS-aware middleware for dynamic optimal
fault tolerance strategy determination. Our work aims at ad-
vancing the current state-of-the-art of fault tolerance in the
field of service reliability engineering. The contributions of
this paper include:

e A QoS-aware middleware for achieving fault tol-
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erance by employing user-participation and col-
laboration. By encouraging users to share their
individually-obtained QoS information of the target
Web services, more accurate evaluation on the avail-
able Web services can be achieved, which is important
for the selection of the proper fault tolerance strategy
with the right Web services.

e A Dynamic fault tolerance strategy selection algo-
rithm. Comparing with the “static” fault tolerance
strategies in the traditional software reliability engi-
neering, more adaptable strategies are needed in the
age of service-oriented computing, which is highly dy-
namic. We propose a dynamic fault tolerance strategy
selection algorithm to determine the optimal strategy
at runtime based on both the user requirements and the
Web service QoS information.

The rest of this paper is organized as follows: Section
2 introduces our QoS-aware middleware. Section 3 pro-
poses the dynamic fault tolerance strategy selection algo-
rithm. Section 4 presents the experimental setup and exper-
imental results, and Section 5 concludes the paper.

2. A QoS-Aware Middleware

In this section, some basic concepts are explained and
the architecture of our QoS-aware middleware for fault tol-
erant Web services is presented. Our fault tolerance mid-
dleware can be integrated as one part of the SOA runtime
governance [7].

2.1. Service Communities

With the popularization of service-oriented computing,
various Web services are continuously emerging. The func-
tionalities and interfaces enabled by Web Service Descrip-
tion Language (WSDL) are becoming more and more com-
plex. Machine learning techniques [8, 9] are proposed to
identify Web services with similar or identical interface au-
tomatically. However, the effect and accuracy of these ap-
proaches are still far from practical usage. Since identical
services, which are provided by different providers, may ap-
pear with different function names, return types and param-
eter names, it is really difficult for machines to know that
these services are actually providing the same service.

To solve the problem of identical/similar Web services
identification, a service community defines a common ter-
minology that is followed by all participants, so that the
Web services, which are provided by different organiza-
tions, can be described in the same interface [10, 11]. Fol-
lowing a common terminology, easier resource aggregation
can be achieved, which will help better development of the
community.
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Figure 1. Architecture of the Middleware

Companies can enhance their business benefit by join-
ing into communities. Since a lot of service users will go
to the communities to search for suitable services. The co-
ordinator of the community, which is a monitor application
running on a stand-alone server, maintains a list of the reg-
istered Web services of the community. Before joining the
community, a Web service has to follow the interface re-
quirements of the community and registers at the commu-
nity coordinator. By this way, the service community makes
sure that various Web services in the community, which are
provided by different organizations, come with the same in-
terface.

In this paper, we focus on engaging the Web services in
the same community for fault tolerance and performance
enhancement purposes. We use the word replica to rep-
resent the Web services with identical interface within the
same service community, which are provided by different
organizations.

2.2. Architecture of the Middleware

The architecture of the proposed QoS-aware middleware
for fault tolerant Web services is presented in Fig.1. The
work procedure of this middleware is described as follows:

1. From the Universal Description, Discovery and In-
tegration (UDDI), service users (usually service-
oriented application developers) obtain the address of
a particular service community coordinator.

2. By contacting the community coordinator, service
users obtain an address list of the replicas in the com-
munity and the overall QoS information of these repli-
cas. The overall QoS information will be used as the
initial values in the middleware for optimal strategy
selection. Detailed design of the QoS-model of Web
services will be introduced in Sec.3.2.
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3. Service users provide their particular QoS require-
ments to the middleware. Detailed design of the user
requirement model will be introduced in Sec.3.1.

4. The proposed QoS-aware middleware selects an opti-
mal fault tolerance strategy dynamically based on the
user QoS requirements and the QoS information of tar-
get replicas.

5. The middleware invokes certain replicas with the se-
lected optimal strategy and records down the QoS in-
formation of these replicas.

6. The middleware dynamically adjusts the optimal strat-
egy based on the recorded replica QoS information.

7. As shown in Fig.2, in order to obtain the most up-to-
date QoS information of target replicas for better strat-
egy determination, the middleware will send its indi-
vidually obtained replica QoS information to the com-
munity coordinator in exchange of the newest overall
replica QoS information from time to time. In the other
hand, by this QoS information exchange, the commu-
nity coordinator can obtain replica QoS information
from various service users in different geography lo-
cations, and use it for providing overall replica QoS
information to service users.

As shown in Fig.1, the middleware includes the follow-
ing three parts:

e Dynamic selector: In change of dynamically deter-
mining optimal fault tolerance strategy based on their
requirements and the QoS information of replicas.

e Auto updater: Updating the newest overall replica
QoS information from the community coordinator and
providing the obtained QoS information to the coordi-
nator. This mechanism promotes user collaboration to
achieve more accurate optimal fault tolerance strategy
selection.

e Communicator: In charge of invoking certain replicas
with the selected optimal fault tolerance strategy.

Coordinator

Figure 2. User and Coordinator Interaction
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2.3. Types of Faults

Based on the cause of faults, various faults of Web ser-
vice can be divided into the following two types:

e Network-related faults. Network-related faults are
generic to all Web services. For example, Communi-
cation Timeout, Service Unavailable (http 503), Bad
Gateway (http 502), Server Error (http 500), and so on,
are network-related faults. They can be easily identi-
fied by the judgement function in the middleware.

e Logic-related faults. Logic-related faults are spe-
cific to different Web services. For example, Web ser-
vice returning the wrong result, calculation faults, data
faults, and so on, are logic-related faults. Also, vari-
ous exceptions thrown by the Web service to the ser-
vice users are classified into the logic-related faults. It
is difficult for the middleware to identify such type of
faults

2.4. Fault Tolerance Strategies

When applying Web services to critical domains, reli-
ability becomes a major issue. With the popularization
of Web services and service communities, more and more
Web services with an identical interface are diversely de-
signed and implemented by different organizations, making
service-level fault tolerance a attractive choice for service
reliability improvement.

Retry [4] and Recovery Block (RB) [12] are two major
sequential approaches that use time redundancy to obtain
higher reliability. They have been employed in FI-SOAP
[13] and FT-CORBA [14]. In the other hand, N-Version
Programming (NVP) [15] and Active [8] strategies are two
major parallel strategies that engage space/resource redun-
dancy for reliability improvement. They have been em-
ployed in FTWeb [16], Thema [17], WS-Replication [18]
and in [19].

In the following, we provide detailed introduction and
the formulas of response time and failure-rate of these tra-
ditional fault tolerance strategies. As discussed in the work
[20], we assume that each request is independent, and the
Web service fails at a fix rate. Here, we use RTT (Round-
Trip-Time) to represent the time duration between service
user sending out a request and receiving a response.

e Retry: The same Web service will be retried for a cer-
tain number of times when it fails. Eq.1 is the formula
for calculating failure-rate f and RTT ¢, where m is
the retry times, f7 is the failure-rate of the target Web
service, and ¢; is the RTT of the i** request.

m

t=y ti(fy)

i=1

f=1 ey
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e RB: Another standby Web service will be tried sequen-
tially if the primary Web service fails.

m m i—1
=11+ t=> t[[Hn @
i=1 =1 k=1

e NVP: NV P invokes different replicas at the same
time and determines the final result by majority vot-
ing. It is usually employed to mask logical faults. In
Eq.3, v, which is an odd number, represents the total
replica number. F'(7) represents the failure-rate that
1 (1 < v) replicas fail. For example, assuming v = 3,
then f =30, F(i) = F(2)+F(3) = fix fax (1—
f3)+ fax fax (1= fi)+ fix fax (1= fa)+ fi x fa X f.

f=> F(

i=v/2+1

t=max({t;};—;) 3)

e Active: Active strategy invokes different replicas in
parallel and takes the first properly-returned response
as the final result. It is usually employed to mask net-
work faults and to obtain better response time perfor-
mance. In Eq.4, T, is a set of RTTs of the properly-
returned responses. u is the parallel replica number.

fo ﬁfi;t _ { min(Te) : |T,| > 0
i=1

max(T): [T =0 @

The highly dynamic nature of Web services makes the
above static fault tolerance strategies unpractical in real-
world environment. For example, some replicas may be-
come unavailable permanently, while some new replicas
may join in. Moreover, Web service software/hardware
may be updated without any notification, and the Internet
traffic load and service server workload are also changing
from time to time. These unpredictable characteristics of
‘Web services provide a challenge for optimal fault tolerance
strategy selection. To address this challenge, we propose
the following two dynamic fault tolerance strategies, which
are more adaptable and can be automatically determined by
the QoS-aware middleware in runtime. These two dynamic
strategies will be employed in our dynamic fault tolerance
strategy selection algorithm in Sec.3.4.

e Dynamic Sequential Strategy: The dynamic se-
quential strategy is the combination of Retry and RB
strategies. When the primary replica fails, our algo-
rithm will determine whether to employ Retry or RB
dynamically at runtime based on the QoS of target
replicas and the requirements of service users. The de-
termining algorithm will be introduced in Sec.3.4. In
Eq.5, m; is the retry times of the i*" replica, and n
is the total replica quantity. This strategy equals RB
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when m; = 1, and equals to Retry when m; = oo.

n n my ) 1—1
F=T11mse =Y Ot ][ ®
=1 1=1 j=1 k=1

e Dynamic Parallel Strategy: The dynamic parallel
strategy is the combination of NV P and Active. It
will invoke w replica at the same time and employ the
first v (v is an odd number, and v < wu) properly-
returned responses for majority voting. This strategy
equals to Active when v = 1, and equals to NV P
when v = w. middle(v, T,) is employed to calculate
the RTT of invoking w replica in parallel and including
the first v for voting, which is equal to the RTT of the
vt" properly-returned response.

f=> F(i)t=

{ middle(v, Te) : |Te| > v
i=v/2+1

max(T) : |T.] <wv
(6)

3. Dynamic Fault Tolerance Strategy Selection
Algorithm

3.1. User Requirement Model

Optimal fault tolerance strategies for service-oriented
applications vary from case to case, which are influenced
not only by QoS of target replicas, but also by the char-
acteristics of service-oriented applications. For example,
latency-sensitive applications may prefer parallel strate-
gies for better response time performance, while resource-
constrained applications may employ sequential strategies
for better resource conservation.

It is generally difficult for a middleware to automati-
cally detect the characteristics of the service-oriented ap-
plication, such as whether it is latency-sensitive or resource
constrained. The strategy selection accuracy will be greatly
enhanced if the service users can provide some concrete re-
quirement information. However, it is impractical and not
user-friendly to require the service users, who are often not
familiar with fault tolerance strategies to provide detailed
technical information. To address this problem, we design a
simple user requirement model for obtaining necessary re-
quirement information from the users. In this model, the
users are required to provide the following four values:

. tymaqe: the largest RTT that the application can afford.
tmaz With a smaller value means higher requirement
on RTT, indicating the realtime characteristic of the ap-
plication. RTT larger than ¢,,,, will be considered as
timeout for the service users.

2. fmaz: the largest failure-rate that the application can
tolerate.
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3. Tmae: the largest resource consumption constraint.
The amount of parallel connection is used to approxi-
mately quantitate the resource consumption, since con-
necting more Web services in parallel will consume
more computing and networking resources. Tpqx
with a smaller value indicates that the application is
resource-constraint.

4. mode: the mode can be set by the service users to
be sequential, parallel, or auto. Sequential means
invoking the replicas sequentially. For example, it is
more suitable to visit payment-oriented Web services
sequentially. We need the service users to provide this
mode information, because the middleware may not
be smart enough to detect whether the target replicas
are payment-oriented services or not. Parallel means
that the user prefers invoking the target replicas in par-
allel. Auto means that the users let the middleware
determine the optimal mode automatically.

The user requirement information obtained by this model
will be used in our dynamic fault tolerance strategy selec-
tion algorithm in Sec.3.4.

3.2. QoS Model of Web Service

In addition to the subjective user requirements, the ob-
jective QoS information of the target Web service replicas
are also needed for the optimal fault tolerance strategy se-
lection. A lot of previous tasks are focused on building the
QoS model for Web services [21, 22, 23]. However, there
are still several challenges to be solved:

e It is difficult to obtain performance information of
target Web services. Service users do not always
record the QoS information of target replicas, such as
RTT, failure-rate and so on. Also, most of the service
users are unwilling to share the QoS information they
obtain.

o Distributed geography location of users make eval-
uation on target Web services difficult. Web service
performance is highly related to the geography loca-
tion of both the service user and the service provider,
making performance evaluation results provided by an
individual user easy to be misinterpreted by others
across the Web. For example, a user located in the
same local area network (LAN) with the target Web
service is more likely to obtain very good performance.
The optimistic evaluation result provided by this user
may misguide other users who are not in the same
LAN with the target Web service.

o Lack of a convenient mechanism for service users to
obtain QoS information of Web services. QoS infor-
mation can help service users be aware of the quality
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of a certain Web service and determine whether to use
it or not. However, in reality, it is very difficult for
the service users to obtain accurate and objective QoS
information of the Web services.

To address the above challenges, we design a QoS model
of Web services employing the concept of user-participation
and user-collaboration, which is the key innovation of
Web2.0. The basic idea is: by encouraging users to con-
tribute their individual obtained QoS information of target
replicas, we can collect a lot of QoS data from the users
located in different geography locations under various net-
work conditions, and engage these data to make objective
overall evaluation on the target Web services.

Based on the concept of service community and the ar-
chitecture designed in Fig.1, we use the community coordi-
nator to store the QoS information of the replicas. Users
will periodically send their individually-obtained replica
QoS information to the service community in exchange of
the the newest overall replica QoS information, which can
be engaged for better optimal strategy selection. Since the
middleware will record replica QoS data and exchange it
with the coordinator automatically, updated replica QoS in-
formation is conveniently available for service users.

For a single replica, the community coordinator will
store the following information:

tavg : the average RTT of the target replica.
tstq : the standard deviation of RTT of the target
replica.

f1 : the logic failure-rate of the target replica.
e fn :the network failure-rate of the target replica.

To simplify the model, we only consider the most im-
portant QoS properties, including RTT, logic faults, net-
work faults and resource consumption. Other QoS prop-
erties, however, can be easily included in the future. For
those users who are not willing to exchange QoS data with
the community coordinator, they can simply close the ex-
change functionality of the middleware, although this will
reduce the dynamic optimal strategy selection performance.
This is similar to BitTorrent [24] download, where stopping
uploading files to others will hurt the download speed of the
user.

3.3. A Scalable RTT Prediction Algorithm

Accurate RTT prediction is important for optimal fault
tolerance strategy selection. Assuming, for example, that
there are totally n replicas {ws}7_; in the service commu-
nity. We would like to invoke v (v < n) replicas in parallel
and use the first properly-returned response as the final re-
sult. The question is, then, how to find out the optimal set
of replicas that will achieve the best RTT performance?
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To solve this problem, we need the RTT distributions of
all the replicas. In our previous work [5], all the historical
RTT results are stored and employed for RTT performance
prediction. However, it is impractical to require the users
to store all the past RTT results, which are ever growing
and will consume a lot of storage memory. On the other
hand, without historical RTT performance information of
the replicas, it is extremely difficult to make accurate pre-
diction.

We design the following approach for obtaining the RTT
distributions of a certain replica, which scatters the RTT dis-
tributions, and reduces the required data storage.

We divide the time ¢,,4,, which is provided by the ser-
vice user, into k time slots. Instead of storing all the de-
tailed past RTT results, the service user only needs to store
k 4 2 counters {c,}’€+2 for a replica, where k counters of
which are used to record the RTT numbers of the corre-
sponding time slots, and another two counters are used to
record network-related faults fn and logic-related faults fI,
respectively. Employing these counters, Eq.7 can be used
to predict the probability that a RTT of a certain replica be-
longing to a certain category.

Ci
Yt

By the above design, we can obtain approximate RTT
distribution information of a replica by storing only k + 2
counters. Also, the time slot number k& can be set to be a
larger value for obtaining more detailed distribution infor-
mation, making this algorithm scalable.

The approximate RTT distributions of the replicas,
which are obtained by the above approach, can be engaged
to predict RTT performance of a particular set of replicas
{ws;}¥_,. The problem of predicting RTT performance can
be formulated as follows:

Pi = (N

Problem 1 Given:

o {ws; }
° {pw : for replica i (1 < ¢ < v), the probability of
an RTT belongmg to different categories.

o {ti}f

1. aset of target replicas for prediction.

", the RTT value of the time slot 7, which can be
calculated by t; = (tynaz X ©)/k — timaz/(2 X k).

o T, = {rtt;}7_;: aset of RTT of the v replicas, where
the probability of rtt; belonging to the time slot £ is
provided by p; .

Find out:

e E(min(7y)): the average response time by invoking
all the v replicas in parallel for many times, where
function min(7T,) stands for the minimal RTT value
of all the {rtt;}}_,
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By employing Eq.8,

-y

i=1

E(min(T; (min(Ty) ==1t;) x t;), (8)
the problem of finding E(min(7},)) can be transferred to
finding P(min(7,) == t;), which means the probability of
the minimal RTT value of 7}, belonging to the time slot
i. Since P(min(T,) == t;) = P(min(T},) < ;) —
P(min(T,) < t;_1), the problem becomes to P(min(7T},) <
t;). If one of the v replicas, for example rit,, in T, is
smaller than ¢;, then min(7),) will be smaller than ¢;. There-
fore P(min(Ty,) < t;) = P(rtt, < t;) + P(rtt, >
t;) x P(min(T,_1) < t;). The probability of rtt; < t;
can be calculated by Eq.9:

J
P(rtt; <tj) = piy 9)
k=1

Therefore, by the above calculation, the RTT perfor-
mance of the Active strategy, which invokes the given repli-
cas in parallel and employs the first returned response as fi-
nal result, can be predicted. By changing the the function
min(7},) to max(7Ty), the above algorithm can be used to
predict the RTT performance of the NV P strategy, which
needs to wait for all responses of replicas before voting.
By changing the function min(T5,) to middle(T), y), which
means the RTT value of the 3" returned response, the
above algorithm can be used to predict the RTT perfor-
mance of the Dynamic parallel strategy. For example, in
the Dynamic parallel strategy, we invoke 6 replicas in par-
allel and employ the first 3 returned response for voting, the
overall RTT performance will be equal to the RTT of the
37 returned response.

3.4. A Dynamic Fault Tolerance Strategy
Selection Algorithm

Employing the user requirement model designed in
Sec.3.1, the QoS model of Web services designed in
Sec.3.2, and the RTT prediction algorithm designed in
Sec.3.3, we propose a dynamic fault tolerance strategy se-
lection algorithm in this section. The whole selection pro-
cedure is composed of three parts: sequential or parallel
strategies determination, dynamic sequential strategy deter-
mination, and dynamic parallel strategy determination.

3.4.1 Sequential or Parallel Strategy Determination

If the value of the attribute mode in the user requirement
model equals to auto, we need to conduct sequential or
parallel strategy determination based on the QoS perfor-
mance of the target replicas and subjective requirements of
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the users. Eq.10 is used to calculate the performance of dif-
ferent strategies:

ti fi

pl tmal‘ + meL(L'
The underlying consideration is that the performance of
a particular response time is related to the user require-
ment. For example, 100 ms is a large latency for the
latency-sensitive applications, while it may be neglected for
non-latency-sensitive applications. By using t:im’ where
tmax represents the user requirement on response time,
we can have a better representation of the response time
performance for service users with different requirements.
Failure-rate f; and resource consumption r; are similarly
considered.

By employing Eq.10, the performance of sequential
strategies and parallel strategies can be computed. For se-
quential strategies, the value of ¢; can be calculated by Eq.5,
where the value of f; can be obtained from the middleware
and the value of r; is 1 (only one replica is invoked at the
same time). For parallel strategies, the value of ¢; can be
estimated by using the RTT prediction algorithm presented
in Sec.3.3, where the value of f; can be obtained from the
middleware, and the value of r; is the number of parallel
invocation replicas.

The performance results of the sequential and parallel
strategies, which are obtained by the above procedure, are
used for determining whether to use sequential or parallel
strategies.

+

(10)

T'maz

3.4.2 Dynamic Sequential Strategy Determination

If the value of the attribute mode provided by the service
user is equal to sequential, or the sequential strategy is se-
lected by the above selection procedure conducted by the
middleware, we need to determine the detailed sequential
strategy dynamically based on the user requirements and
replica QoS information.

d=Lx (% + %) is used to calculate the per-
formance difference between two replicas, where m is the
retry times. When d > a, where a is the performance degra-
dation threshold, the performance difference between the
two selected replicas is large, therefore, retrying the origi-
nal replica is more likely to obtain better performance. With
increasing the retry times m, d will become smaller and
smaller, reducing the priority of strategy Retry.

If the primary replica fails, the above procedure will be
repeated until either a success or the time is out (R771" >

tmaz)-
3.4.3 Dynamic Parallel Strategy Determination

If the value of the attribute mode provided by the service
user is equal to parallel, or the parallel strategy is selected
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by the middleware, we need to determine the optimal paral-
lel replica number n and the NVP number v (v < n) for the
dynamic parallel strategy.

By employing the RTT prediction algorithm presented
in Sec.3.3, we can predict the RTT performance of various
combinations of the value v and n. The number of all com-
binations can be calculated by C} = WLLU),, and the
failure-rate can be calculated by using Eq.6. By employing
Eq.10, the performance of different n and v combination
can be calculated and compared. The combination with the
minimal p value will be selected and employed as the opti-
mal strategy.

4. Experiments

A series of experiments is designed and performed for il-
lustrating the QoS-aware middleware and the dynamic fault
tolerance selection algorithm. In the experiments, we com-
pare the performance of our dynamic fault tolerance strat-
egy Dynamic with other four traditional fault tolerance
strategies Retry, RB, NV P, and Active.

4.1. Experimental Setup

Our experimental system is implemented and deployed
with JDK6.0, Eclipse3.3, Axis2.0 [25], and Tomcat6.0. We
develop six Web services following an identical interface to
simulate replicas in a service community. These replicas are
employed for evaluating the performance of various fault
tolerance strategies under different situations. The service
community coordinator is implemented by Java Servlet.
The six Web services and the community coordinator are
deployed on seven PCs. All PCs have the same configura-
tion: Pentium(R) 4 CPU 2.8 GHz, 1G RAM, 100Mbits/sec
Ethernet card, and a Windows XP operating system.

In the experiments, we simulate network-related faults
and logic-related faults. All the faults are further divided
into permanent faults (service is down permanently) and
temporary faults (faults occur randomly). The fault injec-
tion techniques are similar to the ones proposed in [26, 27].

In our experimental system, service users, who will in-
voke the six Web service replicas, are implemented as Java
applications. We provide six service users with represen-
tative requirement settings as typical examples for investi-
gating performance of different fault tolerance strategies in
different situations. The detailed user requirements, which
are obtained by the user requirement model proposed in
Sec.3.1, are shown in Table 1. In the experiments, fail-
ures are counted when service users, who employ a cer-
tain type of fault tolerance strategy, cannot get a proper re-
sponse. For each service request, if the response time is
larger than 4., a timeout failure is counted, whatever
the reason leading to the late response.
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Table 1. Requirements of Service Users

‘ Users ‘ tmaz ‘ fmaz ‘ Tmaz ‘ Focus ‘
User 1 1000 0.1 50 | RTT
User 2 2000 0.01 20 | RTT, Fail
User 3 4000 0.03 2 | RTT, Fail, Res
User4 | 10000 0.02 1 | Res
User 5 | 15000 0.005 3 | Fail, Res
User 6 | 20000 | 0.0001 80 | Fail

Table 2. Parameters of Experiments

’ ‘ Parameters ‘ Setting ‘
1 | Number of replicas 6
2 | Network fault probability 0.01
3 | Logic fault probability 0.0025
4 | Permanent fault probability 0.05
5 | Number of time slots 20
6 | Performance degradation threshold (a) | 2
7 | Replica number of NV P 5
8 | Parallel replica number of Active 6
9 | Dynamic degree 20

Our experimental environment is defined by a set of
parameters, which are shown in Tables 2. The perma-
nent fault probability means the probability of permanent
faults among all the faults, which includes network-related
Sfaults and logic-related faults. The performance degrada-
tion threshold is employed by the dynamic strategy selec-
tion algorithm, which has been introduced in Sec.3.4. Dy-
namic degree is used to control the QoS changing of replicas
in our experimental system, where a larger number means
more serious changing of QoS properties, such as the RTT.

4.2. Experimental Results

The experimental results of the six service users employ-
ing different types of fault tolerance strategies are shown in
Table 3-8. The results include the employed fault tolerance
strategy (Strategies), the number of all requests (All), the
average RTT of all requests (RTT), the number of failure
(Fail), the average consumed resource (Res), and the over-
all performance (Perf, calculated by Eq. 10). The time units
of RTT is in milliseconds (ms).

In the following, we provide detailed explanation on the
experimental results of Service User 1.

As shown in Table 1, the requirements provided by User
1 are: tae = 1000, finer = 0.1 and rp,4, = 50. These
requirement settings indicate that User 1 cares more on
the response time than the failure-rate and resources, be-
cause 1000 ms maximal response time setting is tight in
the high dynamic Internet environment, and the settings of
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Table 3. Experimental Results of User 1

[ U ]| Strategies [ Al [ RTT [ Fail [ Res [ Perf |
Retry 50000 | 420 [ 2853 1] 1o11
RB 50000 | 420 | 2808 1| 1.002
Il Nvp 50000 | 839 2 510939
Active 50000 | 251 | 110 6 | 0393
Dynamic | 50000 | 266 | 298 | 2.34 | 0.372

failure-rate and resource consumption are loose. As shown
in Table 3, among all the strategies, the RTT performance
of the strategy NV P is the worst, while the RTT perfor-
mance of the strategy Active is the best. This is reasonable,
since NV P needs to wait for all responses before major-
ity voting, while Active simply employs the first properly-
returned response as the final result. We can see that the
proposed Dynamic strategy can provide good RTT perfor-
mance to User 1.

The Fail column in Table 3 shows fault tolerance per-
formance of different strategies. The failure-rates of the
strategies Retry and RB are not good, because the set-
ting of £, = 1000ms leads to a lot of timeout failures.
Among all the strategies, NV P obtains the best fault toler-
ance performance. This is not only because NV P can toler-
ate logic-related faults by majority voting, but also because
NV P invokes 5 replicas in parallel in our experiments,
which greatly reduces the number of timeout failures. For
example, if one replica does not respond within the required
time period t,,4., NV P can still get the correct result by
conducting majority voting using the remaining responses.
The fault tolerance performance of the Dynamic strategy
is not good comparing with NV P. However, this fault tol-
erance performance is already good enough for User 1, who
does not care so much about the failure-rate (f,q. = 0.1).

The Res column in Table 3 shows the resource consump-
tion information of different fault tolerance strategies. We
can see that the resource consumption of strategies Retry
and RB is equal to 1, because these two strategies invoke
only one replica at the same time. As shown in Table 2, the
version number of strategy NV P is set to be 5 and the par-
allel invocation number of strategy Active is set to be 6 in
our experiments; therefore, the Res of these two strategies

Table 4. Experimental Results of User 2
| U [ Strategies [ Al [ RTT [ Fail [ Res [ Perf |
Retry 50000 [ 471 [ 285 1]5.985
RB 50000 | 469 | 283 1| 5.944
2 || NvP 50000 | 855 0 510677
Active 50000 | 253 | 126 6 | 2.946
Dynamic | 50000 | 395 3] 4.03 | 0459
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Table 5. Experimental Results of User 3

| U [ Strategies | All [ RTT [ Fail [ Res | Perf |
Retry 50000 | 458 | 155 110717
RB 50000 | 457 | 149 110713
3 || NvP 50000 | 845 1 512712
Active 50000 | 248 | 138 6 | 3.154
Dynamic | 50000 | 456 | 141 1| 0.708

Table 6. Experimental Results of User 4

| U [ Strategies | All [ RTT [ Fail [ Res | Perf |
Retry 50000 [ 498 [ 145 1] 1.194
RB 50000 | 493 | 131 1| 1.180
4 || NvP 50000 | 868 1| 55087
Active 50000 | 251 | 119 | 6 | 6.144
Dynamic | 50000 | 494 | 109 | 1 | 1.158

are 5 and 6, respectively. The Dynamic strategy invokes
2.34 replicas in parallel on average.

From the Perf column shown in the Table 3, we can
see that Dynamic strategy achieves the best overall perfor-
mance (calculated by Eq.10) among all the strategies. Al-
though the Active strategy also achieves good performance
for User 1, it is not good to other users with different re-
quirement.

As shown in Tables 4-8, for other service users, the
Dynamic strategy can also provide suitable strategy dy-
namically to achieve good performance. As shown in Fig.3,
the Dynamic strategy provides the best overall perfor-
mance among all the fault tolerance strategies for all the
six service users. This is because the Dynamic strategy
considers user requirements and can adjust itself for opti-
mal strategy dynamically according to the change of replica
QoS. The other four traditional fault tolerance strategies

I Retry
[ R
e i
[ Acitve
I yremic

Overall Performance

Users

Figure 3. Overall Performance of Strategies

105

Table 7. Experimental Results of User 5
[ U [ Strategies [ Al [ RTT [ Fail [ Res [ Perf |
Retry 50000 | 454 | 115 10823
RB 50000 | 450 | 121 1| 0847
5 | NvP 50000 | 779 0 5| 1.718
Active 50000 | 249 | 125 6 | 2516
Dynamic | 50000 | 489 | 60 | 1.46 | 0.759

Table 8. Experimental Results of User 6

| U [ Strategies [ Al [ RTT [ Fail [ Res [ Perf |
Retry 50000 [ 470 [ 146 129236
RB 50000 | 468 | 119 1| 23.835
6 || NvP 50000 | 839 | 1 5| 0304
Active 50000 | 249 | 132 6 | 26.487
Dynamic | 50000 | 473 1356 | 0268

perform well in some situations; however, they perform
badly in other situations, because they are too static. Our ex-
perimental results indicate that the traditional fault tolerance
strategies may not be good choices in the field of service-
oriented computing, which is highly dynamic. The exper-
imental results also indicate that our proposed Dynamic
fault tolerance strategy is more adaptable and can achieve
better overall performance comparing with the traditional
fault tolerance strategies.

5. Conclusion

This paper proposes a QoS-aware middleware for fault
tolerant Web services. Based on this middleware, service
users share their individually-obtained Web service QoS in-
formation with each other via a service community coor-
dinator. A dynamic optimal strategy selection algorithm,
which employs both objective replica QoS information as
well as subjective user requirements, is designed and eval-
uated. Experiments are conducted and the experimental
results indicate that the proposed Dynamic strategy can
obtain better overall performance for various service users
comparing with the traditional fault tolerance strategies.

Currently, we only consider the most important QoS
properties (RTT, failure-rate, and resources) in the middle-
ware. More QoS properties will be involved in the future.
Also, the proposed fault tolerance middleware can only
work on stateless Web services at the current stage. More
investigations are needed for the fault tolerance of stateful
Web services.
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