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Abstract

As the abundance of Web services on the World Wide
Web increase, designing effective approaches for Web ser-
vice selection and recommendation has become more and
more important. In this paper, we present WSRec, a Web
service recommender system, to attack this crucial prob-
lem. WSRec includes a user-contribution mechanism for
Web service QoS information collection and an effective
and novel hybrid collaborative filtering algorithm for Web
service QoS value prediction. WSRec is implemented by
Java language and deployed to the real-world environment.
To study the prediction performance, A total of 21,197 pub-
lic Web services are obtained from the Internet and a large-
scale real-world experiment is conducted, where more than
1.5 millions test results are collected from 150 service users
in different countries on 100 publicly available Web services
located all over the world. The comprehensive experimen-
tal analysis shows that WSRec achieves better prediction
accuracy than other approaches.

1. Introduction

Web services are loosely-coupled software systems de-
signed to support interoperable machine-to-machine inter-
action over a network. The increasing presence and adop-
tion of Web services call for effective approaches for Web
service selection and recommendation, which is a key issue
in the field of service computing [18].

In the presence of multiple Web services with identi-
cal or similar functionalities, Quality of Service (QoS) pro-
vides non-functional Web service characteristics for the op-
timal Web service selection. Since the service providers
may not deliver the QoS it declared, and some QoS proper-
ties (e.g., network latency, invocation failure-rate, etc.) are
highly related to the locations and network conditions of the
service users, Web service evaluation by the service users
can obtain more accurate results on whether the demanded

Web services fit the functional and non-functional require-
ments [16, 17, 21]. However, evaluation from the service
user’s perspective has the following drawbacks: 1) Firstly,
it requires service invocations and imposes costs for the ser-
vice users. At the same time, it consumes resources of the
service providers. 2) Secondly, there may be too many ser-
vice candidates to be evaluated and some suitable Web ser-
vices may not be discovered by the service users. 3) Finally,
most of the service users are not experts on the Web service
evaluation, and the common time-to-market constraints lim-
its an in-depth evaluation of the target Web services.

To overcome the drawbacks described above, we pro-
pose WSRec, which employs an effective and novel hybrid
collaborative filtering algorithm, for Web service selection
and recommendation. Collaborative filtering methods can
automatically predict the QoS performance of a Web service
for an active user by employing historical QoS information
from other similar service users, who have similar historical
QoS experience on the same set of commonly-invoked Web
services. By our hybrid collaborative filtering method, we
can predict the QoS performance of Web services for active
service users without requiring the service users to conduct
Web service evaluation and to find out a list of service can-
didates themselves.

There are several challenges to be addressed when ap-
plying collaborative filtering methods to the Web service
recommendation: 1) How to collect the QoS information
of Web services from different service users? 2) How to
refine the traditional collaborative filtering methods to suit
for Web service recommendation? 3) How to verify the rec-
ommendation results? In traditional movie recommenda-
tion research, there are open datasets, such as the Movie-
Lens1 and the Netfix2, that can be employed for studying
the recommendation results. However, in the filed of ser-
vice computing, large service selection datasets are difficult
to obtain, making verification of the Web service recom-
mendation results a big challenge.

1http://www.cs.umn.edu/Research/GroupLens/.
2http://www.netflix.com/
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This paper aims at advancing the current state-of-the-art
in Web service recommendation by addressing the above
challenges. The contribution of this paper is three-fold: 1)
Firstly, we propose a systematic user-contribution mecha-
nism for collecting QoS information of Web services. 2)
Then we design an effective and novel hybrid collaborative
filtering algorithm for Web service recommendation, which
significantly improves the recommendation quality compar-
ing with other well-known traditional collaborative filtering
methods . 3) Finally, we conduct a large-scale real-world
experimental analysis for verifying our recommendation al-
gorithm. To the best of our knowledge, the scale of our ex-
periment is the largest among the published work for Web
service recommendation. In this paper, a total of 21,197
public Web services are obtained from the Internet, where
100 Web services are randomly selected and invoked by 150
service users in more than 20 countries. We have conducted
over 1.5 million Web service invocations with detailed ex-
perimental results.

The rest of this paper is organized as follows. Section 2
introduces the WSRec architecture. Section 3 proposes our
hybrid collaborative filtering algorithm. Section 4 shows
the system implementation, experiments and results. Sec-
tion 5 presents related work and Section 6 concludes the
paper.

2. System Architecture

In the movie recommendation research, an underlying
assumption is that the movie ratings issued by different
users can be obtained from a commercial or experimental
Web system like Amazon and MovieLens. However, in the
field of service computing, it is difficult to obtain Web ser-
vice QoS information observed by different service users
due to: 1) Web services are distributed over the Internet and
are owned by different organizations; 2) service users are
usually isolated from each other; and 3) the current Web
service architecture does not provide any mechanism for
the Web service QoS information sharing. However, ob-
taining sufficient Web service QoS information from differ-
ent service users is crucial for making accurate Web ser-
vice recommendations. To attack this challenge, we intro-
duce the key concept of Web 2.0, user-contribution, for the
Web service QoS information collecting. The idea is that by
contributing the individually observed Web service QoS in-
formation to WSRec, the service users can obtain accurate
Web service recommendation service. Apart from the user-
contribution mechanism, WSRec also controls a number of
distributed computers for monitoring the publicly available
Web services. In this paper, we use the Planet-lab [4], which
is a distributed test-bed made up of about 1,000 computers
distributed all over the world, for monitoring the real-world
Web services and collecting their QoS performance. With
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Figure 1. Architecture of the WSRec

the above set-up, we are able to obtain sufficient Web ser-
vice QoS information for recommendation in our WSRec
system.

Figure 1 shows the system architecture of WSRec, which
includes the following procedures: 1) An active service user
provides the individually obtained Web service QoS infor-
mation to the WSRec; 2) The Input Handler in the WSRec
processes the input data; 3) The Find Similar Users finds
similar users from the training data of WSRec; 4) The Pre-
dict Missing Data predicts the missing QoS values for the
active user using our hybrid collaborative filtering algorithm
and saves the predicted values; 5) The Recommender em-
ploys the predicted QoS values to recommend optimal Web
services to the active user.

3. Recommendation Algorithm

3.1. Similarity Computation

Given a recommender system consisting of M service
users and N Web service items, the relationship between
service users and Web service items is denoted by an M×N
matrix, called the user-item matrix. Every entry in this
matrix rm,n represents the a vector of QoS values (e.g.,
response-time, failure-rate, etc.), that is observed by the ser-
vice user m on the Web service item n. If user m did not
invoke the Web service item n before, then rm,n = 0.

Pearson Correlation Coefficient (PCC) was introduced
in a number of recommender systems for similarity compu-
tation, since it can be easily implemented and can achieve
high accuracy. In user-based collaborative filtering for Web
services, PCC is employed to define the similarity between
two service users a and u based on the Web service items
they commonly employed using the following equation:

Sim(a, u) =

∑
i∈I

(ra,i − ra)(ru,i − ru)√∑
i∈I

(ra,i − ra)2
√∑

i∈I

(ru,i − ru)2
, (1)
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where I = Ia ∩ Iu is the subset of Web service items which
user a and user u commonly invoked, ra,i is the vector of
QoS values of Web service item i observed by service user
a, and ra represents the vector of average QoS values of the
service user a. From this definition, the service user sim-
ilarity, Sim(a, u), is in the interval of [-1,1] with a larger
value indicating that users a and u are more similar.

Item-based collaborative filtering methods using PCC,
such as [5, 13], are similar to the user-based methods. The
difference is that item-based methods employ the similarity
between the Web service items instead of the service users.
The similarity computation of two items i and j can be de-
scribed as:

Sim(i, j) =

∑
u∈U

(ru,i − ri)(ru,j − rj)√∑
u∈U

(ru,i − ri)2
√∑

u∈U

(ru,j − rj)2
, (2)

where U = Ui∩Uj is the subset of service users who invoke
both Web service item i and Web service item j, and ri rep-
resents the vector of average QoS values of the Web service
item i observed by different service users. Sim(i, j) is also
ranging from [−1, 1].

PCC often overestimates the similarities of service users
who are actually not similar but happen to have similar QoS
experience on a few co-invoked Web services [11]. To ad-
dress this problem, we employ a similarity weight to reduce
the influence of a small number of similar co-invoked items.
An enhanced PCC for the similarity computation of differ-
ent users is defined as:

Sim′(a, u) =
2 × |Ia ∩ Iu|
|Ia| + |Iu| Sim(a, u), (3)

where |Ia ∩ Iu| is the number of Web service items that are
employed by both the two users, and |Ia| and |Iu| are the
number of Web services employed by user a and user u,
respectively. When |Ia ∩ Iu| is small, the similarity weight
2×|Ia∩Iu|
|Ia|+|Iu| will devalue the similarity estimation between the

service users. Just like the user-based methods, an enhanced
PCC for the similarity computation of different Web service
items is defined as:

Sim′(i, j) =
2 × |Ui ∩ Uj |
|Ui| + |Uj | Sim(i, j), (4)

where |Ui ∩ Uj | is the number of service users who invoke
both Web service item i and item j. The experimental re-
sults in Section 4.4 show that the similarity weight can en-
hance the QoS value prediction accuracy of Web services.

3.2. Similar Neighbors Selection

After calculating the similarities between different users,
a set of similar neighbors can be identified. Similar neigh-

bors selection is a very important step for making accurate
recommendation, since dissimilar neighbors will lead to in-
accurate missing value prediction for the active user. In
practice, some users have limited similar users or even do
not have any similar users. Traditional Top-K algorithms
ignore this problem and still choose the top k most simi-
lar neighbors to predict the missing value. This will greatly
influence prediction accuracy. In this paper, a similar neigh-
bor will be removed from the set of the TopK similar neigh-
bors if its similarity is equal to or smaller than 0. To predict
a missing value ru,i in the item-user matrix, a set of similar
users S(u) can be found by the following equation:

S(u) = {ua|ua ∈ T (u), Sim′(ua, u) > 0, ua �= u}, (5)

and a set of similar items S(i) of the Web service item i can
be found by the following equation:

S(i) = {ik|ik ∈ T (i), Sim′(ik, i) > 0, ik �= i}, (6)

where T (u) is a set of the TopK similar users to the user u,
T (i) is a set of the TopK similar items to the item i.

3.3. Missing Value Prediction

User-based collaborative filtering methods use similar
users to predict the missing value (QoS values) for the ac-
tive users by employing the following equation:

P (ru,i) = u +

∑
ua∈S(u)

Sim′(ua, u)(rua,i − ua)

∑
ua∈S(u)

Sim′(ua, u)
, (7)

where u is the vector of average QoS values different Web
services observed by the active user u, and ua is the vector
of average QoS value of different Web services observed by
the similar service user ua. Item-based collaborative filter-
ing methods use similar Web service items to predict the
missing value by employing the following equation:

P (ru,i) = i +

∑
ik∈S(i)

Sim′(ik, i)(ru,ik
− ik)

∑
ik∈S(i)

Sim′(ik, i)
. (8)

However, due to the sparsity of the user-item matrix,
predicting missing value only using user-based methods or
item-based methods will potentially ignore valuable infor-
mation that will make the prediction more accurate. In order
to predict the missing value as accurate as possible, we pro-
pose a hybrid collaborative filtering algorithm, which sys-
tematically combines user-based and item-based methods to
fully utilize the information of the user-item matrix. When
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a missing value does not have similar users, we use the in-
formation of similar items to predict the missing value, and
vice versa. When S(u) �= ∅ ∧ S(i) �= ∅, we employ both
the user-based and item-based methods to predict the miss-
ing QoS values. Since these two predicted values may have
different prediction accuracy, we employ two confidence
weights, conu and coni, to balance these two predicted val-
ues. conu is defined as:

conu =
∑

ua∈S(u)

Sim′(ua, u)∑
ua∈S(u) Sim′(ua, u)

× Sim′(ua, u),

(9)
and coni is defined as:

coni =
∑

ik∈S(i)

Sim′(ik, i)∑
ik∈S(i) Sim′(ik, i)

× Sim′(ik, i), (10)

where a higher value indicates a higher accuracy of the pre-
dicted value P (ru,i).

Since different datasets may have their own data dis-
tribution natures, a parameter λ (0 ≤ λ ≤ 1) is em-
ployed to determine how our QoS value prediction relies
on the user-based method or the item-based method. When
S(u) �= ∅ ∧ S(i) �= ∅, our hybrid collaborative filtering
method predicts the missing QoS value ru,i by employing
the following equation:

P (ru,i) = wu × (u +

∑
ua∈S(u)

Sim′(ua, u)(rua,i − ua)∑
ua∈S(u)

Sim′(ua, u)
) +

wi × (i +

∑
ik∈S(i)

Sim′(ik, i)(ru,ik − ik)∑
ik∈S(i)

Sim′(ik, i)
), (11)

where wu + wi = 1, wu = conu×λ
conu×λ+coni×(1−λ) and wi =

coni×(1−λ)
conu×λ+coni×(1−λ) . The confidence of the predicted value
P (ru,i) by Eq. (11) can be calculated by equation:

con = wu × conu + wi × coni. (12)

When S(u) �= ∅ ∧ S(i) = ∅, since there are no sim-
ilar items, the missing value prediction degrades to the
user-based approach by employing Eq. (7), and the con-
fidence of the predicted value is con = conu. When
S(u) = ∅ ∧ S(i) �= ∅, the missing value prediction re-
lies only on the similar items by employing Eq. (8), and the
confidence of the predicted value is con = coni. When
S(u) = ∅ ∧ S(i) = ∅, since there are no similar users
or items for the missing value ru,i, we predict the missing
value using the following equation:

P (ra,i) = wu × ra + wi × ri, (13)

where ra (UMEAN) is the vector of average QoS values of
different Web services observed by the service user a and ri

(IMEAN) is the vector of average QoS values of Web ser-
vice item i invoked by different service users. In this case,
the confidence of the predicted value is con = 0, indicating
that we have no confidence on the predicted values.

By the above design, the confidence weights (conu and
coni) determine how much our hybrid method relies on the
user-based prediction and the item-based prediction auto-
matically. The parameter λ enhances the feasibility of our
hybrid method to different environments. These mecha-
nisms are different from all other existing prediction meth-
ods and the experimental results in Section 4 show that this
new approach can significantly enhance the QoS value pre-
diction accuracy for Web services.

3.4. Web Service Recommendation

The predicted QoS values can be employed for the Web
service recommendation and selection by the following
ways: 1) For functionally equivalent Web services, the one
with best predicted QoS performance can be recommended
to the active user. 2) WSRec can recommend the top k best-
performing Web services, which may not have equivalent
functionality, to the service users to help them discover the
potential Web services. 3) WSRec can also recommend the
top k active service users, who have good predicted QoS
values on a certain Web service, to the service provider to
help the provider find its potential customers.

Different from all other existing prediction methods,
WSRec not only provides the predicted QoS values for the
active users, but also provides the confidences (con) of the
predicted values, which can be employed by the service
users for better Web service selection.

4. Implementation and Experiments

4.1. Implementation and Data Collection

WSRec is implemented and deployed with JDK6.0,
Eclipse3.3, Axis [1], and Tomcat6.0. We obtain a list of
21,197 publicly available Web services from Internet by
crawling Web service information from: 1) well-known
companies (e.g., Google, Yahoo, Amazon, ect.); 2) por-
tal Websites that list publicly available Web services (e.g.,
xmethods.net, webservicex.net, etc.); and 3) Web service
searching engines (e.g., seekda.com, esynaps.com, etc.).
We successfully generate client stub classes for 18,102 Web
services using the WSDL2Java tool from the Axis package
[1]. A total of 343,917 Java Classes are generated. The
Web services which fail during the client stub generation
are mainly due to network connection problems (e.g., con-
nection timeout, HTTP 400, 401, 403, 500, 502 and 503),

440

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 30,2020 at 06:19:53 UTC from IEEE Xplore.  Restrictions apply. 



FileNotFoundException (the WSDL file cannot be found)
and InvalidWSDLFiles (the WSDL file cannot be parsed).

Since it is difficult to monitor all the Web services at the
same time, we randomly select 100 Web services, which
are located in more than 20 countries. Some of the initially
selected Web services had to be replaced due to: 1) authen-
tication required; 2) permanent invocation failure (e.g., the
Web service is shutdown); and 3) too long processing du-
ration. 150 computer nodes from Planet-Lab [4], which
are distributed in more than 20 countries, are employed to
monitor and collect QoS data on the selected Web services.
More than 1.5 millions Web service invocations are exe-
cuted and the test results are collected. Due to space restric-
tions, this paper only reports the comprehensive analysis of
the experimental results.

By processing the experimental results, we obtain a
150 × 100 user-item matrix, where each entry in the ma-
trix is a vector including two QoS values: (RTT and failure-
rate). RTT (round-trip time) presents the time duration be-
tween the client sending a request and receiving a response,
and failure-rate presents the probability that a request is cor-
rectly responded within the maximum expected time, which
is 20 seconds, the default setting of Axis [1].

4.2. Metrics

Mean Absolute Error (MAE) metric is widely employed
to measure the prediction quality of collaborative filtering
methods, which is defined as:

MAE =

∑
i,j |ri,j − r̂i,j |

N
, (14)

where ri,j denotes the expected QoS value of Web service
item j observed by service user i, r̂i,j denotes the predicted
QoS value, and N denotes the number of predicted values.
Since different QoS properties of Web services have differ-
ent value ranges, similar to [10], we use the Normalized
Mean Absolute Error (NMAE) metric to measure the pre-
diction quality of our hybrid collaborative filtering method.
We define our NMAE to be the standard MAE normalized
by the mean of the expected QoS values as follows:

NMAE =
MAE∑
i,j ri,j/N

, (15)

where smaller NMAE value means higher prediction qual-
ity.

4.3. Performance Comparison

In order to study the prediction performance, we com-
pare our method(WSRec) with other well-known predic-
tion methods: user-mean (UMEAN), item-mean (IMEAN),

user-based algorithm using PCC (UPCC) [2], and item-
based algorithm using PCC (IPCC) [12]. UMEAN employs
the average QoS value of the service users on other Web ser-
vices to predict the missing value, while IMEAN employs
the average QoS value of the Web service item observed
by other users to predict the missing value for the active
users. Eq. (1) and Eq. (2) are employed for the calculation
of UPCC and IPCC, respectively.

We divide the 150 service users into two parts, one as the
training users and the other as the active (test) users. For the
active users, we vary the number of QoS values provided by
the active users as 5, 10 and 20 by randomly removing item
values, and name them Given 5, Given 10, and Given 20,
respectively. The removed QoS values will be used as the
expected values to study the prediction performance. For
the training matrix, we randomly remove entries to make the
matrix sparser with density 10% and 20%, respectively. We
set λ = 0.1 and TopK = 10. Each experiment is looping
50 times and the average value is reported.

Table 1 and Table 2 show the prediction performance
of different methods employing the 10% and 20% density
training matrix, respectively. In both tables, we observe that
our method (WSRec) obtains smaller NMAE values, which
means better recommendation quality. Table 1 shows that
the NMAE value of WSRec becomes smaller with the in-
crease of the given number (from 5 to 20), indicating that
the recommendation accuracy of WSRec is improved by
giving more Web service QoS data. With the increase of
the training user number from 100 to 140, the recommenda-
tion accuracy also shows significant enhancement, indicat-
ing that the recommendation accuracy can be enhanced by
collecting more training data. As shown in Table 2, the rec-
ommendation accuracy is enhanced by increasing the den-
sity of the training matrix from 10% to 20%. In both tables,
the prediction performance of the failure-rate is worse than
the RTT, since the training matrix of failure-rate contains a
lot of zero values (all invocations are success). Under all the
different experimental settings, WSRec consistently outper-
forms other methods.

4.4. Impact of the Significance Weight

Significance weight makes the similarity computation
more reasonable in practice and devalues the similarities
which look similar but are actually not. To study the impact
of the significance weight, we implement two versions of
WSRec, one version employs PCC with significance weight
(Eq. (3) and Eq. (4)) for the similarity computation, while
the other version employs the PCC without significance
weight (Eq. (1) and Eq. (2)). In the experiment, we set
Given = 5, λ = 0.1, and training users = 140. We vary
the density of the training matrix from 0.1 to 1 with a step
value of 0.1. We do not study the density value of 0, since
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Table 1. NMAE Performance Comparison (Training Matrix Density = 10%)
Training Users = 100 Training Users = 140

QoS RTT Failure-rate RTT Failure-rate
Given 5 10 20 5 10 20 5 10 20 5 10 20

UMEAN 1.212 1.131 1.109 2.244 2.210 2.186 1.168 1.066 1.043 2.801 2.267 2.407
IMEAN 0.514 0.515 0.521 0.787 0.790 0.831 0.477 0.474 0.479 0.631 0.649 0.663
UPCC 1.134 0.931 0.797 1.887 1.682 1.394 1.061 0.855 0.731 2.264 1.700 1.348
IPCC 0.538 0.532 0.505 0.947 0.968 0.957 0.443 0.411 0.384 0.769 0.759 0.783

WSRec 0.472 0.452 0.422 0.732 0.714 0.694 0.383 0.353 0.327 0.576 0.567 0.563

Table 2. NMAE Performance Comparison (Training Matrix Density = 20%)
Training Users = 100 Training Users = 140

QoS RTT Failure-rate RTT Failure-rate
Given 5 10 20 5 10 20 5 10 20 5 10 20

UMEAN 1.228 1.138 1.111 2.253 2.354 2.528 1.136 1.117 1.059 2.354 2.340 1.810
IMEAN 0.494 0.495 0.500 0.765 0.788 0.860 0.456 0.462 0.463 0.613 0.634 0.584
UPCC 0.981 0.707 0.555 1.893 1.686 1.399 0.858 0.655 0.526 1.931 1.569 0.893
IPCC 0.440 0.387 0.372 0.858 0.833 0.873 0.323 0.297 0.286 0.636 0.616 0.564

WSRec 0.394 0.352 0.333 0.666 0.655 0.651 0.296 0.280 0.268 0.494 0.492 0.410
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Figure 2. Impact of the Significance Weight

in that case the training matrix contains no information and
cannot be employed for the QoS value prediction.

Figure 2(a) and 2(b) employ the top 5 similar neigh-
bors for the missing value prediction, while Fig. 2(c) and
2 (d) employ the top 10 similar neighbors for the predic-
tion. Figure 2 shows that WSRec with significance weight
obtains better prediction accuracy (smaller NMAE) consis-
tently and the accuracy improvement becomes more note-
worthy with the increase of the training matrix density. This
is because when the training matrix is sparse, the number
of similar neighbors is limited and usually the devalued-
neighbors will still be included as the TopK similar neigh-

bors for the missing value prediction. Since the number of
similar neighbors will increase in a denser training matrix,
the devalued neighbors will be therefore replaced by more
similar neighbors, making the accuracy improvement more
significant. Figure 2 also shows that performance of the WS-
Rec without significance weight is not steady, since it may
include dissimilar neighbors, which will greatly influence
the prediction performance.

4.5. Impact of the Confidence Weight

Confidence weight also plays an important role in our hy-
brid collaborative filtering method. As discussed in Section
3.4, the confidence weight determines how to make use of
the predict values from the user-based method and the item-
based method to achieve higher prediction accuracy auto-
matically. To study the impact of the confidence weight, we
also implement two versions of WSRec, one version em-
ploys confidence weight, while the other version does not.
In the experiment, we set Given = 5, λ = 0.1, and training
users = 140. We also vary the density of the training matrix
from 0.1 to 1. The experimental results are shown in Fig. 3.

As shown in Fig. 3, in both Top-K = 5 and Top-K = 10,
WSRec with confidence weight outperforms WSRec without
confidence weight for both the RTT and failure-rate. Fig-
ure 3 also shows that the NMAE values become smaller
with the increase of training matrix density. This is because
denser training matrix provides more information, which
makes the missing value prediction more accurate.

442

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 30,2020 at 06:19:53 UTC from IEEE Xplore.  Restrictions apply. 



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.25

0.3

0.35

0.4

0.45

Top−K = 5

Density of the RTT Training Matrix
(a)

N
M

A
E

 

 

WSRec With Confidence Weight
WSRec Without Confidence Weight

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8
Top−K = 5

Density of the Failure−rate Training Matrix
(b)

N
M

A
E

 

 

WSRec With Confidence Weight
WSRec Without Confidence Weight

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.25

0.3

0.35

0.4

Top−K = 10

Density of the RTT Training Matrix
(c)

N
M

A
E

 

 

WSRec With Confidence Weight
WSRec Without Confidence Weight

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75
Top−K = 10

Density of the Failure−rate Training Matrix
(d)

N
M

A
E

 

 

WSRec With Confidence Weight
WSRec Without Confidence Weight

Figure 3. Impact of the Confidence Weight

4.6. Impact of λ

Different datasets may have different data correlation
characteristics (e.g., some may provide better prediction re-
sults by employing user-based methods, while others may
provide better prediction results by employing item-based
methods). Parameter λ makes our prediction method more
feasible and adaptable to different environments. If λ = 1,
we only extract information from the Web service users, and
if λ = 0, we only consider valuable information from the
items. In other cases, we fuse information from both users
and items based on the value of λ to predict the missing
value for the active users.

To study the impact of the parameter λ on our hybrid col-
laborative filtering method, we set Top-K = 10 and training
users = 100. We vary the value of λ from 0 to 1 with a
step value of 0.1. Figure 4(a) shows the results of Given
10, Given 20 and Given 30 with 20% density training ta-
ble of RTT, and Fig. 4(b) shows the results of Density 10%,
Density 20% and Density 30% with Given = 20 of RTT. The
experimental results of failure-rate follow the same trend of
RTT and are not reported in this paper due to space restric-
tion. Observing from Fig. 4, we draw the conclusion that
the value of λ impacts the recommendation results signifi-
cantly, and suitable λ values, which enable properly combi-
nation of the user-based method and the item-based method,
will provide better prediction accuracy.

Another interesting observation is that, with the given
number increased from 10 to 30, the optimal value of λ,
which obtains the minimal NMAE values of the curves in
Fig. 4(a), shifts from 0.1 to 0.3. This indicates that the opti-
mal λ value is influenced by the given number. The similar
items are more important than similar users when limited
Web service QoS values are given by the active users ,while
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Figure 4. Impact of λ

the similar users become more important when more QoS
values are available from the active users. This observa-
tion is also confirmed by the experimental results reported
in Table 1 and Table 2, where the IPCC outperforms the
UPCC for all the Given5, Given10 and Given20. This is
reasonable, since with limited user-given QoS values, the
UMEAN prediction method, which employ the mean of the
user-given QoS values to predict the QoS values of other
Web services for this user, has higher probability to be in-
accurate. This will influence the prediction performance of
UPCC, which is based on the value predicted by UMEAN
for the missing value prediction as shown in Eq. (7).

As shown in Fig. 4(b), with the given number of 20, all
the three curves (Density 10, 20 and 30) obtain the best pre-
diction performance at λ = 0.2, indicating that the optimal
value of λ is not influenced by the training matrix density.

5. Related Work and Discussion

QoS based approaches for Web services selection have
been discussed in a number of recent literature [3, 6, 19, 20],
which enables optimal Web services to be identified from a
set of candidates according to the QoS performance of the
candidates and the preference of the service users. Our work
is quite different from these approaches since we employ
the information of similar service users as well as similar
Web service items to predict the QoS performance of Web
services. Our method requires no Web service invocation,
which will save a lot of resource and time.

Collaborative filtering methods are widely adopted in
commercial recommender systems [9, 12]. The most an-
alyzed examples of memory-based collaborative filtering
include user-based approaches [2, 7] and item-based ap-
proaches [5, 13]. Our work provides a comprehensive study
of how to provide accurate Web service QoS value pre-
diction by systematically combining the user-based method
and the item-based method.

There is limited work in the literature employs collabo-
rative filtering methods for Web service recommendation,
since there is no large-scale Web service QoS datasets
available for studying the QoS value prediction results.
Without convincing and sufficient real-world Web service
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QoS data, the characteristics of Web service QoS informa-
tion cannot be fully mined and the proposed recommen-
dation algorithms will become merely a redevelopment of
the traditional movie recommendation algorithms, which
may not be applicable to the Web service recommenda-
tion. Work [8, 15] mentions the idea of applying collab-
orative filtering methods to Web service recommendation
and employs the MovieLens dataset for experimental stud-
ies, which is not convincing enough. Work [14] proposes a
user-based PCC method for the Web service QoS value pre-
diction, however, as shown in Section 4.3, the performance
of UPCC is not good when the given number is small.

In order to alleviate the data sparsity problem and take
advantages of both user-based and item-based collaborative
filtering methods, in this paper, we propose an effective and
novel hybrid recommendation method. Moreover, a sys-
tem (WSRec) is designed and implemented for collecting
QoS information and conducting comprehensive large-scale
real-world experiments which were never explored before.
Comprehensive experimental analysis is performed for dis-
covering characteristics of the Web service QoS informa-
tion. We include Significance weighting, confidence weight-
ing, and the parameter λ in our approach to make full use
of the characteristics of the Web service QoS information to
achieve more accurate Web service QoS value prediction.

6. Conclusion

We propose WSRec, which employs an effective and
novel hybrid collaborative filtering method, for Web service
recommendation. A systematic QoS information collection
mechanism is designed and real-world experiments are con-
ducted. The comprehensive experimental analysis shows
the effectiveness and feasibility of WSRec.

In our future work, more real-world Web services will be
monitored and more QoS properties of Web services will
be investigated. The utilization of the predicted QoS val-
ues and the combination of different QoS properties will be
further explored.
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