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Abstract

Redundancy-based fault tolerance strategies are pro-
posed for building reliable Service-Oriented Architec-
tures/Applications (SOA), which are usually developed on
the unpredictable remote Web services. This paper proposes
and implements a distributed replication strategy evalua-
tion and selection framework for fault tolerant Web ser-
vices. Based on this framework, we provide a systematic
comparison of various replication strategies by theoretical
formula and real-world experiments. Moreover, a user-
participated strategy selection algorithm is designed and
verified. Experiments are conducted to illustrate the advan-
tage of this framework. In these experiments, users from six
different locations all over the world perform evaluation of
Web services distributed in six countries. Over 1,000,000
test cases are executed in a collaborative manner and de-
tailed results are also provided.

1. Introduction

Web services are self-contained, self-describing, and
loosely-coupled computational components designed to
support Machine to Machine interaction via networks, in-
cluding the Internet. They are widely employed to imple-
ment the increasingly popular Service-Oriented Architec-
tures/Applications (SOA). Because the reliability and effec-
tiveness of remote Web services are unclear, and the per-
formance of Internet is also unpredictable, it is difficult to
guarantee the performance (e.g., response time, failure-rate,
stability and so on) of these service-oriented applications,
which are developed on Web services.

WS-ReliableMessaging [1] is a Web service specifica-
tion designed to allow messages to be delivered reliably be-
tween distributed applications. However, it can only guar-
antee communication reliability. Problems, such as unavail-
ability of remote Web service (server crash down, network

disconnect, and so on), and poor performance (long latency,
high failure-rate, and so on), are remain unsolve. A number
of application/Web service level fault tolerance strategies
have been proposed in the recent literature for establishing
reliable service-oriented applications [2, 3, 4]. These strate-
gies use Web services with similar or identical interfaces
as redundant replicas for fault tolerance and performance
improvement purpose. There are two commonly used repli-
cation strategies: passive replication and active replication
[5]. Passive replication, which employs a primary replica to
process the service request first and invokes backup repli-
cas only when the primary replica fails, has been employed
in FT-SOAP [6] and FT-CORBA [7]. Active replication,
which invokes all replicas at the same time and employs the
first properly returned response as the final outcome, has
been employed in FTWeb [8], Thema [9], WS-Replication
[10] and in work [11].

It is a challenge for service-oriented application develop-
ers to determine the optimal replication strategy, which re-
quires not only performance information of the target Web
services, but also good knowledge on various available fault
tolerance replication strategies. Comparing with the nu-
merous investigations on individual Web service evalua-
tion [12, 13, 14, 15], the investigations on faut tolerance
replication strategies evaluation and selection is still lim-
ited. Assuming that a user named Ben plans to build a
service-oriented Web site. By using the approaches pro-
posed in [5, 16], he has obtained several appropriate Web
services with identical interface to serve as alternative repli-
cas. However, determining the optimal fault tolerance repli-
cation strategy becomes a challenge for Ben, since he has
no idea on the performance of target replicas as well as the
features of various available replication strategies. To ad-
dress this challenge, this paper proposes a distributed repli-
cation strategy evaluation and selection framework for ser-
vice users. The contribution of this paper includes:
• Design and implement a distributed evaluation and se-

lection framework for Web services and replication
strategies.
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• Provide a systematic introduction of various replica-
tion strategies, and propose a replication strategy se-
lection algorithm.

• Comprehensive real-world experiments are conducted,
where more than 1,000,000 test cases are executed by
users in six locations all over the world on target Web
services located in six countries.

This paper is organized as follows: Section 2 proposes
the distributed evaluation framework. Section 3 introduces
various replication strategies. Section 4 provides an opti-
mal strategy selection algorithm. Section 5 implements a
prototype of our evaluation framework. Section 6 presents
experimental results, and Section 7 concludes the paper.

2. A Distributed Evaluation Framework

When conducting replication strategies evaluation and
selection, there are several challenges to be solved:

• Evaluation location: The service users are usually
from different locations with different network condi-
tions. Therefore, conducting evaluation on the target
Web services from various locations is necessary.

• Evaluation accuracy: Few service users have good
knowledge on replication strategies, test case genera-
tion [17], test result analysis and so on, making accu-
rate replication strategies evaluation difficult.

• Evaluation efficiency: It is time-consuming for ser-
vice users to conduct evaluation themselves. More ef-
ficient approaches are needed.

Taking the viewpoint of service users where the remote
Web service is treated as a black box without any inter-
nal design or implementation information, this section pro-
poses a distributed Web service/replication strategy evalua-
tion framework to address the above challenges. As intro-
duced in [18], this framework employs the concept of user-
collaboration, which has contributed to the recent success
of BitTorrent [19] and Wikipedia [20]. In this framework,
users in different geographical locations help each other to
conduct evaluation of individual Web services or replica-
tion strategies under the coordination of a centralized server.
Historical test cases and evaluation results are saved in a
data center. As shown in Fig.1, the proposed distributed
evaluation framework includes a centralized server with a
number of distributed clients. The overall process can be
explained as follows.

1. Evaluation registration: Users submit evaluation re-
quests with related information, such as the target Web
service addresses, particular test cases, strategies se-
lection parameters, and so on, to the server.

2. Client-side application loading: A client-side evalu-
ation application is loaded to the user’s computer.

Figure 1. Distributed Evaluation Framework

3. Test case generation: The TestCase Generator in the
server automatically creates test cases based on the in-
terface of the target Web Services (WSDL files). Two
types of test cases are created: single test cases for
individual Web service evaluation, and multiple test
cases for replication strategy evaluation.

4. Test coordination: Test tasks are scheduled based on
the number of current users and test cases.

5. Test cases retrieval: Distributed client-side applica-
tions get test cases from the server.

6. Test cases execution: Distributed client-side applica-
tions execute testing on the target Web services.

7. Test result collection: Test results are sent back to the
server. Then steps 5, 6 and 7 are repeated to retrieval
and execute more test cases.

8. Test cases analysis: After the test is completed, a
TestResult Analyzer is engaged to process the collected
data and send back the detailed results to the user.

By this framework, the challenge of conducting evalu-
ation from various locations can be addressed by collabo-
rating with other users. The challenges of evaluation accu-
racy and efficiency also can be addressed, since this frame-
work can be implemented and launched by a third-party to
help service users conduct accurate and efficient Web ser-
vice evaluation in an easier way, without requiring service
users to have professional knowledge on evaluation design,
test case generation, test result interpretation, and so on.

3. Replication Strategies

Dependability is a major issue when applying service-
oriented applications to critical domains [21]. Web service
level redundancy-based fault tolerance strategy [22] is a fea-
sible approach for building reliable service-oriented appli-
cations. There are two types of redundancy: time redun-
dancy, and space redundancy [23]. Time redundancy is
based on using extra computation or communication time
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Table 1. Replication Strategy Combinations
Active Time Passive

Active 1.Actie 4.Active+Time 6.Active+Passive
Time 5.Time+Active 2.Time 8.Time+Passive
Passive 7.Passive+Active 9.Passive+Time 3.Passive

to tolerate faults, while space redundancy is based on us-
ing extra resources, such as hardware or software, to mask
faults. Space redundancy includes Active replication and
passive replication.

As shown in Table 1, combining T ime redundancy,
Active replication and Passive replication can produce
nine more sophisticated replication strategies. Strategies
named A+B means that Strategy A is employed at the lower
level and Strategy B at the higher level. The formula of cal-
culating failure rate and response time of different strategies
are shown in Table 2. The p, s and h in Table 2 repre-
sent parallel, sequential and hybrid strategy type respec-
tively, which will be introduced later. As discussed in the
work [23], we assume the remote Web services are failed
in a fixed rate, and the execution of each test cases is inde-
pendent (stateless Web services). The introduction of these
replication strategies are in the following:

1. Active: All the n replicas are invoked in parallel. The
system reliability (r) and mission time (t) of this strat-
egy are shown in Table 2, where n is the number of
replicas, Tc is a set of Round-Trip Times (RTT ) of the
properly returned test cases, and Tf is a set of RTT

of the failed test cases. When all the test cases are
failed (|Tc| = 0), the max RTT value is employed as
the mission time, since active strategy does not know
itself about the failure until all test cases return.

2. Time: The original Web service will be tried for a cer-
tain times if it fails. m is the retried times.

3. Passive: Another backup Web service will be tried se-
quentially if the primary Web service fails. m is the
backup recovery times.

4. Active+Time: The v best performing replicas among
all the n replicas are invoked in parallel. All the se-
lected v replicas will be re-executed if all of them fail.
m is the retried times.

5. Time+Active: The v best performing replicas are in-
voked in parallel. Replicas will be retried individually
if they fail.

6. Active+Passive: Another backup v replicas will be
tried if all of the primary v replicas fail. m is the re-
covery times.

7. Passive+Active: An individual replica in the primary
v replicas will try another backup replica sequentially
if it fails. m is the recovery times.

8. Time+Passive: The primary replica will retry itself
first for m times. Then another backup replica will
be executed. Only u best performing replicas are em-
ployed among all the n replicas.

Table 2. Replication strategy formula
Formula

p

1 r = 1−
n∏

i=1

(1 − ri);

t =

{
min{Tc} : |Tc| > 0
max{Tf} : |Tc| = 0

;T = {t1, ..., tn} = Tc ∪ Tf

s

2 r = 1− (1− r1)m; t =
m∑

i=1

ti(1 − r1)i−1;

s

3 r = 1−
m∏

i=1

(1 − ri); t =
m∑

i=1

ti

i−1∏
k=1

(1 − rk)

h

4 r = 1− (
v∏

i=1

(1− ri))m;

t =
m∑

i=1

ti(
v∏

j=1

(1− rj))
i−1; ti =

{
min{T i

c} :
∣∣T i

c

∣∣ > 0

max{T i
f
} :

∣∣T i
c

∣∣ = 0

h

5 r = 1−
v∏

i=1

(1 − ri)m;

t =

{
min{Tc} : |Tc| > 0
max{Tf} : |Tc| = 0

; ti ∈ T =
m∑

j=1

tij(1 − ri)
j−1

h

6 r = 1−
m∏

i=1

v∏
j=1

(1 − rij);

t =
m∑

i=1

ti

i−1∏
k=1

v∏
j=1

(1− rkj); ti =

{
min{T i

c} :
∣∣T i

c

∣∣ > 0

max{T i
f
} :

∣∣T i
c

∣∣ = 0

h

7 r = 1−
v∏

j=1

m∏
i=1

(1 − rij);

t =

{
min{Tc} : |Tc| > 0
max{Tf} : |Tc| = 0

; ti =
m∑

j=1

tij

j−1∏
k=1

((1 − rik)

s

8 r = 1−
u∏

i=1

(1 − ri)
m;

t =
u∑

i=1

((
m∑

j=1

ti(1− ri)
j−1)

i−1∏
k=1

(1− rk)m);

s

9 r = 1− (
u∏

i=1

(1− ri))m;

t =
m∑

i=1

((
u∑

j=1

tj

j−1∏
k=1

(1− rk)(
u∏

j=1

(1 − rj))
i−1);

9. Passive+Time: A replica will try another backup
replica first if it fails. After trying u replicas without
success, all the u replicas will be retried sequentially.
m is the retried times.

These strategies can be divided into three types:
• Parallel (Strategy 1): All replicas are invoked at the

same time. Parallel type strategies can be employed
to obtain good response time performance, however,
consume more resources.

• Sequential (Strategies 2, 3, 8 and 9): Replicas are
invoked sequentially. Sequential strategies consume
fewer resources, but suffer from bad response time per-
formance in erroneous environments.

• Hybrid (Strategies 4, 5, 6 and 7): Some replicas are
invoked in parallel. Hybrid strategies consume fewer
resources than parallel strategies and have better re-
sponse time performance than sequential strategies.
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4. A Replication Strategy Selection Algorithm

Optimal replication strategies for service-oriented appli-
cations vary from case to case, which are influenced not
only by objective replica performance, but also by subjec-
tive requirements of service users (application developers).
For example, developers of latency-sensitive applications
may prefer parallel strategies to obtain better response time
performance, while developers of resource-constrained ap-
plications may prefer sequential strategies for better re-
source conservation. In this section, based on both objec-
tive replica performance and subjective user requirements,
we propose an algorithm for replication strategy selection.

The following defines some notations.
{ws}n

i=1: a set of ranked Web service replicas.
ti: the average Round-Trip Time (RTT) of wsi.
fi: the failure-rate of wsi.
si: the overall performance of wsi.
tuser : the response time requirement of service users.
fuser : the failure-rate requirement of service users.
a: the performance threshold for replicas.
b: the performance degrade threshold for replicas.
c: the failure threshold for replicas.
The subjective user requirements are obtained by re-

quiring the user to provide two values: tuser and fuser .
tuser represent the user requirement on response time im-
provement of increasing one parallel replica. It is designed
to facilitate the user to make a tradeoff between the re-
sponse time performance and resource consuming. tuser

with small value means response time performance is re-
garded as more desirable than resource conservation. Such
kind of users are more likely to consume more resources
(invoke more replicas in parallel) to obtain better response
time performance. fuser represents the user requirement on
the service-oriented application failure-rate.

All the target Web service replicas {wsi}
n
i=1 are ranked

by their performance si, where ws1 is the best performing
replica (smallest si value). The performance of a particular
target Web service si can be obtained by si = ti

tuser

+ fi

fuser

.
The underlying consideration is that response time perfor-
mance of a particular Web service is related to user re-
quirement. For example, 100 ms is a large latency for
the latency-sensitive applications, while it is neglectable for
non-latency-sensitive applications. By using ti

tuser

, we can
have a better representation of the response time perfor-
mance for service users. Failure rate is similarly considered.

By finding out the optimal parallel replica number v, the
optimal strategy type can be determined as: Sequential

(v = 1), Hybrid (1 < v < n) and Parallel (v = n).
The value of v can be obtained by solving the following
optimization problem:

Problem 1 Given:

• A set of target Web service replicas {wsi}
n
i=1, which

are ranked by the performance.

• The overall response time performance of employing
the first x (1 ≤ x ≤ n) replicas in parallel T (x), which
is obtained by T (x) = 1

g
×

∑g

i=1
t(i, x), where t(i, x)

is the response time of the ith test case by employing
x parallel replicas, and g is the number of test cases.

• User’s subjective expectation on response time im-
provement by increasing one parallel replica tuser .

Maximize: x, the number of parallel replicas.
Subject to:
• |T (x) − T (x− 1)| ≥ tuser .
If v = 1, sequential strategies (Strategies 2, 3, 8 and 9)

will be selected. To determine the optimal sequential strat-
egy, the poor performing replicas, which may greatly in-
fluence the response time performance of sequential strate-
gies, will be excluded. A set of good performance repli-
cas W will be selected out by using W = {wsi|si ≤
a&&1 ≤ i ≤ n}, where a is the replica performance thresh-
old. When |W | = 0 (no replica meet the performance re-
quirement), the user needs to include other good perform-
ing replicas or reduce the performance threshold a. When
|W | = 1, Strategy 2 (T ime) is employed, since all other
strategies need space redundant replicas. When |W | = n,
Strategy 3 (Passive) is employed. Otherwise, Strategy 8
(T ime + Passive) and Strategy 9 (Passive + T ime) are
optimal. p1, which is the performance degradation between
ws1 and ws2 obtained by p1 = s2− s1, is employed to find
out the optimal strategy between Strategies 8 and 9. When
the performance degradation is large (p1 ≥ b), retrying the
ws1 first is more likely to obtain better performance (Strat-
egy 8) than invoking the backup replica (Strategy 9).

If 1 < v < n, hybrid strategies will be selected. p2,
obtained by p2 = 1

v

∑
v
i=1(si+v − si), represents the per-

formance difference between the primary v replicas and the
secondary v replicas. If the performance difference is large
(p2 ≥ b), retrying the original parallel block first is more
likely to obtain better performance (Strategies 4 and 5) than
invoking the secondary v backup replicas (Strategies 6 and
7). p3 is the failure frequency of the first v replicas, which
can be calculated by p3 = 1

v

∑
v
i=1fi. In erroneous envi-

ronment (p3 ≥ c), performance of Strategy 4 and Strategy
6 is not good, because they need to wait for all replicas to
fail before retrying/recovering, making the response time
longer. Therefore, Strategies 5 and 7 are optimal.

If v = n, Strategy 1 (Active), which invokes all the
target replicas in parallel, will be selected to obtain better
response time performance. Figure 2 shows the strategy se-
lection procedure. First, the sequential, hybrid, and paral-
lel types are selected based on the values of v. Then, the
detailed strategy will be determined based on the value of
|W |, p1, p2 and p3. Values of a, b, c and verifications of this
algorithm will be presented in Section 6.3.
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Figure 2. Replication Strategy Selection Tree

5. Implementation

To illustrate the distributed evaluation framework and the
replication strategy selection algorithm, a prototype [26] is
implemented. To provide a convenient way for users to con-
duct testing seamlessly, the client-side evaluation applica-
tion is realized as a signed Java Applet, which can be run
and updated automatically by users’ Internet browsers. The
server-side includes an HTML Web site, a TestCaseGenera-
tor (Java application), a TestCoodinator (Java Servlet), and
a data center for recording results and test cases (MySQL).

To provide meaningful illustration of our framework,
more than 1,000,000 test cases are executed by users
in six locations (CMU@US, CUHK@HK, NTU@SG,
SYSU@CN, NTHU@TW and SUT@AU) under various
network conditions to eight target Web services located in
six countries (US, JP, DE, CA, FR and UK). The nine repli-
cation strategies discussed in Section 3 are evaluated and
compared, and the strategy selection algorithm proposed in
Section 4 is verified.

The eight target Web services involved in the experiment
include six identical commercial Amazon Web services
[24] for book information displaying, a Global Weather
Web service [25] for weather information displaying, and a
GeoIP Web service [25] for geographical location informa-
tion querying by IP addresses. The non-commercial Global
Weather Web service and GeoIP Web service are involved
for making comparison with the commercial Amazon Web
services. In this experiment, the timeout threshold is set to
be 10 seconds. In practice, the value of timeout threshold
is application-dependent and can be set by users based on
the need of their applications. Detailed information of test
cases, test plans, and test results of the experiment is avail-
able in [26].

6. Experiments

6.1. Evaluation of Individual Web Services

Table 3 shows the detailed evaluation results of individ-
ual target Web services provided by our distributed evalu-

ation framework. cn, tw, au, sg, hk, us stand for the six
user locations that conducted the evaluation. a-us, a-jp, a-
de, a-ca, a-fr and a-uk stand for the six Amazon Web Ser-
vices located in US, Japan, Germany, Canada, France, and
UK, respectively. GW and GIP stand for the correspond-
ing Global Weather Web Service and GeoIP Web Service,
which are located in the USA. Cases column shows the fail-
ure rate (R%), which is the number of failed test cases (Fail)
divided by the number of all executed test cases (All). RTT
shows the average (Avg), standard deviation (Std), minimum
(Min) and maximum (Max) values of test case communi-
cation Round-Trip-Times (RTT ). Only values of correct
cases are calculated in the RTT , because most of the failed
cases have large RTT values, which distort the accuracy of
the result. All time units are in milliseconds (ms).

As shown in Table 3, RTT values of the target Web ser-
vices change dramatically from place to place. For exam-
ple, in our experiment, accessing a-us only needs 74 mil-
liseconds on average from USA, while it requires 4184 mil-
liseconds on average from Mainland China. Moreover, even
in the same location, the RTT values vary drastically from
case to case, especially in user locations under poor network
conditions. For example, in Mainland China, the RTT val-
ues of accessing a-us vary from 562 milliseconds to 9906
milliseconds. This RTT variance degrades service quality
and affects user experiments.

Users under poor network conditions are more likely to
suffer from unreliable service, since unstable RTT perfor-
mance will degrade service quality and can even lead to
timeout failure. As shown in Table 3, users with the worst
RTT performance (in Mainland China) have the highest
failure rate, while users with the best RTT performance
(in USA) have the lowest failure rate. This indicates that
failures are related to network conditions. Among all 6322
failure cases observed in our experiment, 3865 are Timeout,
2456 are Service Unavailable (http code 503) and 1 is due
to Bad Gateway (http code 502).

6.2. Evaluation of Replication Strategies

In this experiment, the six identical Amazon Web ser-
vices are used as redundant replicas for fault tolerance pur-
pose. Table 4 shows the performance of various replica-
tion strategies from the location of Hong Kong. We can see
that Strategy 1 (Active) has the best RTT performance.
This is reasonable, because it invokes all the six replicas at
the same time and employs the first properly response as
the final result. However, its failure-rate is high compared
with other strategies, which may be caused by opening too
many connections simultaneously. Nevertheless, the failure
rate of 0.027% is relatively small compared with the failure
rate incurred without employing any replication strategies,
as shown in Table 3.
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Table 3. Evaluation Results of the Eight Target Web Services
Location Cases RTT (ms) Location Cases RTT (ms)
L WS All Fail R% Avg Std Min Max L WS All Fail R% Avg Std Min Max

a-us 484 109 22.52 4184 2348 562 9906 a-us 2470 0 0 902 294 578 4609
a-jp 482 128 26.55 3892 2515 547 9937 a-jp 2877 1 0.03 791 315 407 5016
a-de 487 114 23.40 3666 2604 687 9844 a-de 2218 0 0 1155 355 765 4547
a-ca 458 111 24.23 4074 2539 610 9953 a-ca 2612 5 0.19 899 300 562 4032
a-fr 498 96 19.27 3654 2514 687 9999 a-fr 2339 0 0 1144 370 734 4813
a-uk 493 100 20.28 3985 2586 719 9875 a-uk 2647 1 0.03 1150 363 750 5093
GW 409 337 82.39 6643 2003 2094 9969 GW 1981 35 1.76 1105 1401 343 9844

cn

GIP 540 32 5.92 2125 1927 531 9781

tw

GIP 2822 60 2.12 732 1270 265 9875

a-us 1140 0 0 705 210 500 3782 a-us 1895 0 0 561 353 297 4406
a-jp 1143 0 0 577 161 406 2594 a-jp 1120 0 0 503 322 250 3687
a-de 1068 0 0 933 272 672 6094 a-de 1511 0 0 638 409 375 4735
a-ca 1113 0 0 697 177 500 2672 a-ca 1643 0 0 509 240 297 4125
a-fr 1090 0 0 924 214 672 2906 a-fr 1635 0 0 638 310 390 5468
a-uk 1172 3 0.25 921 235 672 3859 a-uk 1615 0 0 650 308 375 4297
GW 1104 5 0.45 503 544 234 9375 GW 1363 0 0 1403 1544 265 9937

au

GIP 1125 0 0 355 609 234 9360

sg

GIP 1312 0 0 571 878 265 9594

a-us 21002 81 0.38 448 304 250 9547 a-us 3725 0 0 74 135 31 3171
a-jp 20944 11 0.05 388 321 203 9937 a-jp 3578 0 0 317 224 109 9219
a-de 21130 729 3.45 573 346 343 9360 a-de 3766 0 0 298 271 109 9390
a-ca 21255 125 0.58 440 286 250 9515 a-ca 3591 0 0 239 260 31 9515
a-fr 21091 743 3.52 575 349 343 9703 a-fr 3933 0 0 433 222 187 3906
a-uk 20830 807 3.87 570 348 328 9734 a-uk 3614 0 0 293 260 124 9157
GW 21148 1426 6.74 1563 1560 406 9999 GW 3837 0 0 1290 1346 125 9828

hk

GIP 21007 1263 6.01 849 1582 203 9999

us

GIP 3621 0 0 675 1348 125 9938

Table 4. Evaluation of Replication Strategies
Cases RTT(ms)Type

All Fail R% Avg Std Min Max

1 21556 6 0.027 279 153 203 3296
2 22719 0 0 389 333 203 17922
3 23040 0 0 374 299 203 8312
4 21926 4 0.018 311 278 203 10327
5 21926 1 0.004 312 209 203 10828
6 21737 2 0.009 311 225 203 10282
7 21737 2 0.009 310 240 203 13953
8 21735 0 0 411 1130 203 51687
9 21808 0 0 388 304 203 9360

RTT performance of sequential type strategies (Strate-
gies 2, 3, 8 and 9) is worse than other strategies, because
they invoke replicas one by one. The reliability perfor-
mance of these strategies is the best (without any failure).
Hybrid type strategies (Strategies 4, 5, 6 and 7) achieve
good RTT performance, although not the best. The relia-
bility performance is also in the middle, better than parallel
type strategy and worse than sequential type strategies.

6.3. Strategy Selection Scenarios

We provide two scenarios in this section to illustrate and
verify the strategy selection algorithm. The values of a, b

and c in the algorithm are set to be 20, 5, 5%, respectively
(more experience is needed for better tuning of these a, b
and c values).

Scenario 1: Commercial Web site in Hong Kong

We assume a user named Ben in Hong Kong plans to
employ the Amazon Web services for book displaying and
selling in his commercial Web site. The followings are per-
formance requirements provided by Ben:

1) Reliability. Since the Web site is commercial, Ben
aims to make it as reliable as possible to maximize
business benefit and reputation. Therefore, the failure-
rate fuser is set to be 0.1%.

2) Response time & resource conservation. Too large
response latency will lead to loss of business; however,
invoking too many parallel replicas for response time
improvement will increase workload of the Web site
server. After making a tradeoff, Ben sets the tuser to
be 100 milliseconds.

Based on the strategy selection algorithm proposed in
Section 4, the selection procedure is shown in Table 5,
where {ws}6i=1 is a set of ranked target Web services.
Values of ti, fi are provided by the distributed evaluation
framework (see Table 3 for detailed results). T (i) is the
overall RTT values of invoking i number of parallel repli-
cas, the values of which are also provided by the distributed
evaluation framework. Based on the values of T (i) and
tuser , the value of v is calculated by solving the Problem
1 in Section 4. Since v = 1, sequential type strategy will be
selected. Because |W | = 3 (only the top three performing
replicas are selected), and p1 < 5 the difference between
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Table 5. Scenario 1: Selection Procedure

a = 20; b = 5; c = 5%

n = 6; g = 21587; tuser = 100; fuser = 0.1%

{wsi}
6
i=1

={a-jp, a-us, a-ca, a-de, a-fr, a-uk};

{ti}
6
i=1

= {388, 448, 440, 573, 575, 570};

{fi}
6
i=1

= {0.05%, 0.38%, 0.58%, 3.45%, 3.52%, 3.87%};

{si}6i=1
= {4.38, 8.28, 10.2, 40.23, 40.95, 44.4};

{T (i)}6
i=1

= (321, 285, 282, 281, 280, 279);

v = 1;

W = {wsi|si =≤ 20&&1 ≤ i ≤ 6} = {4.38, 8.28, 10.2};

|W | = 3;

p1 = s2 − s1 = 3.9;

v = 1&&1 < |W | < 6&&p1 < 5 ⇒ Strategy 9;

primary replica and secondary replica is not significant),
Strategy 9 (Passive + T ime) is selected.

As shown in Table 3, from the location of Hong Kong,
network condition is good and the failure-rate is low. The
improvement of invoking replicas in parallel is quite lim-
ited; therefore, sequential strategies are reasonable. Our al-
gorithm can provide suitable selection in this scenario.

Scenario 2: Personal Web page in Mainland China

Another user named Tom in Mainland China also plans
to employ the Amazon Web services to provide book in-
formation query service in his personal home page. The
performance requirements of Tom are as follows:

1) Reliability. Since the home page of Tom is noncom-
mercial and the Web service is not used for critical pur-
poses, the failure-rate fuser is set to be 5%.

2) Response time & resource conservation. Since
Tom’s home page is running on a server with restricted
resource and narrow network bandwidth, the tuser is
set to be 500 milliseconds.

After conducting the selection procedure as shown in Ta-
ble 6, Strategy 7 (Passive + Active) with three replicas is
selected as the optimal strategy for Tom. In this scenario,
the network condition is poor and failure-rate is high, hy-
brid strategy with suitable number of parallel replicas can
employed to improve the performance. Our algorithm can
provide suitable selection for this scenario.

The detailed RTT and failure-rate performance with dif-
ferent replica number of these two scenarios are shown in
Fig.3, where Fig. 3(a) shows the RTT performance, and
Fig. 3(b) shows the failure-rate performance. Fig.3 (a) indi-
cates that response time improvement by invoking parallel
replicas is significant under poor network condition (Sce-
nario 2: Mainland China), while under good network condi-
tion (Scenario 1: Hong Kong), the improvement is limited.
Fig.3 (b) shows that failure-rate is greatly reduced by in-
voking parallel replicas in Mainland China, indicating that

Table 6. Scenario 2: Selection Procedure

a = 20; b = 5; c = 5%

n = 6; g = 576; tuser = 500; fuser = 5%

{wsi}
6
i=1

=( a-fr, a-jp, a-de, a-uk, a-us, a-ca);

{ti}
6
i=1

= (3654, 3192, 3666, 3985, 4184, 4074);

{fi}
6
i=1

= (19.27%, 26.55%, 23.4%, 20.28%, 22.52%, 24.23%);

{si}6i=1
== (11.16, 11.69, 12.01, 12.02, 12.87, 12.99);

{T (i)}6
i=1

= (4462, 3052, 2344, 1920, 1686, 1491);

v = 3;

p2 = 1

3
×

∑
3

i=1
si+v − si = 1.01;

p3 = 1

3
×

∑3

i=1
fi = 23.07%;

1 < v < 6&&p2 < 5&&p3 ≥ 5% ⇒ Strategy 7.
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Figure 3. (a)RTT and (b)Failure-rate Perfor-

mance with Different Replica Number

the failure-rate improvement by invoking replicas in par-
allel is significant under erroneous environment, while in
Hong Kong it is not obvious and unnecessary (failure-rate
of Hong Kong is not shown in the figure since all values are
0 with parallel replicas). Also, Fig.3 (b) shows that the ex-
perimental failure-rate observed in Mainland China is quite
close to the theoretical failure-rate, which can be calculated
by

∏v

i=1
fi, indicating the accuracy of our experiment.

In summary, by employing the evaluation results pro-
vided by our distributed evaluation framework, the repli-
cation strategy selection algorithm can provide suitable se-
lections for users in these two scenarios. When the general
property of the Web service execution scenarios can be ob-
tained and analyzed, a systematic selection procedure under
various replication strategies (Table 2) can be quantitatively
formulated, and more inclusive mathematical models can be
constructed for a comprehensive system assessment. This
will be pursued in our future work.

7. Conclusion

This paper proposes a distributed replication strategy
evaluation and selection framework for fault tolerant Web
services. Based on this framework, we compare various
replication strategies by using theoretical formula and ex-
perimental results, and propose a strategy selection algo-
rithm based on both objective performance information as
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well as subjective requirements of users. Motivated by the
lack of real-world data for studying performance of Web
service as well as various replication strategies, comprehen-
sive real-world experiments on individual Web services and
replication strategies are conducted to illustrate the evalua-
tion framework and the selection algorithm proposed in this
paper. With the facility of the proposed framework, an accu-
rate evaluation of target Web services and various replica-
tion strategies can be acquired through user collaboration,
and optimal replication strategies engaging fault tolerance
can be effectively obtained.

Currently, this distributed evaluation framework can only
work on stateless Web services. More investigations are
needed to apply it to stateful Web services. Our future work
will also include the tuning of the selection algorithm (i.e.,
the values of a, b and c, and involvement of more QoS prop-
erties) for better performance, the improvement of system
feature of our distributed framework for facilitating user test
case sharing and contribution, and better use of historical
evaluation results for performance prediction purpose.
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