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ABSTRACT
Service-oriented architecture (SOA) is becoming a major
software framework for building complex distributed sys-
tems. Reliability of the service-oriented systems heavily
depends on the remote Web services as well as the unpre-
dictable Internet. Designing effective and accurate reliabil-
ity prediction approaches for the service-oriented systems
has become an important research issue. In this paper,
we propose a collaborative reliability prediction approach,
which employs the past failure data of other similar users to
predict the Web service reliability for the current user, with-
out requiring real-world Web service invocations. We also
present a user-collaborative failure data sharing mechanism
and a reliability composition model for the service-oriented
systems. Large-scale real-world experiments are conducted
and the experimental results show that our collaborative
reliability prediction approach obtains better reliability pre-
diction accuracy than other approaches.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Reliability

General Terms
Design, Reliability

Keywords
Reliability Prediction, User-Collaboration, Web Service, Re-
liability Composition

1. INTRODUCTION
Service-oriented architecture (SOA) is becoming a major

framework for building versatile and complex distributed
systems by discovering and integrating Web services pro-
vided by different organizations. SOA has been widely used
in e-business, e-government and also a lot of other domains,
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such as automotive systems [28], multimedia services [26],
etc. The ability to predict reliability of service-oriented sys-
tems early at the architecture design phase can help to re-
duce re-engineering cost and to produce more reliable sys-
tems.

Software reliability prediction is a task to determine fu-
ture reliability of software systems based on the past fail-
ure data [17]. Various software reliability prediction mod-
els, such as Musa’s execution time model [20], Putnam’s
model [22], Rome Laboratory model [10], and so on, have
been proposed for predicting software reliability by observ-
ing, accumulating, and analyzing previous failure data. Tra-
ditionally, comprehensive testing schemes are conducted on
the software systems to collect failure data and to make
sure that the reliability threshold has been achieved before
releasing the software to the customers or end users. How-
ever, reliability of a service-oriented system not only relies
on the system itself, but also heavily depends on the remote
Web services and the unpredictable Internet. Influenced by
communication links, difference service users may experi-
ence quite different reliability performance on the same Web
service. Web service evaluation [29] from the client-side is
usually required for assessing performance of target Web ser-
vices. However, traditional exhaustive testing becomes diffi-
cult and sometimes even impossible for the service-oriented
systems due to: (1) Web service invocations may be charged
since the Web services are owned and hosted by other orga-
nizations. Even if the Web service invocations are free, ex-
ecuting a large number of Web service invocations imposes
costs for the service users and consumes resources of the ser-
vice providers; and (2) it is time-consuming and expensive to
conduct evaluation on all the service candidates, since there
may exist a lot of alternative Web service candidates in the
Internet with similar or identical functionalities. However,
without comprehensive evaluation, we cannot collect suffi-
cient past failure data of the Web service components. It is
thus difficult for the system designer to determine whether
the service-oriented system is reliable enough for release.

The previous reliability prediction methods for component-
based systems [7, 11, 13, 31] and service-oriented systems [4,
14] are mainly focused on system-level compositional anal-
ysis. These approaches assume that reliabilities of the indi-
vidual components/Web services are known. The detailed
procedures for obtaining the component reliabilities are usu-
ally ignored. A few approaches [6, 12, 23], which consider
component-level reliability prediction, are mainly designed
for traditional component-based systems. We argue that re-
liability prediction for service-oriented systems is more chal-
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lenging, because: (1) there is a lack of internal information
of the service components, since the remote Web services
are provided by other organizations without any design and
implementation details; and (2) different service users may
obtain different performance from a same Web service, since
the Web service performance is greatly influenced by com-
munication links.
Without sufficient past failure data, without internal in-

formation of the service components, and influenced by the
unpredictable communication links, it is thus much more dif-
ficult to make accurate reliability prediction on the service-
oriented systems than traditional component-based systems.
To attack this challenge, we propose a collaborative reliabil-
ity prediction approach. The idea is that the Web service
reliability for the current service user (service user is usually
designer of the service-oriented system, not end-user of the
system) can be predicted by employing past failure data of
other similar service users. A service user is selected as a
similar user with the current user if he/she has experienced
similar reliability performance on the same set of commonly-
invoked Web services. By our approach, reliabilities of Web
service components can be predicted even if the current user
does not invoke these components previously and has no idea
on their internal information.
Complementary to the existing reliability prediction ap-

proaches [4, 7, 11, 13, 14, 31], which mainly focus on system
level compositional analysis, this paper focuses on both com-
ponent level reliability prediction and system level reliability
compositional analysis. The service component reliabilities
obtained from our framework can be employed by other pre-
vious reliability prediction approaches. Our reliability pre-
diction framework can be employed at the early phase of
system development to help produce more reliable system.
More importantly, it can also be employed at runtime to
enable optimal system reconfiguration.
The contributions of this paper are twofold:

• Firstly, a collaborative framework is proposed for pre-
dicting reliability of service-oriented systems. Differ-
ent from previous reliability prediction approaches, our
approach employs past failure data of similar service
users for making reliability prediction for the current
service user.

• Secondly, extensive experiments are conducted using
real-world Web service dataset, which contains 1.5 mil-
lions real-world Web service invocation results from
150 distributed service users on 100 real-world Web
services. Our real-world Web service dataset has been
published online1, which provides detailed experimen-
tal information for future research and makes our ex-
periments reproducible.

The rest of this paper is organized as follows: Section 2
introduces a collaborative framework. Section 3 presents
our collaborative reliability prediction approach. Section 4
describes our implementation and experiments. Section 5
introduces related work and Section 6 concludes the paper.

2. COLLABORATIVE FRAMEWORK
In this paper, failure probability of a Web service is defined

as the probability that an invocation to a Web service will

1http://www.wsdream.net
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Figure 1: Service-Oriented System Example

fail. The value of failure probability is in the interval of 0 and
1. Figure 1 shows an example of a simple service-oriented
system which is presented as a service flow. The service flow
in Figure 1 includes a set of abstract tasks (t1,...,t6) with
certain control flow structures (sequence, loop, and paral-
lel). For each abstract task, an optimal candidate will be
selected from a set of functionally equivalent Web service
candidates. An execution plan is obtained by composing
the selected Web services (s1,...s6), which will be invoked
to implement the abstract tasks. Similar to work [32], we
assume that the alternative service candidates are available.
The problem of obtaining the functionally equivalent Web
service candidates, which has been discussed by a lot of pre-
vious work [24, 33], is out of the scope of this paper.

Reliability of the service-oriented system highly depends
on the selected Web services. Our approach employs past
failure data from other similar service users to predict the
failure probabilities of Web services for the current service
user. Therefore, mechanisms are required for enabling past
failure-data collection from different service users.

A user-collaborative mechanism is proposed in our previ-
ous work [39] for Web service recommendation. This mech-
anism can also be applied to the Web service past failure
data collection. The design of this user-collaborative mech-
anism is inspired by the recent success of YouTube2 and
Wikipedia3. The key idea is that, instead of contribut-
ing videos (YouTube) or knowledge (Wikipedia), the ser-
vice users are encouraged to contribute their individually
observed Web service past failure data. By contributing
more past failure data on the used Web services, the service
users can obtain more accurate failure probability prediction
of the Web services which they do not use before, since more
characteristics of the current service user can be discovered
from the provided data. By this way, the service users are
encouraged to contribute their observed past failure-data.

To speedup the process of Web service failure data con-
tributions, client-side middleware can be designed for the
service users to automatically record the failure information
of Web service invocations and contribute this information
to a centralized server to exchange for failure probability
prediction services. Detailed middleware design can be re-

2http://www.youtube.com
3http://www.wikipedia.org
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Figure 2: Collaborative Reliability Prediction Procedures

ferred to our previous work [36].

3. RELIABILITY PREDICTION
For an abstract task in a service flow, an optimal Web ser-

vice needs to be identified from a set of functionally equiv-
alent candidates for executing the task. The most straight-
forward way is to comprehensively evaluate all the service
candidates and select out the best performing one. However,
as discussed in Section 1, it is time-consuming, expensive,
and sometimes even impossible to make comprehensive eval-
uation on all the candidates.
Another approach is to employ the Web service past fail-

ure data observed by other service users for predicting the
Web service performance for the current user. For exam-
ple, for the new service users, who do not invoke any Web
services previously, the performance of a Web service can
be indicated by its average failure probability (pi), which is
defined as:

pi =
1

m

m∑
a=1

pa,i, (1)

where pa,i is failure probability of Web service candidate i
observed by the service user a, m is the number of service
users, and pi is the average failure probability of the Web
service candidate i. Based on the average failure probability
values of the service candidates, the best performing candi-
date can be determined.
However, since service users are in different geographic lo-

cations and are under different network conditions, the cur-
rent user may not be able to experience similar failure proba-
bility performance as the average failure probability. In case
that the service users have invoked some Web services previ-
ously, we can take advantage of the past invocation informa-
tion to enable more accurate failure probability prediction
on the uninvoked Web services. Our collaborative reliability
prediction approach is designed as a four-phase process as
shown in Figure 2. In phase 1, we calculate the similarity
of the service users with the current user based on the past
failure data of their commonly-invoked Web services. Then,
in Phase 2, a set of similar users are identified. After that, in
phase 3, the invocation failure probabilities of Web services
are predicted for the current user by using the invocation
failure probabilities observed by similar users. Finally, in
phase 4, the reliability of the service-oriented system is pre-
dicted by aggregating the failure probabilities of the service
components. Details of these phases are presented at Sec-
tion 3.1 to Section 3.4, respectively.

3.1 Phase 1: Similarity Computation
We assume that there are m service users, n Web ser-

vices, and the relationship between users and Web services

is denoted by an m × n matrix. Each entry pa,i in the
matrix represents the failure probability of Web service i
observed by the service user a. pa,i = null if user a did
not invoke Web service i before. Pearson Correlation Coef-
ficient (PCC), which has been widely used in a number of
recommendation systems [27], is employed for the similarity
computation. PCC employs the following equation to com-
putes the similarity between service user a and service user
u based on their commonly invoked Web services:

Sim(a, u) =

∑
i∈Ia∩Iu

(pa,i − pa)(pu,i − pu)√ ∑
i∈Ia∩Iu

(pa,i − pa)2
√ ∑

i∈Ia∩Iu
(pu,i − pu)2

,

(2)
where Ia ∩ Iu is a set of commonly invoked Web services by
both user a and user u, pa,i is the failure probability of Web
service i observed by the service user a, and pa represents the
average failure probability of all the Web services invoked by
user a. The similarity Sim(a, u) of two service users is in
the interval of -1 and 1, where a larger value indicates higher
similarity.

Similar to the above approach, we also employ PCC to
calculate the similarity between Web service i and Web ser-
vice j by using:

Sim(i, j) =

∑
u∈Ui∩Uj

(pu,i − pi)(pu,j − pj)√ ∑
u∈Ui∩Uj

(pu,i − pi)2
√ ∑

u∈Ui∩Uj

(pu,j − pj)2
,

(3)
where Ui ∩ Uj is a set of service users who invoke both the
Web services i and j, and pi is the average failure probability
of Web service i, which can be calculated by Equation (1).

3.2 Phase 2: Similar User Selection
After calculating and ranking the PCC similarity values

between the current user and other users, a set of similar
users can be identified by setting a parameter Top-K, which
indicates that k users, which have larger PCC values than
others, will be selected as similar users. In reality, a service
user may have limited number of similar users and the dis-
similar users (e.g., with negative PCC value) may be selected
when the number of similar users is less than k. However,
including dissimilar users will greatly influence the predic-
tion accuracy. In our approach, the service users who have
negative correlation (negative PCC values) with the current
user will be excluded.

To predict a missing entry pu,i in the failure probability
matrix, a set of similar service users S(u) can be identified

37



by:

S(u) = {a|Sim(u, a) ≥ Simk, Sim(u, a) > 0, a �= u}, (4)

where Simk is the kth largest PCC value with the current
user u, Sim(u, a) > 0 is to exclude the dissimilar users, and
Sim(a, u) can be calculated by Equation (2). A set of similar
Web services S(i) with the current Web service i can also
be identified by:

S(i) = {k|Sim(i, k) ≥ Simk, Sim(i, k) > 0, k �= i}, (5)

where Simk is the kth largest PCC value with the current
Web service i and Sim(k, i) can be computed by Equa-
tion (3).

3.3 Phase 3: Failure Probability Prediction
Employing the similar users, the user-based approaches [2]

(named as UPCC ) predict the missing value pu,i by the
following equation:

pu,i = pu +
∑

a∈S(u)

wa × (pa,i − pa), (6)

where pu and pa are average failure probabilities of different
Web services observed by user u and a, respectively, and
wa is the significant weight of the similar user a, which is
defined as:

wa =
Sim(a, u)∑

b∈S(u) Sim(b, u)
. (7)

Equation 7 ensures that a user with higher similarity has
stronger influence on the value prediction (larger weight wa).
Similar to the user-based approach, employing the similar
Web services S(i), item-based approaches [25] (named as
IPCC ) predict the missing value pu,i by:

pu,i = pi +
∑

k∈S(i)

wk × (pu,k − pk), (8)

where pi and pk are average failure probabilities of the Web
service i and k observed by different service users, respec-
tively, and wk is the significant weight of the similar Web
service k, which defined as:

wk =
Sim(i, k)∑

j∈S(i) Sim(i, j)
. (9)

The predicted values by Eq. (6) and Eq. (8) may not fall
in the probability range of 0 to 1. The predicted value is set
to be 0 when it is smaller than 0, and set to be 1 when it is
larger than 1.
Due to the sparsity of the m×n failure probability matrix,

predicting failure probability only by similar service users
(UPCC ) or similar Web services (IPCC ) will potentially ig-
nore valuable information that can make the prediction more
accurate. To address this problem, the prediction results by
the user-based approach (Equation (6)) and the item-based
approach (Equation (8)) can be combined to fully utilize
the information of both similar users and similar Web ser-
vices [39]. When S(u) �= ∅ ∧ S(i) �= ∅, we employ both the
similar users and similar Web services to predict the missing
value by employing the following equation:

pu,i = λ× (pu +
∑

a∈S(u)

wa × (pa,i − pa)) +

(1− λ)× (pi +
∑

k∈S(i)

wk × (pu,k − pk)), (10)

where λ (0 ≤ λ ≤ 1) is a user-defined parameter for deter-
mining how much the missing value prediction relies on the
similar users or the similar Web services.

In practice, a missing pu,i value may not have similar
users or similar items. To predict the missing value as
accurate as possible, when S(u) �= ∅ ∧ S(i) = ∅, our ap-
proach only employs the information of similar users for
making prediction. In this case, our approach degrades to
the user-based approach as shown in Equation (6). When
S(u) = ∅ ∧ S(i) �= ∅, we only use the information of similar
items for making prediction. In this case, our approach de-
grades to the item-based approach as shown in Equation (8).
When S(u) = ∅ ∧ S(i) = ∅, there are no similar users or
similar Web services. Consequently, we predict the pu,i by
employing the following equation:

pu,i =

⎧⎪⎪⎨⎪⎪⎩
λ× pu + (1− λ)× pi,
pu,
pi,
NoPrediction,

pu �= null & pi �= null
pu �= null & pi = null
pu = null & pi �= null
pu = null & pi = null

,

(11)
where pu is the average failure probability of different Web
services observed by the service user u (named as UMEAN ),
and pi is the average failure probability of Web service i ob-
served by different service users (named as IMEAN ). Equa-
tion (11) includes four situations: (1) When pu �= null & pi �=
null, we combine the pu and pi for the missing value pre-
diction; (2) when the target Web service is never invoked
by any service users, and the service user has invoked other
Web services previously (pu �= null & pi = null), we use
the UMEAN pu for making prediction; (3) in case a new
service user who did not invoked any Web services previ-
ously, but the target Web service has been invoked by other
users (pu = null & pi �= null), we use the IMEAN pi for
making prediction; and (4) when pu = null & pi = null, we
cannot provide any prediction since there is no information
available.

3.4 Phase 4: Reliability Aggregation
In a service flow, compositional structures describe the

order in which a collection of abstract tasks are executed.
There are four types of basic compositional structures, i.e.,
sequence, branch, loop, and parallel [30]. These basic struc-
tures are included in BPMN [21] and can be mapped to
BPEL [19] easily. Similar to the work in [5, 33, 38], we
assume independent task failure in the service flow. The ef-
fect of error propagation (e.g., the problem studied in [9])
is not considered in this paper. The aggregation of compo-
nent failure probabilities of these compositional structures
is introduced in the following:

• Sequence. The tasks in a sequence structure are ex-
ecuted one by one. The sequence structure fails if any
of its sub-task fails. The composed failure probability
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of a sequence structure is calculated by

p = 1−
n∏

i=1

(1− pi), (12)

where n is the number of sequential tasks and pi is the
failure probability of the ith task.

• Branch. In the branch structure, only one branch will
be executed for each execution. The composed failure
probability of the branch structure is calculated by

p = 1−
n∑

i=1

bi(1− pi), (13)

where n is the number of branches, pi is the failure
probability of the ith branch, and bi is the execution
probability of the ith branch (

∑n
i=1 bi = 1).

• Loop. The composed invocation failure probability of
the loop structure is calculated by

p = 1−
n∑

i=0

li(1− p1)
i, (14)

where p1 is the failure probability of the task in the
loop structure, li is the probability of executing the
loop for i times, n is the maximum looping times, and∑n

i=0 li = 1. When n = 0, the composed invocation
failure probability is 0 since the task is not executed.
In this paper, we assume that the values of n (maxi-
mum looping times) and li are provided by the system
designer (e.g., the designer can simulate the service
flow for a lot of times and record that approximate
values).

• Parallel. All tasks are executed at the same time in
the parallel structure, where each branch has an exe-
cution probability of 1. A parallel structure is counted
as a failure if any of the parallel branches fail in execu-
tion. The invocation failure probability of the parallel
structure is calculated by:

p = 1−
n∏

i=1

(1− pi), (15)

where pi is the probability that the ith parallel branch
will fail.

These basic compositional structures can be nested and
combined in an arbitrary way. For calculating the aggre-
gated failure probability of a service flow, we decompose the
service flow to the basic compositional structures hierarchi-
cally. As shown in Figure 3, firstly, the failure probabilities
of the basic compositional structures T1 and T2 are calcu-
lated by using the corresponding formulas introduced above.
Then, the failure probability of T3 is calculated by employ-
ing the failure probabilities of t5 and T2. Finally, the failure
probability of the whole service flow can be obtained by us-
ing Equation 12 and the failure probabilities of t1, T1, T3,
and t6.
By the above approach, we obtain the aggregated failure

probability of the service flow. To predict the reliability of
the service flow, we adopt the commonly used exponential
reliability function [17]:

R(t) = e−γ×t, (16)

Service Plan

t1 T3 t6T1

t1

t5

t2 t6

t3 t4

T1

T2

t1 T1 t6

T2

t5
T3

Figure 3: Failure Probability Composition

where γ (failure-rate) is the number of failures of the service
flow during a certain time duration, and t is the time pe-
riod for which the reliability is to be calculated. The value
of γ can be calculated by p × f , where p is the composed
failure probability of the service flow f is the execution fre-
quency of the service flow (e.g., number of executions per
hour). Therefore, we obtain the following equation for the
reliability prediction for a service flow:

R(t) = e−p×f×t. (17)

By the above approach, designers of the service-oriented
systems are able to predict reliabilities of the systems early
at the architecture design phase. Moreover, after the system
released, the prediction of system reliability can be dynam-
ically updated when the performance of the service compo-
nents is changed.

4. EXPERIMENTS

4.1 Experimental Setup
Our real-world Web service performance dataset (pub-

lished at www.wsdream.net) is employed for experiments.
This dataset inlcudes 100 publicly available Web services
located in more than 20 countries and 150 distributed com-
puters from Planet-Lab [8]. The service users (distributed
computer from Planet-Lab) observe, collect, and contribute
the failure data of the selected Web services to our central-
ized server, which is implemented by JDK, Eclipse, Axis24,
Apache Tomcat, Apache HTTP Server, and MySQL. Each
service user executes about 100 invocations on each selected
Web service and the invocation failures are recorded. The
failure probability of a Web service obtained by a service
user can thus be obtained. Failure probabilities by all the
100 Web services observed by all the 150 service users can
be presented as a 150× 100 failure probability matrix.
To study the failure probability prediction performance,

we compare our prediction approach (named as Hybrid for
ease of presentation) with four other approaches: user-mean
(UMEAN), item-mean (IMEAN), user-based approach us-
ing PCC (UPCC) [2], and item-based approach using PCC
(IPCC) [25]. UMEAN employs the average failure probabil-
ity of the current service user on other Web services for the

4http://ws.apache.org/axis2
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prediction, while IMEAN employs the average failure prob-
ability of the Web service observed by other service users
for the prediction. UPCC only employs similar users for
the failure probability prediction, while IPCC only employs
similar Web services for the prediction.
The 150 service users are divided into training users and

testing users in our experiments. Failure probabilities of the
training users are stored in our centralized server to make
prediction for the testing users. To make our experiment
more realistic, we randomly remove entries of the training
users to make the training matrix sparser. Since the testing
users usually only employ a small number of Web services,
we also randomly remove entries of the testing users. Dif-
ferent prediction approaches are employed for predicting the
failure probabilities of the removed entries. The original val-
ues of the removed entries are used as the expected values
to study the prediction accuracy.
The well-known Mean Absolute Error (MAE) and Root

Mean Square Error (RMSE) metrics are employed to mea-
sure the prediction accuracy of different approaches. MAE
is defined as:

MAE =

∑
u,i |pu,i − p̂u,i|

N
, (18)

where pu,i denotes the expected failure probability value of
Web service i observed by service user u, p̂u,i denotes the
predicted failure probability value, and N denotes the num-
ber of predicted values. RMSE is defined as:

RMSE =

√∑
u,i(pu,i − p̂u,i)2

N
, (19)

where smaller RMSE (or MAE) values indicate better pre-
diction accuracy.

4.2 Comparison of Prediction Accuracy
Table 1 shows both the MAE and RMSE results of differ-

ent prediction approaches employing 10% and 20% density
training matrix. In the third row of Table 1, the numbers
10, 20 and 30 represent different given numbers, which are
the number of failure probabilities provided by the testing
users.
Table 1 shows that our prediction approach obtains better

prediction accuracy (smaller MAE and RMSE values) in all
the experimental settings. Table 1 also shows that MAE and
RMSE values of the Hybrid approach become smaller with
the increase of given number from 10 to 30. This observa-
tion indicates that the prediction accuracy can be improved
by providing more Web service failure probabilities. With
the increase of the training user number from 100 to 140,
the prediction accuracy also has significant enhancement,
since larger training matrix provides more information for
the missing value prediction. When the density of the train-
ing matrix is increased from 10% to 20%, the prediction
accuracy is also enhanced, since denser training matrix pro-
vides more information for the missing value prediction.
From Table 1, we also observe that the item-based ap-

proaches (IMEAN, IPCC) outperform the user-based ap-
proaches (UMEAN, UPCC) in all the experimental settings.
This observation indicates that similar Web services provide
more useful information than the similar users for the miss-
ing value prediction.

4.3 Studies on Parameters

4.3.1 Given Number
Given number indicates the number of Web service failure

probabilities given by the current testing user. To study the
impact of the given number on the prediction results, we
vary the given number from 5 to 50 with a step value of 5.
We set training user number = 100, Top-K = 10, training
matrix density = 10% and 20% in the experiments.

Figure 4 shows the experimental results, where Figure 4(a)
and 4(b) employ the 10% density training matrix for the
missing value prediction, while Figure 4(c) and 4(d) employ
the 20% density training matrix. The experimental results of
Figure 4 show that: (1) the prediction accuracy of theHybrid
approach is enhanced slightly. This observation indicates
that by providing a small set of observed Web service failure
probabilities, the service user can obtain good prediction
accuracy for the remanding Web services; (2) the prediction
performance of the IMEAN approach is not influenced by
the change of given number, since it does not employ the
given failure probabilities for the missing value prediction;
and (3) our Hybrid approach outperforms other approaches
consistently.

4.3.2 Training Matrix Density
The prediction accuracy is also influenced by the training

matrix density. To study the impact of the training matrix
density on the prediction results, we vary the density from
5% to 50% with a step value of 5%. We set training user
number = 100, Top-K = 10, given number = 10 and 20 in
the experiments.

Figure 5 shows the experimental results, where Figure 5(a)
and 5(b) employ given number of 10, and Figure 5(c) and
5(d) employ given number of 20. The experimental results of
Figure 5 show that: (1) the prediction accuracy of Hybrid is
significantly enhanced when the matrix density is increased
from 5% to 10%. With the increase of matrix density, the
speed of accuracy enhancement slows down. This observa-
tion indicates that the prediction accuracy will be enhanced
by collecting more past failure data from different service
users to make the training matrix denser, especially when
the matrix is sparse; (2) the performance of UMEAN is not
influenced by the density of training matrix, since it does
not employ the information of the training matrix for the
missing value prediction; and (3) the Hybrid approach still
outperforms other approaches consistently.

4.3.3 Training User Number
To study the impact of the training user number on the

prediction results, we vary the training user number from 20
to 140 with a step value of 20. We set Top-K = 10 in the
experiments. Figure 6 shows the experimental results under
different experimental settings, where Figure 6(a) employs
given number = 10, matrix density = 10%, Figure 6(b) em-
ploys given number = 20, matrix density = 20%, Figure 6(c)
employs given number = 30, matrix density = 30%, and Fig-
ure 6(d) employs given number = 40, matrix density = 40%.
The experimental results of Figure 6 show that: (1) the
prediction accuracy of Hybrid is enhanced stably with the
increase of training user number under all the experimen-
tal settings. This observation indicates that by encouraging
more service users to contribute their Web service past fail-
ure data, the prediction accuracy can be improved stably.
On the other hand, if we are able to provide accurate Web
service failure probability prediction for the service users,
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Table 1: Prediction Performance Comparison
Training Users = 100 Training Users = 140

Matrix Density=10% Matrix Density=20% Matrix Density=10% Matrix Density=20%Metrics Methods
10 20 30 10 20 30 10 20 30 10 20 30

UMEAN 0.057 0.056 0.055 0.056 0.055 0.056 0.052 0.048 0.050 0.051 0.050 0.050
IMEAN 0.024 0.023 0.024 0.023 0.023 0.023 0.017 0.016 0.016 0.016 0.016 0.016
UPCC 0.049 0.041 0.038 0.043 0.035 0.029 0.041 0.035 0.032 0.039 0.030 0.025
IPCC 0.028 0.027 0.027 0.026 0.025 0.025 0.019 0.019 0.019 0.017 0.016 0.016

MAE

Hybrid 0.024 0.021 0.021 0.021 0.020 0.020 0.016 0.014 0.014 0.014 0.012 0.012

UMEAN 0.155 0.151 0.147 0.155 0.151 0.147 0.146 0.144 0.139 0.148 0.143 0.139
IMEAN 0.057 0.054 0.055 0.046 0.046 0.046 0.034 0.033 0.033 0.027 0.026 0.026
UPCC 0.107 0.072 0.064 0.080 0.055 0.045 0.091 0.057 0.047 0.073 0.042 0.034
IPCC 0.060 0.056 0.055 0.045 0.043 0.043 0.034 0.032 0.031 0.024 0.023 0.022

RMSE

Hybrid 0.055 0.050 0.049 0.042 0.039 0.039 0.030 0.027 0.026 0.022 0.020 0.020
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Figure 4: Impact of the Given Number

more service users will be willing to contribute their ob-
served Web service failure data to exchange for more ac-
curate missing value prediction service; and (2) the Hybrid
approach also outperforms other approaches consistently.

4.3.4 Top-K
To study the impact of the Top-K parameter on the pre-

diction results of the Hybrid approach, we vary the value
of Top-K from 2 to 20 with a step of 2. Figure 7(a) and
7(b) show MAE and RMSE results under the experimental
settings of training matrix density = 50%, given number =
10, 20, and 30, train user number = 100. Figure 7(c) and
7(d) show MAE and RMSE values under the experimental
settings of training matrix density = 10%, 20% and 30%,
given number = 50, training user number = 100.
Figure 7 shows that (1) the prediction accuracy stops to

enhance when the Top-K is larger than a certain value (e.g.,
6 for given 10, 10 for given 30, and 12 for given 50). (2) The
prediction performance will not decrease with the increase
of the Top-K value, since we exclude dissimilar users with
negative PCC values from the Top-K set. This observation
indicates that by using our enhanced Top-K algorithm, we
can simply set the value of Top-K to a large value for ob-
taining better prediction performance.

4.3.5 Parameter λ

The experimental results of Table 1 show that item-based
approaches outperform the user-based approach in our Web
service failure probability dataset, indicating that different
datasets may inherit different data distribution and correla-
tion characteristics. Our prediction approach is adaptable to
different datasets by providing a parameter λ. When λ = 1,
we only extract information from the similar users. When

λ = 0, we only consider the similar Web services. When
0 < λ < 1, we combine the information from both similar
users and similar Web services based on the value of λ. To
study the impact of λ on the prediction result of our ap-
proach, we vary the value of λ from 0 to 1 with a step value
of 0.1. We also set Top-K = 10 and training users =100 in
the experiments.

Figure 8(a) and 8(b) show the MAE and RMSE results of
given number 10, 20, 30, 40 and 50 with 10% training matrix
density, while Figure 8(c) and 8(d) show the experimental
results with 20% training matrix density. Figure 8 shows
that the value of λ impacts the recommendation results sig-
nificantly. Suitable λ values will provide better prediction
accuracy, since it enables properly combination of the user-
based method and the item-based method.

Another interesting observation is that the optimal λ value
(the minimal MAE and RMSE values of the curves in Fig-
ure 8) shifts from left to right when the given number is
increased from 10 to 50. For example, in Figure 8(c), the
optimal λ value of given 10 is 0.1, while the optimal λ value
of given 50 is 0.6. This observation indicates that the opti-
mal λ value is influenced by the given number. The similar
Web services are more important than similar users when the
given number is small. With the increasing of given number,
the similar users become more important. This observation
is reasonable, since with limited user-given Web service fail-
ure values, the UMEAN prediction method, which employ
the mean of the user-given failure probabilities to predict the
failure probability of other Web services, has higher prob-
ability to be inaccurate. This will influence the prediction
performance of UPCC, which employs the UMEAN value
for the missing value prediction as shown in Equation (6).
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Figure 5: Impact of the Training Matrix Density
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5. RELATED WORK AND DISCUSSION
A great deal of software reliability prediction models have

been proposed for stand-alone software systems, such as
Musa’s execution time model [20], Putnam’s model [22],
Rome laboratory models [10], Jelinski’s model [15], Little-
wood’s models [16], and so on. More and more reliabil-
ity prediction approaches are also proposed for component-
based systems and service-oriented systems [4, 7, 11, 13, 14,
31]. However, most of these previous approaches focus on
system-level reliability compositional analysis and assume
that the component reliabilities are known. Different from
these approaches, our collaborative reliability prediction ap-
proach focuses not only on system-level reliability aggrega-
tion, but also on component-level Web service failure prob-
ability prediction.
A few approaches [6, 12, 23], which consider component-

level reliability prediction, are mainly designed for tradi-
tional component-based systems. Goseva-Popstojanova et
al. [12] calculate reliability risk of a component by the com-
ponent complexity and the levels of its failures. Reussner
et al. [23] compute component reliability by the reliabili-
ties of its services, which are assumed to be known. Both
these approaches require internal information of the compo-
nents for making component reliability prediction. Cheung
et al. [6] predict the component reliability at architecture de-
sign phase by exploiting behavioral models from sources of
information available at design time. Different from work [6],
which tries to predict reliability of a component which is
not implemented yet, our work targets at predicting relia-
bilities of remote Web services which are implemented and
provided by other organizations. Moreover, work [6] does
not need to consider the influence of communication links
since the components are usually invoked locally in tradi-

tionally component-based systems. Our approach addresses
the influence of communication links by employing collabo-
rative filtering for reliability prediction, which significantly
enhances the reliability prediction accuracy for the service-
oriented systems.

Collaborative filtering is the process of filtering for in-
formation using techniques involving collaboration among
multiple agents. Various collaborative filtering techniques
are widely adopted in recommender systems [3, 18]. The
most studied approaches include user-based approaches [2]
and item-based approaches [25]. In the environment of ser-
vice computing [34], it is possible to collect and make use of
the past failure data of Web services from different service
users. To take advantages of these collected data, this paper
applies the collaborative filtering techniques [2, 18, 25, 39]
to attack the challenging research problem of reliability pre-
diction of service-oriented systems. As far as we know, the
collaborative reliability approach of this paper is different
from all previous reliability prediction models.

In our current design, the collaborative reliability predic-
tion approach mainly focuses on service-oriented systems,
since the Web services are usually publicly accessible and
are invoked by a lot of service users. Therefore, it is possi-
ble to obtain the past failure data of Web services from dif-
ferent service users. Our approach can further be extended
to component-based systems, other distributed computing
platforms, and cloud computing platforms, in case that the
reusable components are employed by other users previously
and the past failure data can be obtained from these users.
Similar to the design of BitTorrent [1] where users can obtain
faster download speed if the file (e.g., a movie) is popular
and a lot of users are collaborating on downloading it, our
approach can achieve better reliability prediction accuracy
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when a Web service is popular with a lot of users and past
failure data.
User-collaboration and user-contribution are major char-

acteristics of Web 2.0. In our previous work, the idea of
user-collaboration has been employed for Web service re-
liability evaluation [35, 37] and Web service recommenda-
tion [39]. In this paper, similar idea is employed to collect
data from service users and to make reliability prediction of
the service-oriented systems for the system designers. By
our approach, the collected data from other users are em-
ployed for making reliability prediction for the current user
without requiring real-world Web service invocations.

6. CONCLUSION AND FUTURE WORK
In this paper, we propose a collaborative reliability predic-

tion approach for service-oriented systems. The main idea
is to exploit the past failure data of the similar users for pre-
dicting Web service failure probabilities for the current user.
The predicted failure probabilities of the elementary Web
services are composed using different compositional struc-
tures to predict the reliability of the whole service-oriented
system. The comprehensive experimental analysis shows the
effectiveness of our collaborative reliability prediction ap-
proach.
When aggregating the failure probabilities of the service

components, we assume service component failures are inde-
pendent, In most cases, this assumption is reasonable, since
Web services are usually deployed on separate severs of dif-
ferent organizations. The physical and electrical isolation
ensures that Web service failures are independent. However,
in some special cases, failures of Web services may have cor-
relation (e.g., two Web services running on the same server,
error propagation, etc.). We will address this Web service

failure correlation problem in our future work.
Our on-going research also includes exploring failure cor-

relation between different Web services, collecting more past
failure data on more Web services, and investigating the op-
timal λ value in different experimental settings.

Acknowledgement
The work described in this paper was fully supported by
a grant (Project No. CUHK4154/09E) from the Research
Grants Council of the Hong Kong Special Administrative
Region, China.

7. REFERENCES
[1] C. Bram. Incentives build robustness in bittorrent. In

Proc. First Workshop Economics of Peer-to-Peer
Systems, pages 1–5, 2003.

[2] J. S. Breese, D. Heckerman, and C. Kadie. Empirical
analysis of predictive algorithms for collaborative
filtering. In Proc. 14th Annual Conf. Uncertainty in
Artificial Intelligence (UAI’98), pages 43–52, 1998.

[3] R. Burke. Hybrid recommender systems: Survey and
experiments. User Modeling and User-Adapted
Interaction, 12(4):331–370, 2002.

[4] J. Cardoso, J. Miller, A. Sheth, and J. Arnold.
Modeling quality of service for workflows and web
service processes. Journal of Web Semantics,
1:281–308, 2002.

[5] M. Castro and B. Liskov. Practical byzantine fault
tolerance. In Proc. Third Symp. Operating Systems
Design and Implementation, pages 1–14, 1999.

[6] L. Cheung, R. Roshandel, N. Medvidovic, and
L. Golubchik. Early prediction of software component

43



reliability. In Proc. 30th Int’l Conf. Software Eng.
(ICSE’08), pages 111–120, 2008.

[7] R. C. Cheung. A user-oriented software reliability
model. IEEE Trans. Software Engeering, 6(2):118–125,
1980.

[8] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman. Planetlab: An
overlay testbed for broad-coverage services. ACM
SIGCOMM Computer Communication Review,
33(3):3–12, July 2003.

[9] V. Cortellessa and V. Grassi. A modeling approach to
analyze the impact of error propagation on reliability
of component-based systems. In Proc. 10th Int’l Symp.
Component-Based Software Eng., pages 140–156, 2007.

[10] M. Friedman, P. Tran, and P. Goddard. Reliability
Techniques for Combined Hardware and Software
Systems. Rome Laboratory, RL-TR-92-15, 1992.

[11] S. S. Gokhale and K. S. Trivedi. Reliability prediction
and sensitivity analysis based on software architecture.
In Proc. Int’l Symp. Software Reliability Eng.
(ISSRE’02), pages 64–78, 2002.

[12] K. Goseva-Popstojanova, A. Hassan, W. Abdelmoez,
D. E. M. Nassar, H. Ammar, and A. Mili.
Architectural-level risk analysis using uml. IEEE
Trans. Software Engeering, 29(10):946–960, 2003.

[13] K. Goseva-Popstojanova and K. S. Trivedi.
Architecture-based approach to reliability assessment
of software systems. Performamce Evaluation,
45(2-3):179–204, 2001.

[14] V. Grassi and S. Patella. Reliability prediction for
service-oriented computing environments. IEEE
Internet Computing, 10(3):43–49, 2006.

[15] Z. Jelinski and P. Moranda. Software reliability
research. In Proc. of the Statistical Methods for the
Evaluation of Computer System Performance, pages
465–484, 1972.

[16] B. Littlewood, A. Abdel-Ghaly, and P. Chan. Tools
for the Analysis of the Accuracy of Software Reliability
Predictions. Springer-Verlag, Heidelberg, 1986.

[17] M. R. Lyu. Handbook of Software Reliability Eng.
McGraw-Hill, New York, 1996.

[18] H. Ma, I. King, and M. R. Lyu. Effective missing data
prediction for collaborative filtering. In Proc. 30th Int’l
ACM SIGIR Conf. on Research and Development in
Information Retrieval (SIGIR’07), pages 39–46, 2007.

[19] R. Ma, Y. Wu, X. Meng, S. Liu, and L. Pan.
Grid-enabled workflow management system based on
bpel. Int’l J of High Perf. Computing Applications,
22(3):238–249, 2008.

[20] J. D. Musa, A. Iannino, and K. Okumoto. Software
reliability: measurement, prediction, application.
McGraw-Hill, New York, USA, 1990.

[21] Object Management Group (OMG). Business Process
Modeling Notation version 1.1, January 2008.

[22] L. H. Putnam and W. Myers. Measures for Excellence:
Reliable Software on Time, Within Budget.
Prentice-Hill, 1992.

[23] R. H. Reussner, H. W. Schmidt, and I. H. Poernomo.
Reliability prediction for component-based software
architectures. Journal of System and Software,
66(3):241–252, 2003.

[24] N. Salatge and J.-C. Fabre. Fault tolerance connectors
for unreliable web services. In Proc. 37th Int’l Conf.
Dependable Systems and Networks (DSN’07), pages
51–60, 2007.

[25] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl.
Item-based collaborative filtering recommendation
algorithms. In Proc. 10th Int’l Conf. World Wide Web
(WWW’01), pages 285–295, 2001.

[26] A. Scholz, C. Buckl, A. Kemper, A. Knoll, J. Heuer,
and M. Winter. Ws-amuse - web service architecture
for multimedia services. In Proc. 30th Int’l Conf.
Software Eng. (ICSE’08), pages 703–712, 2008.

[27] U. Shardanand and P. Maes. Social information
filtering: Algorithms for automating word of mouth.
In Proc. SIGCHI Conf. Human Factors in Computing
Systems, 1995.

[28] M. H. ter Beek, S. Gnesi, N. Koch, and F. Mazzanti.
Formal verification of an automotive scenario in
service-oriented computing. In Proc. 30th Int’l Conf.
Software Eng. (ICSE’08), pages 613–622, 2008.

[29] W.-T. Tsai, X. Zhou, Y. Chen, and X. Bai. On testing
and evaluating service-oriented software. IEEE
Computer, 41(8):40–46, 2008.

[30] W.-L. Wang, D. Pan, and M.-H. Chen.
Architecture-based software reliability modeling.
Journal of Systems and Software, 79(1):132–146, 2006.

[31] S. M. Yacoub, B. Cukic, and H. H. Ammar.
Scenario-based reliability analysis of component-based
software. In Proc. Int’l Symp. Software Reliability
Eng. (ISSRE’99), pages 22–31, 1999.

[32] T. Yu, Y. Zhang, and K.-J. Lin. Efficient algorithms
for web services selection with end-to-end qos
constraints. ACM Trans. the Web, 1(1):1–26, 2007.

[33] L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas,
J. Kalagnanam, and H. Chang. Qos-aware middleware
for web services composition. IEEE Trans. Software
Engeering, 30(5):311–327, 2004.

[34] L.-J. Zhang, J. Zhang, and H. Cai. Services
computing. In Springer and Tsinghua University
Press, 2007.

[35] Z. Zheng and M. R. Lyu. A distributed replication
strategy evaluation and selection framework for fault
tolerant web services. In Proc. 6th Int’l Conf. Web
Services (ICWS’08), pages 145–152, 2008.

[36] Z. Zheng and M. R. Lyu. A qos-aware middleware for
fault tolerant web services. In Proc. Int’l Symp.
Software Reliability Engineering (ISSRE’08), pages
97–106, 2008.

[37] Z. Zheng and M. R. Lyu. Ws-dream: A distributed
reliability assessment mechanism for web services. In
Proc. 38th Int’l Conf. Dependable Systems and
Networks (DSN’08), pages 392–397, 2008.

[38] Z. Zheng and M. R. Lyu. A qos-aware fault tolerant
middleware for dependable service composition. In
Proc. 39th Int’l Conf. Dependable Systems and
Networks (DSN’09), pages 239–248, 2009.

[39] Z. Zheng, H. Ma, M. R. Lyu, and I. King. Wsrec: A
collaborative filtering based web service recommender
system. In Proc. 7th Int’l Conf. Web Services
(ICWS’09), pages 437–444, 2009.

44


