
A Runtime Dependability Evaluation Framework for
Fault Tolerant Web Services

Zibin Zheng and Michael R. Lyu
Department of Computer Science and Engineering

The Chinese University of Hong Kong
{zbzheng, lyu}@cse.cuhk.edu.hk

Abstract

Service-oriented systems are usually built on top of Web
service components, which are distributed across the Inter-
net, making dependability a big challenge. In this paper, we
propose a runtime dependability evaluation framework for
fault tolerant Web services to attack this crucial problem.
We first propose a user-collaborative framework for col-
lecting Web service QoS information from both the service
providers and service users. Then, Web service QoS models,
fault tolerance strategies, and optimal Web service recom-
mendation approaches are presented. Finally, the benefits
of the runtime evaluation framework are demonstrated by
real-world experiments. As illustrated by the experimen-
tal results, our proposed framework makes fault tolerance
for distributed service-oriented systems feasible, reconfig-
urable, and optimized.

1. Introduction

Web services are loosely-coupled components provided
by different organizations to support Machine to Machine
interaction using standard protocols, such as WSDL and
SOAP. In the service-oriented environment, complex dis-
tributed systems can be dynamically composed by invok-
ing remote Web services via network. Dependability of the
service-oriented systems become a big challenge, since the
Web service components are usually distributed across the
Internet and invoked via communication links,

Software fault tolerance by design diversity is an impor-
tant approach for building reliable systems [5]. This used-
to-be expensive approach now becomes a viable solution
to the fast-growing service-oriented computing arena, since
functionally equivalent Web services can be employed for
building diversity-based fault tolerant SOA systems, which
react to Web service component failures to prevent them
to turn into system failures. When applying traditional

fault tolerance technologies to the service-oriented systems,
there are several challenges need to be addressed: (1) since
the Web services are provided and hosted by different orga-
nizations and some may charge for invocations, it is really
difficult to conduct traditionally exhaustive evaluation and
testing on the target Web services before employing them.
However, without sufficient evaluation, we have no idea
on the dependability of remote Web services and thus are
difficult to determine optimal fault tolerance strategy. (2)
Traditionally, fault tolerance strategy was fixed statically at
design-time. Due to the unpredictable nature of the Inter-
net, the lack of control of the remote Web services, and the
dynamic workload changes of the invoked Web services,
static fault tolerance approaches are infeasible to apply to
the service-oriented systems.

Therefore, in the service-oriented computing arena, we
need runtime dependability evaluation of the remote Web
service components and feasible proactive approaches for
the reconfiguration of the fault tolerance strategy to build
more reliable systems. In our previous work, a distributed
mechanism, named WS-DREAM, is proposed for Web ser-
vice reliability evaluation [10, 11], where the optimal fault
tolerance strategy is fixed at design time. In this paper, we
focus on runtime dependability evaluation of Web services
and proactive fault tolerance strategy reconfiguration. The
contribution of this paper includes:

• A runtime user-collaborative framework for depend-
ability evaluation of Web services. To the best of our
knowledge, this paper is the first work that propose the
idea of collaboration between service users and service
providers for achieving efficient and effective runtime
Web service evaluation;

• A systematic introduction of various fault tolerance
strategies, as well as how to dynamically determine op-
timal Web service and optimal fault tolerance strategy;

• Real-world experiments for verifying the feasibility of
our framework.

The rest of this paper is organized as follows: Section 2

A9



Figure 1. Runtime Evaluation Framework

introduces the system architecture. Section 3 presents the
methodologies. Section 4 shows our implementation and
experiments and Section 5 concludes the paper.

2. System Architecture

To make runtime evaluation of Web services efficient and
effective, we propose a framework for reusing the evalua-
tion results from other service users as well as the service
providers. As shown in Fig.1, the proposed runtime eval-
uation framework includes a centralized evaluation server,
a number of distributed service users, and a number of ser-
vice providers. We assume that the centralized evaluation
server is hosted by a trust-worthy third-party. This frame-
work employs the concept of user-collaboration, which is
the key concept of Web 2.0, for conducting runtime evalu-
ation of Web services. In this framework, service users and
service providers in different geographical locations collab-
orate with each other and share their evaluation results on
the Web services.

As shown in Fig.1, from the perspective of service
providers, the procedures of employing our framework are
as follows:

(1). Evaluation registration. Service providers submit
evaluation requests to the evaluation server.

(2). Test case generation. The TestCase Generator
in the server automatically creates test cases based on the
WSDL files of the target Web Services.

(3). Mobile-agent coordination. The generated test
cases are deployed to mobile agents, and the mobile agents
are sent to the target Web services for conducting evalua-
tion. Since we assume that the centralized server is hosted
by a trust-worthy third-party, so the service providers can
trust the mobile agents and authorize them to conduct test-
ing in their servers. After finish the evaluations, the mobile
agents will carry back the evaluation results and the TestRe-
sult Analyzer will process and send back the evaluation re-

sults to the providers.

By employing the above approach, the service providers
can save a lot of time, since they do not need to have good
knowledge on the Web service testing and test case genera-
tion. By using mobile agents, the testing is conducted in the
servers of the target Web services, thus save a lot of band-
width and make the evaluation more efficient. The mobile
agent testing mainly focuses on the functionalities, which
are the same to all the service users and thus no need to be
conducted in different locations. Evaluations on the non-
functionalities (e.g., response-time, success-rate, etc.) are
conducted by the service users in different locations under
different network conditions. By employing our evaluation
framework, the service providers can also obtain the evalu-
ation results contributed by distributed service users.

From the perspective of service users, the procedures of
employing our framework can be explained as follows.

(1). Runtime Web service evaluation. the QoS Moni-
tor of the service user records the QoS performance of the
invoked Web services.

(2). QoS information exchanging. The Communicator
automatically contributes the individually obtained QoS in-
formation to the centralized evaluation server for exchang-
ing QoS information from other service users and service
providers. The exchanging mechanism can be designed as
a Web service for enabling programmatic invocations.

(3). Fault tolerance strategy reconfiguration. Em-
ploying the updated QoS data, the FT Updater module
automatically adjust the fault tolerance strategy to be the
most properly configuration with optimal Web service can-
didates.

By employing our framework, the service users can ob-
tain: (1) evaluation results observed by himself/herself; (2)
evaluation results contributed by other service users; and
(3) evaluation results provided by the service providers. By
this way, the evaluation o target Web services become more
efficient and less-expensive. Since the service users are un-
der different network conditions, the evaluation result from
others may not be useful for the current user. How to make
properly use of the QoS information from other service
users will be discussed in Section 3.3.

From the perspective of the centralized evaluation server,
by providing evaluation services to the service providers,
the evaluation server obtains the evaluation results from the
service providers. By exchanging the QoS information with
the active service users, the centralized server obtains the
individually observed Web service QoS information from
distributed service users. By this user-collaboration way,
evaluation results can be reused and resource (e.g., network
traffic, Web service invocations, etc.) can be saved. The test
case generation, which has been discussed in work [9, 4], is
out of the scope of this paper.

A10



3. Methodologies

In this section, we first introduction an extendable QoS
model for Web services (Section 3.1) and various fault tol-
erance strategies for Web services (Section 3.2). Then, the
approaches for the optimal Web service selection are dis-
cussed (Section 3.3). Finally, the dynamic fault tolerance
strategy reconfiguration is presented (Section 3.4).

3.1. QoS Model of Web services

QoS provides non-functional characteristics for the op-
timal Web service selection. The most commonly used
QoS properties for Web services include: availability, price,
popularity, data-size, process-time, success-rate, response-
time, and so on [1]. The QoS properties can be divided into
two types: QoS properties provided by the service providers
and QoS properties observed by the service users. For ex-
ample, availability, price, popularity, data-size are the same
for all the service users and are provided by the service
providers, while success-rate, process-time and response-
time is measured by the service users and may different
from user to user.

The detailed introduction on these QoS properties can be
found in [12]. Apart from the above well-known QoS prop-
erties, we propose two more properties, Overall-success-
rate and overall-response-time, where Overall-success-rate
is the average value of the invocation success-rate pro-
vided by different service users, and overall-response-time
is the average value of the response-time of different ser-
vice users. These two values can be obtained by employing
our user-collaborative framework in Section 2. These over-
all QoS properties provide useful information for the Web
service selection, especially for the new service users, who
have no knowledge on the performance of different Web
service candidates.

Given the above quality properties, the QoS performance
of a Web service can be presented as:

q = (q1, ..., qm), (1)

where qi is the value of the ith QoS property and m is the
number of QoS properties. The above QoS model is ex-
tensible, where the existing QoS properties can be replaced
and new QoS properties [6] can be added in the future easily
without fundamental changes.

3.2. Fault Tolerance Strategies

Due to the employment of remote service compo-
nents, dependability becomes a major issue when apply-
ing service-oriented systems to critical domains. Software

A1

A2

Av

B1

B2

Bv

If Fail

If Fail

If Fail

If Fail

A1

A2

Av

B1

B2

Bv

A1 B1

If Fail

If Fail

A1

If Fail

B1

If Fail

A1

A2

Av

If Fail

If Fail

A1

A2

Av

4) Active+Time                                                                                   5) Time+Active

6) Active+Passive                                                                             7) Passive+Active

8) Time+Passive                                                                             9) Passive+Time

Figure 2. Fault Tolerance Strategies

fault tolerance by design diversity [5] is a feasible ap-
proach for building reliable service-oriented systems. Time-
redundancy, and space-redundancy are two types of redun-
dancy for tolerating faults [3, 7]. Time-redundancy uses
extra computation/communication time to tolerate faults,
while space-redundancy employs extra resources, such as
hardware or software, to mask faults. Active-replication
and passive-replication are two types of space-redundancy.
Active-replication is performed by invoking all service can-
didates at the same time to process the same request,
and employing the first returned response as the final out-
come [2]. On the other hand, passive-replication invokes
a primary candidate to process the request first. Backup
candidates will be invoked only when the primary candi-
date fails. These basic fault tolerance strategies are named
Time, Passive, and Active, respectively.

More feasible fault tolerance strategies can be obtained
by combining the basic fault tolerance strategies. As shown
in Fig. 2, there are six combined fault tolerance strate-
gies, named Active+Time, Time+Active, Active+Passive,
Passive+Active, Time+Passive, and Passive+Time, respec-
tively. The systematic introduction of these fault tolerance
strategies can be found in [10] and the formula for calculat-
ing the success-rate and response-time of different strate-
gies are shown in Table 1. As discussed in the work [3], we
assume the remote Web services are failed in a fixed rate,
and the invocation of each Web service candidates is inde-
pendent with each other.

3.3. Optimal Web Service Selection

Dynamic optimal Web service selection can be con-
ducted by employing the Web service QoS information
from other service users. The easiest way is to rank the
target Web service candidates based on their overall QoS

A11



Table 1. Formula for FT Strategies
Formula

1 r = 1 −
n∏

i=1
(1 − ri);

t =

{
min{Tc} : |Tc| > 0
max{Tf} : |Tc| = 0

; T = {t1, ..., tn} = Tc ∪ Tf

2 r = 1 − (1 − r1)m; t =
m∑

i=1
ti(1 − r1)i−1;

3 r = 1 −
m∏

i=1
(1 − ri); t =

m∑
i=1

ti
i−1∏
k=1

(1 − rk)

4 r = 1 − (
v∏

i=1
(1 − ri))

m;

t =
m∑

i=1
ti(

v∏
j=1

(1 − rj))
i−1; ti =

{
min{T i

c} :
∣∣T i

c

∣∣ > 0
max{T i

f} :
∣∣T i

c

∣∣ = 0

5 r = 1 −
v∏

i=1
(1 − ri)

m;

t =

{
min{Tc} : |Tc| > 0
max{Tf} : |Tc| = 0

; ti ∈ T =
m∑

j=1
tij(1 − ri)

j−1

6 r = 1 −
m∏

i=1

v∏
j=1

(1 − rij);

t =
m∑

i=1
ti

i−1∏
k=1

v∏
j=1

(1 − rkj); ti =

{
min{T i

c} :
∣∣T i

c

∣∣ > 0
max{T i

f} :
∣∣T i

c

∣∣ = 0

7 r = 1 −
v∏

j=1

m∏
i=1

(1 − rij);

t =

{
min{Tc} : |Tc| > 0
max{Tf} : |Tc| = 0

; ti =
m∑

j=1
tij

j−1∏
k=1

((1 − rik)

8 r = 1 −
u∏

i=1
(1 − ri)

m;

t =
u∑

i=1
((

m∑
j=1

ti(1 − ri)
j−1)

i−1∏
k=1

(1 − rk)m);

9 r = 1 − (
u∏

i=1
(1 − ri))

m;

t =
m∑

i=1
((

u∑
j=1

tj
j−1∏
k=1

(1 − rk)(
u∏

j=1
(1 − rj))

i−1);

performance (OP ), which is defined as:

OP =
m∑

i=1

wiq̃
i, (2)

where wi is the weight for the ith QoS property
(
∑m

i=1 wi = 1), m is the number of QoS properties, and
q̃i is the average value of the ith QoS property of different
users. q̃i can be calculated by:

q̃i =
1
n

n∑
j=1

qij , (3)

where n is the number of service users, and qij is the QoS
value provided by the jth service user.

However, since different service users are under different
network conditions, the current service user may not be able
to obtain similar Web service performance (e.g., response-
time, success-rate, etc.) as other service users. To make
proper use of the QoS information provided by other service

users, we propose a collaborative filtering method for opti-
mal Web service recommendation. The main idea is that
only the similar service users will be employed to predict
the QoS values of the current service user. The procedures
of Web service recommendation are as follows:

(1) Similarity computation.
Pearson Correlation Coefficient (PCC) [8] is employed

to define the similarity between two service users a and u
based on the Web service items they commonly employed
using the following equation:

Sim(a, u) =

∑
i∈I

(ra,i − ra)(ru,i − ru)

√∑
i∈I

(ra,i − ra)2
√∑

i∈I

(ru,i − ru)2
, (4)

where I = Ia ∩ Iu is the subset of Web service items which
user a and user u both invoked, ra,i is the QoS value of
Web service item i observed by service user a, and ra rep-
resents the average QoS value of the service user a. From
this definition, the service user similarity, Sim(a, u), is in
the interval of [-1,1] with a larger value indicating that users
a and u are more similar.

(2) Similar user selection. After calculating the similar-
ities between the current user and different users, the top-k
similar users can be employed for the QoS value prediction.

(3) QoS value prediction. Collaborative filtering meth-
ods use similar users to predict the missing values (QoS val-
ues) for the active users by employing the following equa-
tion:

P (ru,i) = u +

∑
ua∈S(u)

Sim′(ua, u)(rua,i − ua)

∑
ua∈S(u)

Sim′(ua, u)
, (5)

where u is the average QoS value of different Web services
observed by the active user u, and ua is the average QoS
value of different Web services observed by the similar ser-
vice user ua.

(4) Web service recommendation. After predicting the
QoS values for the current user, the top-k optimal Web ser-
vices can be recommended to the current user. Due to space
limitation, more details of our collaborative filtering algo-
rithm can be found in [13].

3.4. Dynamic FT Strategy Reconfiguration

After obtaining the QoS value predictions of different
Web service candidates, proactive approach can be em-
ployed for dynamically reconfiguring optimal fault toler-
ance strategy. Optimal fault tolerance strategies for service-
oriented applications vary from case to case, which are in-
fluenced not only by Web service QoS performance, but

A12



also influenced by subjective service user requirements. For
example, latency-sensitive applications may prefer Active
strategy for obtaining better response-time performance,
while resource-constrained applications may prefer the Pas-
sive strategy for better resource conservation. By employ-
ing the formula in Table 1 and the QoS information of the
Web service candidates, the QoS performance of different
fault tolerance strategies can be calculated and the optimal
one can be determined. The detailed fault tolerance recon-
figuration algorithms can be found in our work [12].

4. Implementation and Experiments

4.1. Implementation and Experiment Setup

To illustrate our runtime dependability evaluation frame-
work, a prototype (www.wsdream.net) is implemented. The
mobile agents are realized as Java Applets, which can be
loaded and executed automatically by Internet browsers of
Web service providers. The centralized evaluation server is
implemented in Java language. The client-side evaluation
modules of service users are implemented as Java pack-
ages and deployed to different geography locations (CN,
AU, US, SG, TW and HK) for conducting real-world exper-
iments. The functionally equivalent Amazon Web services,
which are located in US, Japan, Germany, Canada, France
and UK, respectively, are employed as redundant Web ser-
vice candidates. The detailed experimental results are re-
ported in the following.

4.2. Evaluation of Individual Web Services

Figure 3 shows the response-time performance observed
by different service users of invoking the US Amazon Web
service (a-us). Figure 3 shows that RTT performance of tar-
get Web services change dramatically from place to place.
For example, in the user-location of CN, the average RTT
value is 4184 milli-seconds (ms), while in the user-location
of US, the average RTT value is only 74 ms. Moreover, fig-
ure 3 also shows that even in the same location, the RTT
values vary drastically from time to time. The unstable
RTT performance degrades service quality and makes the
latency-sensitive applications easy to fail.

Figure 4 shows the process-time performance of the six
Amazon Web services. Figure 4 shows that the average
process-time of all the six Amazon Web services are less
than 30 milliseconds, which is very small compared with
the response-time shown in Figure 3. It indicates that
the response-time mainly consists of network-latency rather
than server processing-time in our experiment. Among
all the six Amazon Web services, a-jp provides the worst
process-time performance, which may be related to the
server workload.

0 100 200 300
0

2000

4000

6000

8000

10000

Mainland China: Test Case (a−us)

R
T

T
(m

s)

mean: 4184
std:     2348

0 500 1000 1500 2000
0

2000

4000

6000

8000

10000

Taiwan: Test Case (a−us)

R
T

T
(m

s)

mean: 902
std:     294

0 200 400 600 800 1000
0

2000

4000

6000

8000

10000

Australia: Test Case (a−us)

R
T

T
(m

s)

mean: 705
std:     210

0 500 1000 1500
0

2000

4000

6000

8000

10000

Singapore: Test Case (a−us)

R
T

T
(m

s)

mean: 561
std:     353

0 0.5 1 1.5 2

x 10
4

0

2000

4000

6000

8000

10000

Hong Kong: Test Case (a−us)

R
T

T
(m

s)

mean: 448
std:     304

0 1000 2000 3000
0

2000

4000

6000

8000

10000

USA: Test Case (a−us)

R
T

T
(m

s)

mean:   74
std:     135

Figure 3. RTT Performance of Accessing a-us

Table 2. Failure-rate of the Web Services
WS CN TW AU SG HK US

a-us 22.52 0 0 0 0.38 0
a-jp 26.55 0.03 0 0 0.05 0
a-de 23.40 0 0 0 3.45 0
a-ca 24.23 0.19 0 0 0.58 0
a-fr 19.27 0 0 0 3.52 0
a-uk 20.28 0.03 0.25 0 3.87 0

Table 2 shows the failure-rate of the six Amazon Web
services observed by the six distributed service users. Ta-
ble 2 shows that users with worst RTT performance (CN)
have the highest failure rate, while users with best RTT per-
formance (US) have the lowest failure rate. This indicates
that network performance can greatly influence the invoca-
tion success-rate, since unstable RTT performance will de-
grade service quality and can even lead to timeout-failures.
The failures observed in our experiment includes Timeou-
tException, Service Unavailable (http code 503) and Bad
Gateway (http code 502).

4.3. Evaluation of FT Strategies

Table 3 shows the experimental results of various fault
tolerance strategies from the user-location of HK. Table 3
shows that strategy 1 (Active) has the best RTT perfor-
mance. This is because Active strategy invokes all the six
candidates at the same time and employs the first response
as the final result. Its failure-rate is high compared with

A13



Figure 4. Process Time of the Web Services

Table 3. Evaluation of FT Strategies
Cases RTT(ms)Type

All Fail R% Avg Std Min Max

1 21556 6 0.027 279 153 203 3296
2 22719 0 0 389 333 203 17922
3 23040 0 0 374 299 203 8312
4 21926 4 0.018 311 278 203 10327
5 21926 1 0.004 312 209 203 10828
6 21737 2 0.009 311 225 203 10282
7 21737 2 0.009 310 240 203 13953
8 21735 0 0 411 1130 203 51687
9 21808 0 0 388 304 203 9360

other strategies, which may be caused by opening too many
connections simultaneously. Nevertheless, the failure-rate
of 0.027% is relatively small compared with the failure-rate
incurred without employing any replication strategies, as
shown in Table 2. RTT performance of sequential strate-
gies (Strategies 2, 3, 8 and 9) is worse than other strategies,
because sequential strategies invoke candidates one by one.
Hybrid strategies also (Strategies 4, 5, 6 and 7) achieve good
RTT performance, although not the best. Due to space
limitation, more detailed experimental results can be found
in [10].

5. Conclusion

In this paper, we propose a runtime user-collaborative
evaluation framework for Web services. QoS-model, fault
tolerance strategies, dynamic Web service selection, and dy-

namic fault tolerance strategy reconfiguration are presented.
A prototype is implemented to illustrate the advantages of
our framework.

Our future work will consider more advance features of
the framework, such as investigate more QoS properties and
study stateful Web services.

Acknowledgement

The work described in this paper was fully supported
by a grant from the Research Grants Council of the Hong
Kong Special Administrative Region, China (Project No.
CUHK4158/08E), and a grant from the Research Commit-
tee of The Chinese University of Hong Kong (Project No.
CUHK3/06C-SF).

References

[1] D. Ardagna and B. Pernici. Adaptive service composition in
flexible processes. IEEE Trans. Software Eng., pages 369–
384, 2007.

[2] P. P.-W. Chan, M. R. Lyu, and M. Malek. Making services
fault tolerant. In ISAS, pages 43–61, 2006.

[3] D. Leu, F. Bastani, and E. Leiss. The effect of statically
and dynamically replicated components on system reliabil-
ity. IEEE Transactions on Reliability, 39(2):209–216, 1990.

[4] N. Looker and J. Xu. Assessing the dependability of
soaprpc-based web services by fault injection. In Proc. of the
9th IEEE International Workshop on Object-oriented Real-
time Dependable Systems, 2003.

[5] M. R. Lyu. Software Fault Tolerance. Trends in Software,
Wiley, 1995.

[6] J. O’Sullivan, D. Edmond, and A. H. M. ter Hofstede.
What’s in a service? Distributed and Parallel Databases,
12(2/3):117–133, 2002.

[7] N. Salatge and J.-C. Fabre. Fault tolerance connectors for
unreliable web services. In DSN, pages 51–60, 2007.

[8] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-
based collaborative filtering recommendation algorithms. In
WWW, 2001.

[9] M. Vieira, N. Laranjeiro, and H. Madeira. Assessing robust-
ness of web-services infrastructures. In DSN, pages 131–
136, 2007.

[10] Z. Zheng and M. R. Lyu. A distributed replication strategy
evaluation and selection framework for fault tolerant web
services. In ICWS, pages 145–152, Beijing, China, Sept.
2008.

[11] Z. Zheng and M. R. Lyu. Ws-dream: A distributed reliabil-
ity assessment mechanism for web services. In DSN, pages
392–397, Anchorage, Alaska, USA, June 2008.

[12] Z. Zheng and M. R. Lyu. A qos-aware fault tolerant middle-
ware for dependable service composition. In DSN, Lisbon,
Portugal, June 2009.

[13] Z. Zheng, H. Ma, M. R. Lyu, and I. King. Wsrec: A collab-
orative filtering based web service recommender system. In
ICWS, 2009.

A14


