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Abstract

We consider the problem of Support Vector Machine transduction, which involves
a combinatorial problem with exponential computational complexity in the num-
ber of unlabeled examples. Although several studies are devoted to Transductive
SVM, they suffer either from the high computation complexity or from the so-
lutions of local optimum. To address this problem, we propose solving Trans-
ductive SVM via a convex relaxation, which converts the NP-hard problem to a
semi-definite programming. Compared with the other SDP relaxation for Trans-
ductive SVM, the proposed algorithm is computationally more efficient with the
number of free parameters reduced from O(n2) to O(n) where n is the number of
examples. Empirical study with several benchmark data sets shows the promising
performance of the proposed algorithm in comparison with other state-of-the-art
implementations of Transductive SVM.

1 Introduction

Semi-supervised learning has attracted an increasing amount of research interest recently [3, 15]. An
important semi-supervised learning paradigm is the Transductive Support Vector Machine (TSVM),
which maximizes the margin in the presence of unlabeled data and keeps the boundary traversing
through low density regions, while respecting labels in the input space.

Since TSVM requires solving a combinatorial optimization problem, extensive research efforts have
been devoted to efficiently finding the approximate solution to TSVM. The popular version of TSVM
proposed in [8] uses a label-switching-retraining procedure to speed up the computation. In [5], the
hinge loss in TSVM is replaced by a smooth loss function, and a gradient descent method is used
to find the decision boundary in a region of low density. Chapelle et al. [2] employ an iterative
approach for TSVM. It begins with minimizing an easy convex object function, and then gradu-
ally approximates the objective of TSVM with more complicated functions. The solution of the
simple function is used as the initialization for the solution to the complicated function. Other it-
erative methods, such as deterministic annealing [11] and the concave-convex procedure (CCCP)
method [6], are also employed to solve the optimization problem related to TSVM. The main draw-
back of the approximation methods listed above is that they are susceptible to local optima, and
therefore are sensitive to the initialization of solutions. To address this problem, in [4], a branch-
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Figure 1: Computation time of the proposed convex relaxation approach for TSVM (i.e., CTSVM)
and the semi-definite relaxation approach for TSVM (i.e., RTSVM) versus the number of unlabeled
examples. The Course data set is used, and the number of labeled examples is 20.

and-bound search method is developed to find the exact solution. In [14], the authors approximate
TSVM by a semi-definite programming problem, which leads to a relaxation solution to TSVM
(noted as RTSVM), to avoid the solution of local optimum. However, both approaches suffer from
the high computational cost and can only be applied to small sized data sets.

To this end, we present the convex relaxation for Transductive SVM (CTSVM). The key idea of our
method is to approximate the non-convex optimization problem of TSVM by its dual problem. The
advantage of doing so is twofold:

• Unlike the semi-definite relaxation [14] that approximates TSVM by dropping the rank
constraint, the proposed approach approximates TSVM by its dual problem. As the basic
result of convex analysis, the conjugate of conjugate of any function f(x) is the convex en-
velope of f(x), and therefore provides a tighter convex relaxation for f(x) [7]. Hence, the
proposed approach provides a better convex relaxation than that in [14] for the optimization
problem in TSVM.

• Compared to the semi-definite relaxation TSVM, the proposed algorithm involves fewer
free parameters and therefore significantly improves the efficiency by reducing the worst-
case computational complexity from O(n6.5) to O(n4.5). Figure 1 shows the running time
of both the semi-definite relaxation of TSVM in [14] and the proposed convex relaxation for
TSVM versus increasing number of unlabeled examples. The data set used in this example
is the Course data set (see the experiment section), and the number of labeled examples
is 20. We clearly see that the proposed convex relaxation approach is considerably more
efficient than the semi-definition approach.

The rest of this paper is organized as follows. Section 2 reviews the related work on the semi-
definite relaxation for TSVM. Section 3 presents the convex relaxation approach for Transductive
SVM. Section 4 presents the empirical studies that verify the effectiveness of the proposed relaxation
for TSVM. Section 5 sets out the conclusion.

2 Related Work

In this section, we review the key formulae for Transductive SVM, followed by the semi-definite
programming relaxation for TSVM.

Let X = (x1, . . . ,xn) denote the entire data set, including both the labeled examples and the
unlabeled ones. We assume that the first l examples within X are labeled by y` = (y`

1, y
`
2, . . . , y

`
l )

where y`
i ∈ {−1,+1} represents the binary class label assigned to xi. We further denote by y =

(y1, y2, . . . , yn) ∈ {−1,+1}n the binary class labels predicted for all the data points in X . The goal
of TSVM is to estimate y by using both the labeled examples and the unlabeled ones.



Following the framework of maximum margin, TSVM aims to identify the classification model that
will result in the maximum classification margin for both labeled and unlabeled examples, which
amounts to solve the following optimization problem:

min
w,b,y∈{−1,+1}n,ε

‖w‖2
2 + C

n
∑

i=1

εi

s. t. yi(w
>xi − b) ≥ 1 − εi, εi ≥ 0, i = 1, 2, . . . , n

yi = y`
i , i = 1, 2, . . . , l,

where C ≥ 0 is the trade-off parameter between the complexity of function w and the margin errors.
The prediction function can be formulated as f(x) = w>x − b.

Evidently, the above problem is a non-convex optimization problem due to the product term yiwj in
the constraint. In order to approximate the above problem into a convex programming problem, we
first rewrite the above problem into the following form using the Lagrange Theorem:

min
ν,y∈{−1,+1}n,δ,λ

1

2
(e + ν − δ + λy)>D(y)K−1D(y)(e + ν − δ + λy) + Cδ>e (1)

s. t. ν ≥ 0, δ ≥ 0, yi = y`
i , i = 1, 2, . . . , l,

where ν, δ and λ are the dual variables. e is the n-dimensional column vector of all ones and K is
the kernel matrix. D(y) represents a diagonal matrix whose diagonal elements form the vector y.
Detailed derivation can be found in [9, 13]. Using the Schur complement, the above formulation can
be further formulated as follows:

min
y∈{−1,+1}n,t,ν,δ,λ

t (2)

s. t.

(

yy> ◦ K e + ν − δ + λy

(e + ν − δ + λy)> t − 2Cδ>e

)

º 0

ν ≥ 0, δ ≥ 0, yi = y`
i , i = 1, 2, . . . , l,

where the operator ◦ represents the element wise product.

To convert the above problem into a convex optimization problem, the key idea is to replace the
quadratic term yy> by a linear variable. Based on the result that the set Sa = {M = yy>|y ∈
{−1,+1}n} is equivalent to the set Sb = {M|Mi,i = 1, rank(M) = 1}, we can approximate the
problem in (2) as follows:

min
M,t,ν,δ,λ

t (3)

s. t.

(

M ◦ K e + ν − δ

(e + ν − δ)> t − 2Cδ>e

)

º 0

ν ≥ 0, δ ≥ 0,

M º 0, Mi,i = 1, i = 1, 2, . . . , n,

where Mij = y`
iy

`
j for 1 ≤ i, j ≤ l.

Note that the key differences between (2) and (3) are (a) the rank constraint rank(M) = 1 is re-
moved, and (b) the variable λ is set to be zero, which is equivalent to setting b = 0. The above
approximation is often referred to as the Semi-Definite Programming (SDP) relaxation. As re-
vealed by the previous studies [14, 1], the SDP programming problem resulting from the approx-
imation is computationally expensive. More specifically, there are O(n2) parameters in the SDP
cone and O(n) linear inequality constraints, which implies a worst-case computational complexity
of O(n6.5). To avoid the high computational complexity, we present a different approach for relax-
ing TSVM into a convex problem. Compared to the SDP relaxation approach, it is advantageous
in that (1) it produces the best convex approximation for TSVM, and (2) it is computationally more
efficient than the previous SDP relaxation.

3 Relaxed Transductive Support Vector Machine

In this section, we follow the work of generalized maximum margin clustering [13] by first studying
the case of hard margin, and then extending it to the case of soft margin.



3.1 Hard Margin TSVM

In the hard margin case, SVM does not penalize the classification error, which corresponds to δ = 0
in (1). The resulting formulism of TSVM becomes

min
ν,y,λ

1

2
(e + ν + λy)>D(y)K−1D(y)(e + ν + λy) (4)

s. t. ν ≥ 0,

yi = y`
i , i = 1, 2, . . . , l,

y2
i = 1, i = l + 1, l + 2, . . . , n.

Instead of employing the SDP relaxation as in [14], we follow the work in [13] and introduce a
variable z = D(y)(e + ν) = y ◦ (e + ν). Given that ν ≥ 0, the constraints in (4) can be written
as y`

izi ≥ 1 for the labeled examples, and z2
i ≥ 1 for all the unlabeled examples. Hence, z can be

used as the prediction function, i.e., f∗ = z. Using this new notation, the optimization problem in
(4) can be rewritten as follows:

min
z,λ

1

2
(z + λe)>K−1(z + λe) (5)

s. t. y`
izi ≥ 1, i = 1, 2, . . . , l,

z2
i ≥ 1, i = l + 1, l + 2, . . . , n.

One problem with Transductive SVMs is that it is possible to classify all the unlabeled data to one of
the classes with a very large margin due to the high dimension and few labeled data. This will lead
to poor generalization ability. To solve this problem, we introduce the following balance constraint
to ensure that no class takes all the unlabeled examples:

−ε ≤
1

l

l
∑

i=1

zi −
1

n − l

n
∑

i=l+1

zi ≤ ε, (6)

where ε ≥ 0 is a constant. Through the above constraint, we aim to ensure that the difference
between the labeled data and the unlabeled data in their class assignment is small.

To simplify the expression, we further define w = (z, λ) ∈ R
n+1 and P = (In, e) ∈ R

n×(n+1).
Then, the problem in (5) becomes:

min
w

w>P>K−1Pw (7)

s. t. y`
iwi ≥ 1, i = 1, 2, . . . , l,

w2
i ≥ 1, i = l + 1, l + 2, . . . , n,

−ε ≤
1

l

l
∑

i=1

wi −
1

n − l

n
∑

i=l+1

wi ≤ ε.

When this problem is solved, the label vector y can be directly determined by the sign of the pre-
diction function, i.e., sign(w). This is because wi = (1 + ν)yi for i = l + 1, . . . , n and ν ≥ 0.

The following theorem shows that the problem in (7) can be relaxed to a semi-definite programming.

Theorem 1. Given a sample X = {x1, . . . ,xn} and a partial set of the labels y` = (y`
1, y

`
2, . . . , y

`
l )

where 1 ≤ l ≤ n, the variable w that optimizes (7) can be calculated by

w =
1

2
[A −D(γ ◦ b)]

−1
(γ ◦ a − (α − β)c), (8)

where a = (yl,0n−l, 0) ∈ R
n+1, b = (0l,1n−l, 0) ∈ R

n+1, c = ( 1
l
1l,− 1

u
1n−l, 0) ∈ R

n+1,
A = P>K−1P, and γ is determined by the following semi-definite programming:

max
γ,t,α,β

−
1

4
t +

n
∑

i=1

γi − ε(α + β) (9)

s. t.

(

A −D(γ ◦ b) γ ◦ a − (α − β)c,
(γ ◦ a − (α − β)c)> t

)

º 0

α ≥ 0, β ≥ 0, γi ≥ 0, i = 1, 2, . . . , n.



Proof Sketch. We define the Lagrangian of the minimization problem (7) as follows:

min
w

max
γ

F(w, γ) = w>P>K−1Pw +

l
∑

i=1

γi(1 − y`
iwi) +

n
∑

i=l+1

γi(1 − w2
i )

+α(c>w − ε) + β(−c>w − ε),

where γi ≥ 0 for i = 1, . . . , n. It can be derived from the duality that minw maxγ F(w, γ) =
maxγ minw F(w, γ).

At the optimum, the derivatives of F with respect to the variable w are derived as below:

∂F

∂w
= 2 [A −D(γ ◦ b)]w − γ ◦ a + (α − β)c = 0,

where A = P>K−1P. The inverse of A−D(γ◦b) can be computed through adding a regularization
parameter. Therefore, w is able to be calculated by:

w =
1

2
[A −D(γ ◦ b)]

−1
(γ ◦ a − (α − β)c).

Thus, the dual form of the problem becomes:

max
γ

L(γ) = −
1

4
(γ ◦ a − (α − β)c)> [A −D(b ◦ γ)]

−1
(γ ◦ a − (α − β)c) +

n
∑

i=1

γi − ε(α + β),

We import a variable t, so that

−
1

4
(γ ◦ a − (α − β)c)>[A −D(b ◦ γ)]−1(γ ◦ a − (α − β)c) ≥ −t.

According to the Schur Complement, we obtain a semi-definite programming cone, from which the
optimization problem (9) can be formulated. ¥

Remark I. The problem in (9) is a convex optimization problem, more specifically, a semi-definite
programming problem, and can be efficiently solved by the interior-point method [10] implemented
in some optimization packages, such as SeDuMi [12]. Besides, our relaxation algorithm has O(n)
parameters in the SDP cone and O(n) linear equality constraints, which involves a worst-case com-
putational complexity of O(n4.5). However, in the previous relaxation algorithms [1, 14], there
are approximately O(n2) parameters in the SDP cone, which involve a worst-case computational
complexity in the scale of O(n6.5). Therefore, our proposed convex relaxation algorithm is more
efficient. In addition, as analyzed in Section 2, the approximation in [1, 14] drops the rank constraint
of the matrix y>y, which does not lead to a tight approximation. On the other hand, our prediction
function f∗ implements the conjugate of conjugate of the prediction function f(x), which is the
convex envelope of f(x) [7]. Thus, our proposed convex approximation method provides a tighter
approximation than the previous method.

Remark II. It is interesting to discuss the connection between the solution of the proposed algorithm
and that of harmonic functions. We consider a special case of (8), where λ = 0 (which implies no
bias term in the primal SVM), and there is no balance constraint. Then the solution of (9) can be
expressed as follows:

z =
1

2

[

K−1 −D(γ ◦ (0l,1n−l))
]−1

(γ ◦ (yl,0n−l)). (10)

It can be further derived as follows:

z =

(

In −

n
∑

i=l+1

γiKIi
n

)−1( l
∑

i=1

γiy
`
iK(xi, ·)

)

, (11)

where Ii
n is defined as an n × n matrix with all elements being zero except the i-th diagonal el-

ement which is 1, and K(xi, ·) is the i-th column of K. Similar to the solution of the harmonic
function, we first propagate the class labels from the labeled examples to the unlabeled one by term
∑l

i=1 γiy
`
iK(xi, ·), and then adjust the prediction labels by the factor

(

In −
∑n

i=l+1 γiKIi
n

)−1
.

The key difference in our solution is that (1) different weights (i.e., γi) are assigned to the labeled
examples, and (2) the adjustment factor is different to that in the harmonic function [16].



3.2 Soft Margin TSVM

We extend TSVM to the case of soft margin by considering the following problem:

min
ν,y,δ,λ

1

2
(e + ν − δ + λy)>D(y)K−1D(y)(e + ν − δ + λy) + C`

l
∑

i=1

δ2
i + Cu

n
∑

i=l+1

δ2
i

s. t. ν ≥ 0, δ ≥ 0,

yi = y`
i , 1 ≤ i ≤ l,

y2
i = 1, l + 1 ≤ i ≤ n,

where δi is related to the margin error. Note that we distinguish the labeled examples from the
unlabeled examples by introducing different penalty constants for margin errors, C` for labeled
examples and Cu for unlabeled examples.

Similarly, we introduce the slack variable z, and then derive the following dual problem:

max
γ,t,α,β

−
1

4
t +

n
∑

i=1

γi − ε(α + β) (12)

s. t.

(

A −D(γ ◦ b) γ ◦ a − (α − β)c
(γ ◦ a − (α − β)c)> t

)

º 0,

0 ≤ γi ≤ C`, i = 1, 2, . . . , l,

0 ≤ γi ≤ Cu, i = l + 1, l + 2, . . . , n,

α ≥ 0, β ≥ 0,

which is also a semi-definite programming problem and can be solved similarly.

4 Experiments

In this section, we report empirical study of the proposed method on several benchmark data sets.

4.1 Data Sets Description

To make evaluations comprehensive, we have collected four UCI data sets and three text data sets
as our experimental testbeds. The UCI data sets include Iono, sonar, Banana, and Breast, which are
widely used in data classification. The WinMac data set consists of the classes, mswindows and
mac, of the Newsgroup20 data set. The IBM data set contains the classes, IBM and non-IBM, of the
Newsgroup20 data set. The course data set is made of the course pages and non-course pages of the
WebKb corpus. For each text data set, we randomly sample the data with the sample size of 60, 300
and 1000, respectively. Each resulted sample is noted by the suffix, “-s”, “-m”, or “-l” depending on
whether the sample size is small, medium or large. Table 1 describes the information of these data
sets, where d represents the data dimensionality, l means the number of labeled data points, and n
denotes the total number of examples.

Table 1: Data sets used in the experiments, where d represents the data dimensionality, l means the
number of labeled data points, and n denotes the total number of examples.

Data set d l n Data set d l n

Iono 34 20 351 WinMac-m 7511 20 300
Sonar 60 20 208 IBM-m 11960 20 300
Banana 4 20 400 Course-m 1800 20 300
Breast 9 20 300 WinMac-l 7511 50 1000
IBM-s 11960 10 60 IBM-l 11960 50 1000
Course-s 1800 10 60 Course-l 1800 50 1000

4.2 Experimental Protocol

To evaluate the effectiveness of the proposed CTSVM method, we choose the conventional SVM
as our baseline method. In our experiments, we also make comparisons with three state-of-the-art



methods: the SVM-light algorithm [8], the Gradient Decent TSVM (∇TSVM) algorithm [5], and
the Concave Convex Procedure (CCCP) [6]. Since the SDP approximation TSVM [14] has very
high time complexity O(n6.5), which is difficult to process data sets with hundreds of examples.
Thus, it is only evaluated on the smaller data sets, i.e., “IBM-s” and “Course-s”.

The experiment setup is described as follows. For each data set, we conduct 10 trials. In each trial,
the training set contains each class of data, and the remaining data are then used as the unlabeled
(test) data. Moreover, the RBF kernel is used for “Iono”, “Sonar” and “Banana”, and the linear
kernel is used for the other data sets. This is because the linear kernel performs better than the RBF
kernel on these data sets. The kernel width of RBF kernel is chosen by 5-cross validation on the
labeled data. The margin parameter C` is tuned by using the labeled data in all algorithms. Due to
the small number of labeled examples, for CTSVM and CCCP, the margin parameter for unlabeled
data, Cu, is set equal to C`. Other parameters in these algorithms are set to the default values
according to the relevant literatures.

4.3 Experimental Results

Table 2: The classification performance of Transductive SVMs on benchmark data sets.
Data Set SVM SVM-light ∇TSVM CCCP CTSVM
Iono 78.55±4.83 78.25±0.36 81.72±4.50 82.11±3.83 80.09±2.63
Sonar 51.76±5.05 55.26±5.88 69.36±4.69 56.01±6.70 67.39±6.26
Banana 58.45±7.15 - 71.54±7.28 79.33±4.22 79.51±3.02
Breast 96.46±1.18 95.68±1.82 97.17±0.35 96.89±0.67 97.79±0.23
IBM-s 52.75±15.01 67.60±9.29 65.80±6.56 65.62±14.83 75.25±7.49
Course-s 63.52±5.82 76.82±4.78 75.80±12.87 74.20±11.50 79.75±8.45
WinMac-m 57.64±9.58 79.42±4.60 81.03±8.23 84.28±8.84 84.82±2.12
IBM-m 53.00±6.83 67.55±6.74 64.65±13.38 69.62±11.03 73.17±0.89
Course-m 80.18±1.27 93.89±1.49 90.35±3.59 88.78±2.87 92.92±2.28
WinMac-l 60.86±10.10 89.81±2.10 90.19±2.65 91.00±2.42 91.25±2.67
IBM-l 61.82±7.26 75.40±2.26 73.11±1.99 74.80±1.87 73.42±3.23
Course-l 83.56±3.10 92.35±3.02 93.58±2.68 91.32±4.08 94.62±0.97

Table 2 summarizes the classification accuracy and the standard deviations of the proposed algo-
rithm, the baseline method and the state-of-the-art methods. It can be observed that our proposed
algorithm performs significantly better than the standard SVM across all the data sets. Moreover, on
the small-size data sets, i.e., “IBM-s” and “Course-s”, the results of the SDP-relaxation method are
68.57±22.73 and 64.03±7.65, which are worse than the proposed CTSVM method. In addition, the
proposed CTSVM algorithm performs much better than other TSVM methods over “WinMac-m”
and “Course-l”. As shown in Table 2, the SVM-light algorithm achieves the best results on “Course-
m” and “IBM-l”, however, it fails to converge on “Banana”. On the remaining data sets, comparable
results have been obtained for our proposed algorithm. From above, the empirical evaluations in-
dicate that our proposed CTSVM method achieves promising classification results comparing with
the state-of-the-art methods.

5 Conclusion and Future Work

This paper presents a novel method for Transductive SVM by relaxing the unknown labels to the
continuous variables. In contrast to the previous relaxation method which involves O(n2) free pa-
rameters in the semi-definite matrix, our method takes the advantages of reducing the number of
free parameters to O(n), and can solve the optimization problem more efficiently. In addition, the
proposed approach provides a tighter convex relaxation for the optimization problem in TSVM. Em-
pirical studies on benchmark data sets demonstrate that the proposed method is more efficient than
the previous semi-definite relaxation method and achieves promising classification results compar-
ing to the state-of-the-art methods.

As the current model is only designed for a binary-classification, we plan to develop a multi-class
Transductive SVM model in the future. Moreover, it is desirable to extend the current model to
classify the new incoming data.



Acknowledgments

The work described in this paper is supported by a CUHK Internal Grant (No. 2050346) and a grant
from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project
No. CUHK4150/07E).

References

[1] T. D. Bie and N. Cristianini. Convex methods for transduction. In S. Thrun, L. Saul, and
B. Schölkopf, editors, Advances in Neural Information Processing Systems 16. MIT Press,
Cambridge, MA, 2004.

[2] O. Chapelle, M. Chi, and A. Zien. A continuation method for semi-supervised SVMs. In ICML
’06: Proceedings of the 23rd international conference on Machine learning, pages 185–192,
New York, NY, USA, 2006. ACM Press.

[3] O. Chapelle, B. Schölkopf, and A. Zien. Semi-Supervised Learning. MIT Press, Cambridge,
MA, 2006.

[4] O. Chapelle, V. Sindhwani, and S. Keerthi. Branch and bound for semi-supervised support
vector machines. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Infor-
mation Processing Systems 19. MIT Press, Cambridge, MA, 2007.

[5] O. Chapelle and A. Zien. Semi-supervised classification by low density separation. In Pro-
ceedings of the Tenth International Workshop on Artificial Intelligence and Statistics, pages
57–64, 2005.

[6] R. Collobert, F. Sinz, J. Weston, and L. Bottou. Large scale transductive SVMs. Journal of
Machine Learning Reseaerch, 7:1687–1712, 2006.

[7] J.-B. Hiriart-Urruty and C. Lemarechal. Convex analysis and minimization algorithms II:
advanced theory and bundle methods. (2nd part edition). Springer-Verlag, New York, 1993.

[8] T. Joachims. Transductive inference for text classification using support vector machines. In
ICML ’99: Proceedings of the Sixteenth International Conference on Machine Learning, pages
200–209, San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc.

[9] G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. E. Ghaoui, and M. I. Jordan. Learning the
kernel matrix with semidefinite programming. Journal of Machine Learning Research, 5:27–
72, 2004.

[10] Y. Nesterov and A. Nemirovsky. Interior point polynomial methods in convex programming:
Theory and applications. Studies in Applied Mathematics. Philadelphia, 1994.

[11] V. Sindhwani, S. S. Keerthi, and O. Chapelle. Deterministic annealing for semi-supervised
kernel machines. In ICML ’06: Proceedings of the 23rd international conference on Machine
learning, pages 841–848, New York, NY, USA, 2006. ACM Press.

[12] J. F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones.
Optimization Methods and Software, 11:625–653, 1999.

[13] H. Valizadegan and R. Jin. Generalized maximum margin clustering and unsupervised kernel
learning. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information
Processing Systems 19. MIT Press, Cambridge, MA, 2007.

[14] L. Xu and D. Schuurmans. Unsupervised and semi-supervised multi-class support vector ma-
chines. In AAAI, pages 904–910, 2005.

[15] X. Zhu. Semi-supervised learning literature survey. Technical report, Computer Sciences,
University of Wisconsin-Madison, 2005.

[16] X. Zhu, Z. Ghahramani, and J. D. Lafferty. Semi-supervised learning using gaussian fields
and harmonic functions. In Proceedings of Twentith International Conference on Machine
Learning (ICML-2003), pages 912–919, 2003.


