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Abstract

We consider the problem of semi-supervised fea-
ture selection, where we are given a small amount
of labeled examples and a large amount of unla-
beled examples. Since a small number of labeled
samples are usually insufficient for identifying the
relevant features, the critical problem arising from
semi-supervised feature selection is how to take
advantage of the information underneath the un-
labeled data. To address this problem, we pro-
pose a novel discriminative semi-supervised fea-
ture selection method based on the idea of mani-
fold regularization. The proposed method selects
features through maximizing the classification mar-
gin between different classes and simultaneously
exploiting the geometry of the probability distri-
bution that generates both labeled and unlabeled
data. We formulate the proposed feature selection
method into a convex-concave optimization prob-
lem, where the saddle point corresponds to the op-
timal solution. To find the optimal solution, the
level method, a fairly recent optimization method,
is employed. We also present a theoretic proof of
the convergence rate for the application of the level
method to our problem. Empirical evaluation on
several benchmark data sets demonstrates the ef-
fectiveness of the proposed semi-supervised feature
selection method.

1 Introduction

Feature selection has been playing an important role in both
research and application communities of machine learning
[Guyon and Elisseeff, 2003]. It has been employed in a vari-
ety of real-world applications, such as natural language pro-
cessing, image processing and bioinformatics, where high di-
mensionality of data is usually observed. It is also used in dis-
tributed communication systems and sensor networks, where
each mobile equipment or sensor has very limited computa-
tional power. Overall, feature selection is a very important
method that is often applied to reduce the computational cost
or to save storage space, for problems with either high dimen-
sionality or limited resources.

Feature selection can be conducted in a supervised or un-
supervised manner, in terms of whether the label information
is utilized to guide the selection of relevant features. Gen-
erally, supervised feature selection methods require a large
amount of labeled training data. It however could fail to iden-
tify the relevant features that are discriminative to different
classes, provided the number of labeled samples is small. On
the other hand, while unsupervised feature selection meth-
ods could work well with unlabeled training data, they ignore
the label information and therefore are often unable to iden-
tify the discriminative features. Given the high cost in man-
ually labeling data, and at the same time abundant unlabeled
data are often easily accessible, it is desirable to develop fea-
ture selection methods that are capable of exploiting both la-
beled and unlabeled data. This motivates us introduce semi-
supervised learning into the feature selection process. Par-
ticularly, the method of semi-supervised SVM with manifold
regularization has demonstrated good performance [Belkin et
al., 2006]. In this work, we try to employ the idea of manifold
regularization to semi-supervised feature selection.

Semi-supervised feature selection studies how to better
identify the relevant features that are discriminative to dif-
ferent classes by effectively exploring the information un-
derlying the huge amount of unlabeled data. In [Zhao and
Liu, 2007], a filter-based semi-supervised feature selection
method was proposed, which rank features via some infor-
mation measure. As argued in [Guyon and Elisseeff, 2003],
the filter-based feature selection could discard important fea-
tures that are less informative by themselves but are infor-
mative when combined with other features. Moreover, it can
also ignore the underlying learning algorithm that is used to
train classifiers from labeled data. Therefore, it is hard to
find features that are particularly useful to a given learning
algorithm. To avoid these disadvantages, we propose a novel
semi-supervised feature selection method based on the idea
of manifold regularization.

In the proposed method, an optimal subset of features is
identified by maximizing a performance measure that com-
bines classification margin with manifold regularization. The
manifold regularization in the proposed feature selection
method assures that the decision function is smooth on the
manifold constructed by the selected features of the unlabeled
data. This therefore better exploits the underlying structural
information of the unlabeled data. Moreover, we success-
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fully formulate the presented semi-supervised feature selec-
tion method into a concave-convex problem, where the sad-
dle point corresponds to the optimal solution. We then de-
rive an extended level method [Xu et al., 2009], a fairly re-
cent optimization method, to find the optimal solution of the
concave-convex problem. The proof of the convergence rate
is also presented in this work. Finally, experiments on sev-
eral benchmark data sets indicate the promising results of the
proposed method in comparison with the state-of-the-art ap-
proaches for feature selection.

The rest of this paper is organized as follows. In Section
2, we review previous work on feature selection. In Section
3, we derive the discriminative semi-supervised feature selec-
tion model. We then successfully employ the level method to
solve the optimization problem for semi-supervised feature
selection. Section 4 presents the experimental evaluation on
the proposed semi-supervised feature selection method, fol-
lowed by the conclusion in Section 5.

2 Related work

The goal of feature selection is to choose a subset of fea-
tures that maximizes a generalized performance criterion. A
typical performance criterion is the maximum margin crite-
rion [Guyon and Elisseeff, 2003], which naturally leads to
SVM. An example based on the maximum margin criterion is
SVM-Recursive Feature Elimination (SVM-RFE) [Guyon et
al., 2002] where features with smallest weights were removed
iteratively. In [Fung and Mangasarian, 2000], L1-norm of
weights in SVM was suggested to replace L2-norm for fea-
ture selection when learning an SVM model. In addition, sev-
eral studies such as [Weston et al., 2003] explored L0-norm
when computing the weights of features. Compared with su-
pervised feature selection, unsupervised feature selection is
more challenging in that there is no categorical information
available [Dy and Brodley, 2004].

Extended from supervised feature selection and unsuper-
vised feature selection, semi-supervised feature selection
works on both the labeled data and the unlabeled data. Tra-
ditional semi-supervised feature selection algorithms are al-
most either filter-based methods including spectral analysis
[Zhao and Liu, 2007] , or search based methods including
forward search [Ren et al., 2008]. These methods usually
neglect the interaction among features and the interaction be-
tween the feature selection heuristics and the corresponding
classifier. Instead, our proposed semi-supervised feature se-
lection method works in an embedded way: the feature se-
lection process is integrated to the semi-supervised classifier
by taking advantage of manifold regularization. This there-
fore takes good care of the correlation among features and
the integration between the features and the semi-supervised
classifiers.

3 Semi-supervised Feature Selection Model

Before presenting the semi-supervised feature selection
model, we firstly introduce the notations that will be used
throughout this paper. Let X = (x1, . . . ,xn) ∈ Rn×d de-
note the entire data set, which consists of n data points in
d-dimensional space. The data set includes both the labeled

examples and the unlabeled ones. We assume that the first l
examples within X are labeled by y = (y1, y2, . . . , yl) where
yi ∈ {−1, +1} represents the binary class label assigned to
xi. For convenience, we also denote the collection of la-
beled examples by X� = (x1, . . . ,xl), and the unlabeled
examples by Xu, such that X = (X�,Xu). We then in-
troduce the indicator variable p, where p = (p1, . . . , pd)

�

and pi ∈ {0, 1}, i = 1, . . . , d, to represent which fea-
tures are selected. We further introduce a diagonal matrix
D(p) = diag(p1, . . . , pd). Then the input data are now rep-
resented as XD(p). In order to indicate that m features are
selected, we will have p�e = m.

It is important to note that determining the number of se-
lected features is a model selection problem, which is beyond
the scope of this study. In this work, we assume that the num-
ber of selected features, i.e., m, has been decided by an exter-
nal oracle. It should also be noted that the number of required
features usually is dependent on the objective of the task, and
there is no single number of features that are optimal for all
tasks.

3.1 Semi-supervised SVM Based on Manifold
Regularization

Following the framework of manifold regularization [Belkin
et al., 2006], a semi-supervised SVM can be obtained by pe-
nalizing a regularization term defined as:

‖f‖2
I =

n∑
i=1

n∑
j=1

(f(xi) − f(xj))
2Wij = f�Lf ,

where Wij are the edge weights defined on a pair of nodes
(xi,xj) of the adjacency graph. f = [f(x1), . . . , f(xn)] de-
notes the decision function values over all data examples. The
graph Laplacian L is defined as L = D − W, where D is a
diagonal matrix and Dii =

∑n
j=1 Wij . According to [Belkin

et al., 2006], ‖f‖2
I indeed reflects the smoothness of the deci-

sion function with respect to the marginal distribution of X.
Considering a linear SVM where the decision function can

be represented as f(xi) = w�xi − b, the manifold regular-
ization term ‖f‖2

I is equal to w�X�LXw. Note that the bias
term b has no effect on calculating the regularization term.
Then, the semi-supervised SVM can be represented as fol-
lows:

min
w,b,ξ

1

2
‖w‖2

2 + C

l∑
i=1

ξi +
ρ

2
w�X�LXw (1)

s. t. yi(w
�xi − b) ≥ 1 − ξi, i = 1, . . . , l,

ξi ≥ 0, i = 1, . . . , l,

where ξ denotes the margin error and ρ is a trade-off pa-
rameter between the two regularization terms of w satisfying
ρ ≥ 0.

In order to efficiently solve the optimization problem (1),
we calculate its dual. We therefore introduce the following
lemma:

Lemma 1. The dual problem of (1) can be written as:

max
α∈Q

α�e− 1

2
(α ◦ y)�X�(I + ρX�LX)−1X�� (α ◦ y)
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where Q = {α ∈ [0, C]l|α�y = 0}, I ∈ R
n×n is the identity

matrix, and ◦ is an operator of element-wise product.

3.2 Semi-supervised Feature Selection Model
Based on Manifold Regularization

We have Proposition 1 to describe the optimization problem
with respect to the feature indicator and the decision function.

Proposition 1. The optimal feature subset for the problem
(1) can be obtained by solving the following combinatorial
problem:

min
w,b,ξ,p∈P

1

2
‖w‖2

2 + C

l∑
i=1

ξi (2)

+
ρ

2
w�D(p)X�LXD(p)w

s. t. yi(w
�D(p)xi − b) ≥ 1 − ξi, i = 1, . . . , l,

ξi ≥ 0, i = 1, . . . , l,

where P = {p ∈ {0, 1}d|p�e = m}.

To simplify the presentation, we introduce a matrix Z as
follows

Z = X�LX (3)

For the convenience of discussion, we assume matrix Z is
non-singular, although the derivation below can be easily ex-
tended to the singular case by simply replacing matrix inverse
with matrix pseudo inverse.

The theorem below shows that (2) can be reformulated into
a min-max optimization, which is the key for speeding up the
computation.

Theorem 1. The problem in (2) is equivalent to the following
min-max optimization problem

min
p∈P

max
α∈Q

φ(p, α) (4)

where φ(p, α) is defined as

φ(p, α) = α�e

− 1

2ρ
(α ◦ y)�X�

(
Z−1 − [Z + ρZD(p)Z]

−1
)

X�� (α ◦ y).

When ρ is very small (i.e., ρ � 1), φ(p, α) is approximated
as

φ(p, α) = α�e− 1

2
(α ◦ y)�X�D(p)X�� (α ◦ y).

The proof will appear in the long version of this paper. As
indicated by the above theorem, when ρ is small, the manifold
regularization term can be ignored.

One of the major challenges in solving the optimization
problem in (2), or the equivalence in (4) arises from the con-
straint that {pi}d

i=1 have to be binary variables. To avoid the
combinatorial nature of the problem, we relax the binary vari-
able pi ∈ {0, 1} to a continuous one, i.e., pi ∈ [0, 1], and
convert the discrete optimization problem in (4) into the fol-
lowing continuous optimization problem

min
p∈P

max
α∈Q

φ(p, α) (5)

where domain P is changed to

P = {p ∈ [0, 1]d|p�e = m}.

Theorem 2. The problem in (5) is indeed a convex-concave
optimization problem, and therefore its optimal solution is the
saddle point of φ(p, α).

The proof of this theorem will appear in the long version
of this paper. As indicated by the above theorem, the problem
in (5) is essentially a convex problem and therefore its global
optimal solution can be found via standard techniques.

Although (5) is a convex-concave optimization problem
with a guarantee to find the global optimal solution, solving it
efficiently is very challenging. To reduce the computational
complexity, in the following proposition, we consider a vari-
ant of min-max optimization problem for (5).

Proposition 2. (5) is equivalent to the following min-max op-
timization problem

min
p∈P

max
α∈Q

h(p, α) (6)

where

h(p, α) = α�e− 1

2
(α ◦ y)�X�ΓX�� (α ◦ y) (7)

and Γ is defined as

Γ = D(p) (I + ρZ)
−1

D(p). (8)

We then proceed to simplify Γ in h(p, α). The proposition
provides a simple upper bound for Γ.

Proposition 3. We introduce the matrix A as

A = (1 − τ)2D(p) +
τ2

ρ
Z−1 (9)

where τ is a parameter. We have A � Γ for any τ ∈ [0, 1].

Using the result in Proposition 3, we replace Γ with A,
which results in the following optimization problem

min
p∈P

max
α∈Q,τ∈[0,1]

α�e− 1

2
(α ◦ y)�X�AX�� (α ◦ y) (10)

Because A is linear in p, (10) is substantially simpler to solve
than (6). The following lemma reveals the relationship be-
tween (6) and (10).

Proposition 4. The optimal value of (10) provides a lower
bound for the optimal value of (6)

It is interesting to examine (10) with a fixed τ . When
τ = 0, the problem in (10) is reduced to a supervised feature
selection algorithm. Now we can use (10) to approximate (6).

3.3 Optimization Method

Before introducing the optimization method to solve the op-
timization problem, we first discuss the relationship between
the model of semi-supervised feature selection and multiple
kernel learning [Lanckriet et al., 2004]. Note that for a linear
kernel, the kernel matrix K can be written as:

K = X�X
�
� =

d∑
i=1

viv
�
i =

d∑
i=1

Ki,

where vi is the ith feature of X�. The term Ki = viv
�
i

can then be regarded as a base kernel which is calculated on
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a single feature. Therefore, the term (1 − τ)2X�D(p)X��
can be written as (1 − τ)2

∑d

i=1 piKi. We further define

H = X�� (X�LX)−1X� which can be seen as a kernel ma-
trix defined on the entire data set. The overall optimiza-
tion problem can be formulated as, by switching p and τ ,
max

0≤τ≤1
ψ(τ), where ψ(τ) is defined as

min
p∈P

max
α∈Q

α�e− 1
2 (α ◦ y)�M(α ◦ y) (11)

where

M = (1 − τ)2
d∑

i=1

piKi +
τ2

ρ
H.

Therefore, the optimization problem (11) is related to a ker-
nel learning problem. According to [Lanckriet et al., 2004],
the dual problem of ψ(τ) can be formulated as an semi-
definite programming (SDP) problem. However, the SDP
problem involves high computational and storage complex-
ity.

Indeed, (11) can be regarded as a concave-convex prob-
lem, since (11) is concave in α and convex in p. The saddle
point of (11) corresponds to the optimal solution. Accord-
ing to the literatures of multiple kernel learning and convex
optimization, we can formulate an alternating procedure to
solve the concave-convex problem: in each iteration, the so-
lution of α and that of p are alternatively optimized. Several
optimization methods, such as the cutting plane method [Son-
nenburg et al., 2006], the subgradient descent method [Rako-
tomamonjy et al., 2008], and the level method [Xu et al.,
2009], could be employed. Among them, the level method
has shown its significant improvements over the other two
methods on the convergence speed [Xu et al., 2009]. Al-
though there are some simplification methods of SDP could
lead to a QP problem [Cortes et al., 2008] due to the con-
straints on p, they may not apply to our case. In the fol-
lowing, we discuss how to derive an extended level method
to solve the concave-convex optimization problem related to
semi-supervised feature selection.

To facilitate the description, we denote the objective func-
tion of (11) as follows:

ϕ(p, α) = α�e − 1

2
(α ◦ y)�M(α ◦ y). (12)

For the optimal solution (p∗, α∗), we have

ϕ(p, α∗) = max
α∈Q

ϕ(p, α)

≥ ϕ(p∗, α∗) ≥ ϕ(p∗, α) = min
p∈P

ϕ(p, α).

The level method iteratively updates both the lower and the
upper bounds for ϕ(p, α) in order to find the saddle point.

To obtain the bounds, we first construct the cutting plane
model. Let {pj}i

j=1 denote the solutions for p obtained in

the last i iterations. Let αj = arg maxα∈Q ϕ(pj , α) denote

the optimal solution that maximizes ϕ(pj , α). We calculate
the gradient of ϕ(p, α) over p as the follows: ∇pϕ(p, α) =
− 1

2 [(α ◦y)�K1(α ◦y), . . . , (α ◦y)�Kd(α ◦y)]�. We con-

struct a cutting plane model gi(p) as follows:

gi(p) = max
1≤j≤i

ϕ(pj , αj) + (p − pj)�∇p(pj , αj) (13)

Next, we construct both the lower and the upper bounds for
the optimal value ϕ(p∗, α∗). We define two quantities ϕi and

ϕi as follows:

ϕi = min
p∈P

gi(p) (14)

ϕi = min
1≤j≤i

ϕ(pj , αj). (15)

It can be shown that {ϕj}i
j=1 and {ϕj}i

j=1 provide a series

of increasingly tight bounds for ϕ(p∗, α∗) according to [Xu
et al., 2009].

We furthermore define the gap Δi as

Δi = ϕi − ϕi. (16)

In the third step, we define the current level as 	i =
λϕi + (1 − λ)ϕi. We then construct the level set Li using

the estimated bounds f
i

and ϕi as follows:

Li = {p ∈ P : gi(p) ≤ 	i}, (17)

where λ ∈ (0, 1) is a predefined constant. The new solution,
denoted by pi+1, is computed as the projection of pi onto
the level set Li, which is equivalent to solving the following
optimization problem:

min
p∈Li

‖p− pi‖2
2 (18)

The projection can often be solved efficiently, since only very
few linear constraints of L are active. This sparse nature usu-
ally leads to significant speedup.

We summarize the steps of the level method for semi-
supervised feature selection in Algorithm 1.

Algorithm 1 Level method for semi-supervised feature selec-
tion

1: Initialize p0 = m
d
e and i = 0

2: repeat
3: Obtain αi by solving SVM with M = (1 −

τ)2X�D(pi)X�� + τ2

ρ
H

4: Construct the cutting plane model gi(p) in (13)
5: Calculate the lower bound ϕi and the upper bound ϕi

in (15), and the gap Δi in (16)
6: Obtain pi+1 via the projection step (18)
7: until Δi ≤ ε

Finally, we show the convergence behavior of the level
method for semi-supervised feature selection in Theorem 3.

Theorem 3. To obtain a solution p that satisfies the stopping
criterion, i.e., |maxα∈Q ϕ(p, α) −ϕ(p∗, α∗)| ≤ ε, the max-
imum number of iterations N that the level method requires

is bounded by N ≤ 2c(λ)L2

ε2 , where c(λ) = 1
(1−λ)2λ(2−λ) ,

L = 1
2

√
dC2 max

1≤i≤d
|vi|2.

4 Experiments

We denote by FS-Manifold the proposed discriminative fea-
ture selection method based on manifold regularization. We
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compare our algorithm with the following state-of-the-art ap-
proaches for feature selection: Fisher [Bishop, 1995], L0-
SVM [Weston et al., 2003] and L1-SVM [Fung and Man-
gasarian, 2000]. The description of the selected comparison
methods is as follows:

• Fisher [Bishop, 1995] calculates a Fisher/Correlation
score for each feature,

• L0-SVM [Weston et al., 2003] approximates the L0-
norm by minimizing a logarithm function,

• L1-SVM [Fung and Mangasarian, 2000] replaces L2-
norm of the weights w with L1-norm in SVM and leads
to a sparse solution.

For all the comparison methods, features with the largest
scores are selected. SVM is used as the evaluation classifier
since it is usually regarded as the state-of-the-art classifica-
tion method.

It is important to note that we also compare the above
methods with the semi-supervised feature selection method
proposed in [Zhao and Liu, 2007], which selects features ac-
cording to the spectral and the normalized mutual informa-
tion. However, due to the weak interaction among features
and the class labels, it is instable in the scenario of small train-
ing samples and it usually performs significantly worse than
L0 − SV M . Therefore, we do not include its results in this
work.

4.1 Experimental Settings

We adopt two types of data sets: digit characters and text doc-
uments. For the data sets of digits, we select three tasks from
the USPS data set, i.e., 4 vs 7, 2 vs 3, and 3 vs 8, to make
the learning tasks more challenging. For each task, we ran-
domly select 400 digit images to form the data set. For the
data sets of text documents, three subsets, i.e., auto vs motor,
baseball vs hockey, and gun vs mideast, of text documents
are selected from the 20-Newsgroups repository. For conve-
nience, we denote them by DS1, DS2, and DS3, respectively.

For both types of data sets, the training examples are ran-
domly selected such that each category has the same num-
ber of examples. The remaining examples are then used as
the test data. The test data are also used as the unlabeled
data for the semi-supervised feature selection algorithm. As
the USPS data sets are used to examine how the property
of features changes with the number of labeled examples,
we vary the number of training examples within the set of
{6, 10, 20, 30, 40}. For each setting of the training samples,
the number of selected features is set to 10 and 20, respec-
tively. This is because a small number of features (pixels) are
enough to identify the digits. For the text data sets, we fix the
number of training document to be 50, since the scales of the
text data sets are significantly larger than those of the USPS
data sets. For each text data set, we consider two settings that
the number of required features is equal to 50 and 100, re-
spectively. It is interesting to note that the features (words) in
the text data sets are very sparse and therefore more features
are needed to represent the documents. In all cases, every
experiment is repeated with 30 random trials.

We select parameters C trade-off parameter τ by a 5-fold
cross validation. The parameter ρ is fixed to 10, since the

trade-off is naturally cared by the parameter τ . We adopt the
Cosine similarity measure and the binary weights to construct
the graph. The number of neighbors is set to 20 for all cases.
In addition, we set the parameter λ in the level method to
0.9 since a larger λ value accelerates the convergence of the
algorithm.

4.2 Experimental Results

We plot the results on the USPS data sets in Figures 1 and
2, when the number of required features is set to 10 and 20,
respectively. Firstly, it can be observed that the maximum
margin based methods (SVM-based methods) usually per-
form better in identifying the discriminative features compar-
ing with the non-SVM based method, Fisher. For example,
for the task of 4 vs 7, when the number of training samples
is 30 and the number of required features is 10, the improve-
ment of FS-Manifold over Fisher is over 3%. This indicates
the advantage of embedding the feature selection process to
the classifier. Secondly, compared with the supervised feature
selection methods, FS-Manifold achieves promising test ac-
curacy. In a number of cases, FS-Manifold outperforms the
supervised feature selection methods. This is because the in-
formation supplied by the manifold structure of the unlabeled
data helps to identify the global smooth features where data
lie in.

We then report the averaged prediction accuracy and the
standard deviation on the text data sets in Table 1. We can
observe that the proposed semi-supervised feature selection
method performs better than other methods in almost all
cases. For example, in the gun vs mideast data set, the im-
provement of FS-Manifold over Fisher is nearly 4% when
the number of selected features is equal to 50. Furthermore,
it is important to note that, for each data set, FS-Manifold
achieves smaller deviation values than other feature selection
methods. This phenomenon, which may be due to the global
smoothness induced by the manifold regularization, suggests
that FS-Manifold is more robust in selecting features.

5 Conclusion

We have presented a discriminative semi-supervised feature
selection method via manifold regularization. The proposed
method selects features through maximizing the margin be-
tween different classes and at the same time exploiting the ge-
ometry of the probability distribution that generates the data.
We successfully formulate the resulting semi-supervised fea-
ture selection method as a concave-convex optimization prob-
lem, where the saddle point corresponds to the optimal solu-
tion. We then derive an extended level method to find the
optimal solution of the concave-convex problem. Empirical
evaluation with several benchmark data sets demonstrates the
effectiveness of our proposed feature selection method over
the state-of-the-art feature selection methods.
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Figure 1: The comparison among different feature selection algorithms when the number of selected features is equal to 10.
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Figure 2: The comparison among different feature selection algorithms when the number of selected features is equal to 20.

Table 1: The classification accuracy (%) on text data sets.
The best result, and those not significantly worse than it (t-
test with 95% confidence level), are highlighted.

Data #F FS-Manifold L1-SVM L0-SVM Fisher

DS1
50 82.9±2.4 82.2±2.9 82.3±2.9 82.3±3.5

100 83.5±2.2 82.9±2.6 83.2±2.6 83.4±2.6

DS2
50 89.7±3.9 88.7±8.6 89.1±4.9 89.8±6.9

100 91.1±3.4 90.9±5.8 90.3±3.7 90.3±5.6

DS3
50 84.2±4.3 82.0±4.4 82.9±4.3 81.3±4.7

100 85.8±3.9 84.1±4.2 85.2±4.4 84.3±4.1
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Bach, Stéphane Canu, and Yves Grandvalet. SimpleMKL. Jour-
nal of Machine Learning Research, 9:1179–1225, 2008.

[Ren et al., 2008] Jiangtao Ren, Zhengyuan Qiu, Wei Fan, Hong
Cheng, and Philip S. Yu. Forward semi-supervised feature se-
lection. In Proceedings of Pacific-Asia Conference on Knowledge
Discovery and Data Mining (PAKDD ’08), pages 970–976, 2008.
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Schölkopf, and Mike Tipping. Use of the zero norm with lin-
ear models and kernel methods. Journal of Machine Learning
Research, 3:1439–1461, 2003.

[Xu et al., 2009] Zenglin Xu, Rong Jin, Irwin King, and Michael
Lyu. An extended level method for efficient multiple kernel learn-
ing. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou,
editors, Advances in Neural Information Processing Systems 21

(NIPS), pages 1825–1832. 2009.

[Zhao and Liu, 2007] Zheng Zhao and Huan Liu. Semi-supervised
feature selection via spectral analysis. In SDM, pages 641–646,
2007.

1308


