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Abstract. Kernel methods have been widely used in data classifica-
tion. Many kernel-based classifiers like Kernel Support Vector Machines
(KSVM) assume that data can be separated by a hyperplane in the fea-
ture space. These methods do not consider the data distribution. This
paper proposes a novel Kernel Maximum A Posteriori (KMAP) classi-
fication method, which implements a Gaussian density distribution as-
sumption in the feature space and can be regarded as a more generalized
classification method than other kernel-based classifier such as Kernel
Fisher Discriminant Analysis (KFDA). We also adopt robust methods for
parameter estimation. In addition, the error bound analysis for KMAP
indicates the effectiveness of the Gaussian density assumption in the fea-
ture space. Furthermore, KMAP achieves very promising results on eight
UCI benchmark data sets against the competitive methods.

1 Introduction

Recently, kernel methods have been regarded as the state-of-the-art classification
approaches [1]. The basic idea of kernel methods in supervised learning is to map
data from an input space to a high-dimensional feature space in order to make
data more separable. Classical kernel-based classifiers include Kernel Support
Vector Machine (KSVM) [2], Kernel Fisher Discriminant Analysis (KFDA) [3],
and Kernel Minimax probability Machine [4,5]. The reasonability behind them is
that the linear discriminant functions in the feature space can represent complex
separating surfaces when mapped back to the original input space. However, one
drawback of KSVM is that it does not consider the data distribution and cannot
directly output the probabilities or confidences for classification. Therefore, it is
hard to be applied in systems that reason under uncertainty.

On the other hand, in statistical pattern recognition, the probability densities
can be estimated from data. Future examples are then assigned to the class with
the Maximum A Posteriori (MAP) [6]. One typical probability density function
is the Gaussian density function. The Gaussian density functions are easy to
handle. However, the Gaussian distribution cannot be easily satisfied in the
input space and it is hard to deal with non-linearly separable problems.
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To solve these problems, we propose a Kernel Maximum a Posteriori (KMAP)
Classification method under Gaussianity assumption in the feature space. Dif-
ferent from KSVM, we make the Gaussian density assumption, which implies
that data can be separated by more complex surfaces in the feature space. Gen-
erally, distributions other than the Gaussian distribution can also be assumed
in the feature space. However, under a distribution with a complex form, it is
hard to get a close form solution and easy to trap in over-fitting. Moreover, with
the Gaussian assumption, a kernelized version can be derived without knowing
the explicit form of the mapping functions for our model. In addition, to indi-
cate the effectiveness of our assumption, we calculate a separability measure and
the error bound for bi-category data sets. The error bound analysis shows that
Gaussian density distribution can be more easily satisfied in the feature space.

This paper is organized as follows. Section 2 derives the MAP decision rules
in the feature space, and analyzes its separability measures and upper error
bounds. Section 3 presents the experiments against other classifiers. Section 4
reviews the related work. Section 5 draws conclusions and lists possible future
research directions.

2 Main Results

In this section, our MAP classification model is derived. Then, we adopt a special
regularization to estimate the parameters. The kernel trick is used to calculate
our model. Last, the separability measure and the error bound are calculated in
the kernel-induced feature space.

2.1 Model Formulation

Under the Gaussian distribution assumption, the conditional density function
for each class Ci(1 ≤ i ≤ m) is written as below:

p(Φ(x)|Ci) =
1

(2π)N/2|Σi|1/2 exp
{

−1
2
(Φ(x) − μi)T Σ−1

i (Φ(x) − μi)
}

, (1)

where Φ(x) is the image of x in the feature space, N is the dimension of the
feature space (N could be infinity), μi and Σi are the mean and the covariance
matrix of Ci, respectively, and |Σi| is the determinant of the covariance matrix.
According to the Bayesian Theorem, the posterior probability of class Ci is
calculated by

P (Ci|x) =
p(x|Ci)P (Ci)∑m

j=1 p(x|Cj)P (Cj)
. (2)

Based on Eq. (2), the decision rule can be formulated as below:

x ∈ Cw if P (Cw|x) = max
1≤j≤m

P (Cj |x). (3)
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This means that a test data point will be assigned to the class with the maximum
of P (Cw|x), i.e., the MAP. Since the MAP is calculated in the kernel-induced
feature space, the output model is named as the KMAP classification. KMAP can
provide not only a class label but also the probability of a data point belonging
to that class. This probability can be viewed as a confidence of classifying new
data points and can be used in statistical systems that reason under uncertainty.
If the confidence is lower than some specified threshold, the system can refuse
to make an inference. However, many kernel learning methods including KSVM
cannot output these probabilities.

It can be further formulated as follows:

gi(Φ(x)) = (Φ(x) − μi)T Σ−1
i (Φ(x) − μi) + log |Σi|. (4)

The intuitive meaning of the function is that a class is more likely assigned to
an unlabeled data point, when the Mahalanobis distance from the data point to
the class center is smaller.

2.2 Parameter Estimation

In order to compute the Mahalanobis distance function, the mean vector and
the covariance matrix for each class are required to be estimated. Typically, the
mean vector (μi) and the within covariance matrix (Σi) are calculated by the
maximum likelihood estimation. In the feature space, they are formulated as
follows:

μi =
1
ni

ni∑
j=1

Φ(xj), (5)

Σi = Si =
1
ni

ni∑
j=1

(Φ(xj) − μi)(Φ(xj) − μi)T , (6)

where ni is the cardinality of the set composed of data points belonging to Ci.
Directly employing Si as the covariance matrix, will generate quadratic dis-

criminant functions in the feature space. In this case, KMAP is noted as
KMAP-M. However, the covariance estimation problem is clearly ill-posed, be-
cause the number of data points in each class is usually much smaller than
the number of dimensions in the kernel-induced feature space. The treatment
of this ill-posed problem is to introduce the regularization. There are several
kinds of regularization methods. One of them is to replace the individual within-
covariance matrix by their average, i.e., Σi = S =

�m
i=1 Si

m + rI, where I is the
identity matrix and r is a regularization coefficient. This method can substan-
tially reduce the number of free parameters to be estimated. Moreover, it also
reduces the discriminant function between two classes to a linear one. Therefore,
a linear discriminant analysis method can be obtained.

Alternatively, we can estimate the covariance matrix by combining the above
linear discriminant function with the quadratic one. Instead of estimating the
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covariance matrix in the input space [7], we try to apply this method in the
feature space. The formulation in the feature space is as follows:

Σi = (1 − η)Σ̃i + η
trace(Σ̃i)

n
I, (7)

where Σ̃i = (1 − θ)Si + θS.
In the equations, θ (0 ≤ θ ≤ 1) is a coefficient linked with the linear dis-

criminant term and the quadratic discriminant one. Moreover, η (0 ≤ η ≤ 1)
determines the shrinkage to a multiple of the identity matrix. This approach is
more flexible to adjust the effect of the regularization. The corresponding KMAP
is noted as KMAP-R.

2.3 Kernel Calculation

We derive methods to calculate the Mahalanobis distance (Eq. (4)) using the
kernel trick, i.e., we only need to formulate the function in an inner-product
form regardless of the explicit mapping function. To do this, the spectral rep-
resentation of the covariance matrix, Σi =

∑N
j=1 ΛijΩijΩ

T
ij where Λij ∈ R is

the j-th eigenvalue of Σi and Ωij ∈ RN is the eigenvector relevant to Λij , is
utilized. However, the small eigenvalues will degrade the performance of the func-
tion overwhelmingly because they are underestimated due to the small number
of examples. In this paper, we only estimate the k largest eigenvalues and re-
place each left eigenvalue with a nonnegative number hi. Thus Eq. (4) can be
reformulated as follows:

gi(Φ(x)) =
1
hi

[g1i(Φ(x)) − g2i(Φ(x))] + g3i(Φ(x))

=
1
hi

⎛
⎝ N∑

j=1

[ΩT
ij(Φ(x) − μi)]2 −

k∑
j=1

(
1 − hi

Λij

)
[ΩT

ij(Φ(x) − μi)]2

⎞
⎠

+ log

⎛
⎝hN−k

i

k∏
j=1

Λij

⎞
⎠ . (8)

In the following, we show that g1i(Φ(x)), g2i(Φ(x)), and g3i(Φ(x)) can all be
written in a kernel form. To formulate these equations, we need to calculate the
eigenvalues Λi and eigenvectors Ωi. The eigenvectors lie in the space spanned
by all the training samples, i.e., each eigenvector Ωij can be written as a linear
combination of all the training samples:

Ωij =
n∑

l=1

γ
(l)
ij Φ(xl) = Uγij (9)

where γij = (γ(1)
ij , γ

(2)
ij , . . . , γ

(n)
ij )T is an n dimensional column vector and U =

(Φ(x1), . . . , Φ(xn)).
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It is easy to prove that γij and Λij are actually the eigenvector and eigenvalue
of the covariance matrix ΣG(i) , where G(i) ∈ Rni×N is the i-th block of the kernel
matrix G relevant to Ci . We omit the proof due to the limit of space.

Accordingly, we can express g1i(Φ(x)) as the kernel form:

g1i(Φ(x)) =
n∑

j=1

γT
ijU

T (Φ(x) − μi)T (Φ(x) − μi)Uγij

=
n∑

j=1

[
γT

ij

(
Kx − 1

ni

ni∑
l=1

Kxl

)]2

=

∥∥∥∥∥Kx − 1
ni

ni∑
l=1

Kxl

∥∥∥∥∥
2

2

, (10)

where Kx = {K(x1,x), . . . , K(xn,x)}T .
In the same way, g2i(Φ(x)) can be formulated as the following:

g2i(Φ(x)) =
k∑

j=1

(
1 − hi

Λij

)
ΩT

ij(Φ(x) − μi)(Φ(x) − μi)T Ωij . (11)

Substituting (9) into the above g2i(Φ(x)), we have:

g2i(Φ(x)) =
k∑

j=1

(
1 − hi

Λij

)
γT

ij

(
Kx − 1

ni

ni∑
l=1

Kxl

)(
Kx − 1

ni

ni∑
l=1

Kxl

)T

γij .

(12)
Now, the Mahalanobis distance function in the feature space gi(Φ(x)) can be

finally written in a kernel form, where N in g3i(Φ(x)) is substituted by the cardi-
nality of data n. The time complexity of KMAP is mainly due to the eigenvalue
decomposition which scales as O(n3). Thus KMAP has the same complexity as
KFDA.

2.4 Connection to Other Kernel Methods

In the following, we show the connection between KMAP and other kernel-based
methods.

In the regularization method based on Eq. (7), by varying the settings of θ and
η, other kernel-based classification methods can be derived. When (θ = 0, η = 0),
the KMAP model represents a quadratic discriminant method in the kernel-
induced feature space; when (θ = 1, η = 0), it represents a kernel discriminant
method; and when (θ = 0, η = 1) or (θ = 1, η = 1), it represents the nearest
mean classifier. Therefore, by varying θ and η, different models can be generated
from different combinations of quadratic discriminant, linear discriminant and
the nearest mean methods.

We consider a special case of the regularization method when θ = 1 and
η = 0. If both classes are assumed to have the same covariance structure for a
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binary class problem, i.e., Σi = Σ1+Σ2
2 , it leads to a linear discriminant function.

Assuming all classes have the same class prior probabilities, gi(Φ(x)) can be
derived as: gi(Φ(x)) = (Φ(x) − μi)T (Σ1+Σ2

2 )−1(Φ(x) − μi), where i = 1, 2. We
reformulate the above equation in the following form: gi(Φ(x)) = wiΦ(x) +
bi, where wi = −4(Σ1 + Σ2)−1μi, and bi = 2μT

i (Σ1 + Σ2)−1μi. The decision
hyperplane is f(Φ(x)) = g1(Φ(x)) − g2(Φ(x)), i.e.,

f(Φ(x)) = (Σ1 +Σ2)−1(μ1 −μ2)Φ(x)− 1
2
(μ1 −μ2)T (Σ1 +Σ2)−1(μ1 +μ2). (13)

Eq. (13) is just the solution of KFDA [3]. Therefore, KFDA can be viewed as a
special case of KMAP when all classes have the same covariance structure.

Remark. KMAP provides a rich class of kernel-based classification algorithms
using different regularization methods. This makes KMAP as a flexible frame-
work for classification adaptive to data distribution.

2.5 Separability Measures and Error Bounds

To measure the separability of different classes of data in the feature space,
the Kullback-Leibler divergence (a.k.a. K-L distance) between two Gaussians is
adopted. The K-L divergence is defined as

dKL[pi(Φ(x)), pj(Φ(x))] =
∫

Pi(Φ(x)) ln
pi(Φ(x))
pj(Φ(x))

. (14)

Since the K-L divergence is not symmetric, a two-way divergence is used to
measure the distance between two distributions

dij = dKL[pi(Φ(x)), pj(Φ(x))] + dKL[pj(Φ(x)), pi(Φ(x))] (15)

Following [6], it can be proved that:

dij =
1
2
(μi −μj)T (Σ−1

i +Σ−1
j )(μi −μj)+

1
2
trace(Σ−1

i Σj +Σ−1
j Σi − 2I), (16)

which can be solved by using the trick in Section 2.3.
The Bayesian decision rule guarantees the lowest average error rate as pre-

sented in the following:

P (correct) =
m∑

i=1

∫
Ri

p(Φ(x)|Ci)P (Ci)dΦ(x), (17)

where Ri is the decision region of class Ci.
We implement the Bhattacharyya bound in the feature space for the Gaussian

density distribution function. Following [6], we have

P (error) ≤
√

P (C1)P (C2) exp−q(0.5), (18)
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where

q(0.5) =
1
8
(μ2 − μ1)T

(
Σ1 + Σ2

2

)−1

(μ2 − μ1) +
1
2

ln
|Σ1+Σ2

2 |√
|Σ1||Σ2|

. (19)

Using the results in Section 2.3, the Bhattacharyya error bound can be easily
calculated in the kernel-induced feature space.

3 Experiments

In this section, we report the experiments to evaluate the separability measure,
the error bound and the prediction performance of the proposed KMAP.

3.1 Synthetic Data

We compare the separability measure and error bounds on three synthetic data
sets. The description of these data sets can be found in [8]. The data sets are
named according to their characteristics and they are plotted in Fig. 1.

We map the data using RBF kernel to a special feature space where Gaussian
distributions are approximately satisfied. We then calculate separability mea-
sures on all data sets according to Eq. (16). The separability values for the
Overlap, Bumpy, and Relevance in the original input space, are 14.94, 5.16,
and 22.18, respectively. Those corresponding values in the feature space are
30.88, 5.87, and 3631, respectively. The results indicate that data become more
separable after mapped into the feature space, especially for the Relevance
data set.

For data in the kernel-induced feature space, the error bounds are calculated
according to Eq. (18). Figure 1 also plots the prediction rates and the upper
error bounds for data in the input space and in the feature space, respectively.
It can be observed that the error bounds are more valid in the feature space
than those in the input space.

3.2 Benchmark Data

Experimental Setup. In this experiment, KSVM, KFDA, Modified Quadratic
Discriminant Analysis (MQDA) [9] and Kernel Fisher’s Quadratic Discriminant
Analysis (KFQDA) [10] are employed as the competitive algorithms. We imple-
ment two variants of KMAP, i.e., KMAP-M and KMAP-R.

The properties of eight UCI benchmark data sets are described in Table 1.
In all kernel methods, a Gaussian-RBF kernel is used. The parameter C of

KSVM and the parameter γ in RBF kernel are all tuned by 10-cross validation.
In KMAP, we select k pairs of eigenvalues and eigenvectors according to their
contribution to the covariance matrix, i.e., the index j ∈ {
 : λ��n

q=1 λq
≥ α}; while

in MQDF, the range of k is relatively small and we select k by cross validation.
PCA is used as the regularization method in KFQDA and the commutative de-
cay ratio is set to 99%; the regularization parameter r is set to 0.001 in KFDA.
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Fig. 1. The data plot of Overlap, Bumpy and Relevance and the comparison of data
separability in the input space and the feature space

Table 1. Data set information

Data Set # Samples # Features # Classes Data Set # Samples # Features # Classes
Iono 351 34 2 Breast 683 9 2
Twonorm 1000 21 2 Sonar 208 60 2
Pima 768 8 2 Iris 150 4 3
Wine 178 13 3 Segment 210 19 7

In both KMAP and MQDF, h takes the value of Λk+1. In KMAP-R, extra para-
meters (θ, η) are tuned by cross-validation. All experimental results are obtained
in 10 runs and each run is executed with 10-cross validation for each data set.

Experimental Results. Table 2 reports the average prediction accuracy with
the standard errors on each data set for all algorithms. It can be observed that
both variants of KMAP outperform MQDF, which is an MAP method in the
input space. This also empirically validates that the separability among different
classes of data becomes larger and that the upper error bounds get tighter and
more accurate, after data are mapped to the high dimensional feature space.

Moreover, the performance of KMAP is competitive to that of other kernel
methods. Especially, the performance of KMAP-R gets better prediction accu-
racy than all other methods for most of the data sets. The reason is that the
regularization methods in KMAP favorably capture the prior distributions of
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Table 2. The prediction results of KMAP and other methods

Data set KSVM MQDF KFDA KFQDA KMAP-M KMAP-R
Iono(%) 94.1±0.7 89.6±0.5 94.2±0.1 93.6±0.4 95.2±0.2 95.7±0.3
Breast(%) 96.5±0.4 96.5±0.1 96.4±0.1 96.5±0.1 96.5±0.1 97.5±0.1
Twonorm(%) 96.1±0.4 97.4±0.4 96.7±0.5 97.3±0.5 97.6±0.7 97.5±0.4
Sonar(%) 86.6±1.0 83.7±0.7 88.3±0.3 85.1±1.9 87.2±1.6 88.8±1.2
Pima(%) 77.9±0.7 73.1±0.4 71.0±0.5 74.1±0.5 75.4±0.7 75.5±0.4
Iris(%) 96.2±0.4 96.0±0.1 95.7±0.1 96.8±0.2 96.9±0.1 98.0±0.0
Wine(%) 98.8±0.1 99.2±1.3 99.1±0.1 96.9±0.7 99.3±0.1 99.3±0.6
Segment(%) 92.8±0.7 86.9±1.2 91.6±0.3 85.8±0.8 90.2±0.2 92.1±0.8
Average(%) 92.38 90.30 91.62 90.76 92.29 93.05

data, since the Gaussian assumption in the feature space can fit a very complex
distribution in the input space.

4 Related Work

In statistical pattern recognition, the probability density function can first be es-
timated from data, then future examples could be assigned to the class with the
MAP. One typical example is the Quadratic Discriminant Function (QDF) [11],
which is derived from the multivariate normal distribution and achieves the min-
imum mean error rate under Gaussian distribution. In [9], a Modified Quadratic
Discriminant Function (MQDF) less sensitive to estimation error is proposed. [7]
improves the performance of QDF by covariance matrix interpolation. Unlike
QDF, another type of classifiers does not assume the probability density func-
tions in advance, but are designed directly on data samples. An example is the
Fisher discriminant analysis (FDA), which maximizes the between-class covari-
ance while minimizing the within-class variance. It can be derived as a Bayesian
classifier under Gaussian assumption on the data. [3] develops a Kernel Fisher
Discriminant Analysis (KFDA) by extending FDA to a non-linear space by the
kernel trick.

To supplement the statistical justification of KFDA, [10] extends the maxi-
mum likelihood method and Bayes classification to their kernel generalization
under Gaussian Hilbert space assumption. The authors do not directly kernel-
ize the quadratic forms in terms of kernel values. Instead, they use an explicit
mapping function to map the data to a high dimensional space. Thus the kernel
matrix is usually used as the input data of FDA. The derived model is named
as Kernel Fisher’s Quadratic Discriminant Analysis (KFQDA).

5 Conclusion and Future Work

In this paper, we present a novel kernel classifier named Kernel-based Maximum
a Posteriori, which implements Gaussian distribution in the kernel-induced fea-
ture space. Comparing to state-of-the-art classifiers, the advantages of KMAP
include that the prior information of distribution is incorporated and that it can
output probability or confidence in making a decision. Moreover, KMAP can
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be regarded as a more generalized classification method than other kernel-based
methods such as KFDA. In addition, the error bound analysis illustrates that
Gaussian distribution is more easily satisfied in the feature space than that in
the input space. More importantly, KMAP with proper regularization achieves
very promising performance.

We plan to incorporate the probability information into both the kernel func-
tion and the classifier in the future work.
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