
An Energy-Efficient Mechanism for Self-Monitoring Sensor Web

Yangfan Zhou Michael R. Lyu

Department of Computer Science and Engineering
The Chinese University of Hong Kong

Shatin, Hong Kong
+852-{3163-4253, 2609-8429}
{yfzhou, lyu}@cse.cuhk.edu.hk

Abstract A Sensor Web is a network of spatially distrib-
uted sensor platforms, which is especially well suited for en-
vironmental monitoring. Although sensor nodes of a Sen-
sor Web are critical devices that perform the monitoring
work, the low-cost implementation of sensor nodes poses that
they are subject to failures and permanent damage. A life-
condition monitoring mechanism for sensor nodes is there-
fore required to ensure the function of a Sensor Web. This
paper studies this sensor-node monitoring problem in the
domain where in-network sensor nodes are self-monitoring,
i.e., the status of each sensor node is monitored by another
node. To be energy-efficient, a mechanism for implement-
ing self-monitoring Sensor Webs should minimize the energy
required. We propose a formal formulation of this problem
and show that it can be solved by finding a minimum span-
ning tree of the graph constructed by in-network nodes. We
provide some distributed algorithms in solving this problem.
Simulations are conducted to study the performance of these
algorithms.

TABLE OF CONTENTS

1
2
3
4
5
6

INTRODUCTION
PROBLEM FORMULATION
THEORETICAL SOLUTION....................
SOLUTIONS IN A DISTRIBUTED ENVIRONMENT
SIMULATION RESULTS
CONCLUSIONS

1. INTRODUCTION
In recent years, in-situ sensing with small wireless-equipped
sensor devices has became a promising technique with the
advances in Micro Electro-Mechanical Systems (MEMS) and
wireless communication technologies [1][2]. A Sensor Web
is a network of such spatially-distributed sensor platforms
[3][4]. In sensor webs, sensor nodes perform in-situ sens-
ing task on some physical phenomena of interest and they

1 -4244-0525-4/07/$20.00/I 2007 IEEE
IEEEAC paper # 1629

communicate with wireless interface. The data on the physi-
cal phenomena can thus be conveyed to data collecting nodes
(the base stations) in a multi-hop manner.

The low-cost implementation and unattended operational
manner make Sensor Webs especially well suited for envi-
ronmental monitoring. Today, a variety of Sensor Webs have
been field-deployed and field-tested in many environments.
Examples include that in The Botanical Gardens at The Hunt-
ington Library [5] for monitoring botanical conditions [6],
that in Antarctica to monitor microclimate conditions for ex-
treme life detection [7], and that for in-situ exploration of
gaseous biosignatures [8]. In-situ sensing with Sensor Webs
is also a promising technique in aerospace applications. We
can imagine that in future applications Sensor Webs will be
deployed in outer space or on other planets to collect phys-
ical data that cannot easily be captured by remote sensing
techniques. For example, a Sensor Web can be constructed
on the Mars to collect some seismic data in order to analyze
the geological features of the planet.

Although sensor nodes in a Sensor Web are critical devices
to perform monitoring work, their low-cost implementation
suggests that they are subject to failures and permanent dam-
ages. Moreover, sensor nodes are battery-powered devices.
They cease to function when their batteries drain out. A Sen-
sor Web is usually working in an unattended manner (e.g.,
in future aerospace applications where Sensor Webs are de-
ployed in outer space), an automatic life-condition monitor-
ing mechanism for sensor nodes is therefore required to lo-
cate the failure nodes, which can help reorganize the network
or facilitate manual repair of the failure nodes. Such a life-
condition monitoring mechanism is important to ensure the
function of a Sensor Web.

An example network in shown in Figure 1 where the black
solid circles denote the sensor nodes. The network is em-
ployed to detect forrest fires. In case that a node fails (e.g., the
node with a cross in the figure), it cannot sense temperature of
the circular area. Then, if without a sensor node life-condition
monitoring mechanism, the network cannot be notified about
the node failure and perform consequent repair actions. As a
result, the network is not aware of a fire taking place in that
area, which may cause a great disaster.

1

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 11,2021 at 06:50:55 UTC from IEEE Xplore. Restrictions apply.

Base Station
0s o

w !

I _

Figure 1. An example network

This paper studies the sensor-node monitoring problem in the
domain where the network is self-monitoring, i.e., the sta-
tus of each in-network sensor node is monitored by other in-
network nodes. We consider that the in-network sensor nodes
perform the monitoring tasks in a passive manner. A sensor
node which is in charge of the monitoring task of its peer
waits for heart-beat packets that are sent out periodically by
the peer. If it has not received any heart-beat packet from the
peer for a given period of time, it regards that the peer has
failed. Then, it can directly send an alarm message to inform
the base station immediately.

Due to the unattended operational manner of Sensor Webs,
recharging or replacing the batteries of sensor nodes is not
convenient, or sometimes even impossible (e.g., in future
aerospace applications where Sensor Webs are deployed in
outer space or on other planets). A mechanism for the self-
monitoring of Sensor Web should be energy-efficient: the
energy required to perform self-monitoring should be mini-
mized.

Sending heart-beat packets is energy-consuming. In this pa-
per, we consider each sensor node can adjust the power level
of its wireless transmitters, which is the usual case in typi-
cal sensor node implementations. For example, the Berkeley
Mica Mote [9] provides such program interfaces. To save
energy, a sensor node adjusts the power level of its wireless
transmitter to a minimum value under the constraint that the
heart-beat packets sent by this node can just reach its intended
destination of the packets. The energy consumption of trans-
mitting the heart-beat packets can thus be reduced.

With transmitter power control, obviously, the energy re-
quired for performing self-monitoring depends on the dis-
tances between sensor nodes to their peers that monitor them.
In order to achieve energy-efficiency, it is necessary to inves-
tigate how to organize sensor nodes in performing the self-
monitoring tasks (i.e., how to assign which nodes to monitor
which peers of the nodes).

In this paper, we first formulate this specific self-monitoring

problem and provide a theoretical solution for the problem.
Because the scale of a Sensor Web can be very large, often
containing hundreds of sensor nodes, exchanging informa-
tion within the whole network is very expensive. A practical
solution therefore should be implemented in a fully distrib-
uted manner. Moreover, the topology of a Sensor Web may
change frequently if a sleeping/working scheduling mecha-
nism is employed to exploit the redundancy of a dense net-
work. The self-monitoring problem should be solved each
time the network topology changes. So, the process to find
a solution of this problem should also by itself be energy-
efficient. The above considerations motivate us to further
study several distributed algorithms in implementing the so-
lution of the self-monitoring problem.

Our study differs from what was conducted previously [10]
in the objective of the monitoring problem. In [10], Wang et
al consider the sensor nodes which are monitoring their peers
consume energy while the sensor nodes which are being mon-
itored do not consume energy. This assumes that no packet-
exchanging is required in conducting the self-monitoring
tasks. They formulate the problem as how to minimize the
number of sensor nodes that are monitoring their peers. We,
on the other hand, consider that the monitoring tasks are per-
formed in a passive manner, which require the monitored sen-
sor nodes to send heart-beat packets. We formulate the prob-
lem as how to minimize the energy required to send heart-beat
packets.

The rest of the paper is organized as follows. In Section 2,
we formulate the self-monitoring problem according to the
features of Sensor Webs. Section 3 discusses the theoretical
solution of this problem and provide some properties of the
resulting topology. Section 4 elaborates several distributed al-
gorithms in solving the self-monitoring sensor web problem.
In Section 5, we present our simulation results. Conclusion
remarks are provided in Section 6.

2. PROBLEM FORMULATION

2.1. Communication models

In Sensor Webs, packets transmitted from node u can be suc-
cessfully received by the destination node v if the transmitter
power setting of node u satisfies the following condition [1]:

(1)
Here c is a constant whose value is related to the system para-
meters such as the wavelength of the wireless signal, the an-
tenna gains, and the threshold that a signal can be successfully
detected in the destination node. n is the signal fading factor
whose value is typically in the interval (2, 5) in an application
environment. D (u, v) is the Euclidian distance between node
u and node v, namely,

D(u,v) = IIX(v) -X(u) 11,

in which X(.) denotes the physical location of a node.

(2)

2

:s_

Pr (u) > c - (D (u, v))'.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 11,2021 at 06:50:55 UTC from IEEE Xplore. Restrictions apply.

We consider the optimal transmitter power level for node u to
send a packet to node v is:

(3)

We assume that each sensor node can know its approximate
physical location. This is true in most application cases as
the location information is usually required to identify where
the phenomena of interest take place. The approximate lo-
cation information is obtainable if each sensor node carries
a GPS receiver or if some localization algorithms (e.g., [12])
are employed.

2.2. Self-monitoring Sensor Webs

Sensor nodes perform self-monitoring tasks in a passive man-
ner. Each sensor node u actively sends out heart-beat packets
periodically to another node v (note that node v can be the
base station) which is in charge of monitoring node v. If node
v has not received any heart-beat packet for a given period of
time, it regards that node u has failed. Then, if node v is not
the base station, it can send an alarm message to inform the
base station1.

We define a Sensor Web is self-monitoring if the base station
can be aware of the failure of any sensor nodes (i.e., failures
of any subset of nodes which does not contain the base sta-
tion) with the above monitoring mechanism.

In the following discussion, v -> u denotes the monitor-
ing relation between v and u in which v is monitoring a,
i.e., u should periodically send heart-beat packets to v. Be-
cause packet transmission costs energy, to achieve energy-
efficiency, we consider a node is monitored by exactly one
node. That is, each node should send heart-beat packets to
exactly one node, consequently,

V1 > U & V2 -U>U V1 =V2 (4)

cannot be aware of the failure of the whole subset, resulting
in a Sensor Web which is not self-monitoring.

Therefore, the monitoring relations cannot form loops. The
reason is that if a loop exists, according to the monitored-by-
only-one feature described in Equation (4), no sensor nodes
in such a loop can be monitored by any node outside the loop,
which poses that the Sensor Web is not self-monitoring.

Hence, relation -* is a strict partial order relation, which for-
mally satisfies:

o irreflexivity: -i]u, such that, u -* u;

o antisymmetry: -eu, v, such that, u -* v and v -* u;

o transitivity: if v w and w -* u, then v -* u;

(6)

where means "not" and means "exist".

The irreflexivity property means that a sensor node cannot
monitor itself. The antisymmetry property means that no
monitor-relation loops can be formed. The transitivity is di-
rectly obtained from the definition of the -* relation.

2.3. Energy consumption model

Energy(v -> U) denotes the energy required for maintaining
v -> u per second. Because the energy consumption for re-
ceiving a heart-beat packet and processing a heart-beat packet
is constant, we consider that Energy(v -> U) is the energy
consumption for a node to send heart-beat packets per second.
With transmitter power control, it is:

Energy(v -> U) = /Pr(u) (7)

where -y is a constant related to the packet size and the packet-
rate of the heart-beat packets.

Let us introduce another relation -*: v -* u denotes the rela-
tion between v and u which is defined recursively as follows:

ifv u, thenv u;
ifv wandw u,thenv -*u. (5)

It is easy to see that v -* u implies that v -> w1, w1 ->

W2 ..., Wi -> , where the number of intermediate nodes wl,
W2, ..., wi can be larger or equal to zero.

In a self-monitoring Sensor Web, at least one node in any
subset of nodes without the base station should be monitored
by a node that is not in the subset. Otherwise, the base station

1 In the rest of our discussion, we assume a node can always send the alarm
message to the base station. How the alarm message is sent to the base
station is not the focus of this paper. It can be sent in a multi-hop manner via
the paths that route the sensor-reporting data packets on the phenomena of
interest, or it can be sent directly to the base station if the transmitter power
level of the sensor node can be large enough.

2.4. The self-monitoring problem

According to the above discussion, the self-monitoring Sen-
sor Web problem is formulated as follows.

Problem 1: Given a set of sensor nodes S, a base station bs,
order the set S U {bs} with the relation -* so that bs -* u

(Vu e S) and the total energy required to maintain the
relations among the nodes is minimized.E

In this formulation, we require bs -* u (Vu C S) to ensure
that the failure of any subset of sensor nodes can be detected
by a node that is not in the subset. This is because the failure
of any subset of sensor nodes would cut at least one -> rela-
tion (e.g., that denoted by w > v) whereas w is still working.
As a result, w can detect the failure of v and inform the base
station. The objective in this problem formulation is to min-
imize the energy consumption required in a self-monitoring
Sensor Web.

3

Pr(u) = c - (D(u, v))' = c - ..X(v) X(u)

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 11,2021 at 06:50:55 UTC from IEEE Xplore. Restrictions apply.

3. THEORETICAL SOLUTION
3.1. Graph model of the relations

It is convenient to denote strict partial order relations among
the members in a set with a graph, in which the vertices de-
note the members and directed edges in the graph denote the
relations.

We model a Sensor Web as a weighted graph G(V, E). Here
V is the set of vertices denoting the sensor nodes and the base
station bs (i.e., V = S U {bs}). E is the set of edges denot-
ing the wireless links from a node to another if the node can
directly communicate with the other node at the maximum
transmitter power setting2. The weight of an edge e(u, v) is
defined by:

wgiyht(c(u, v)) = c (D(u, v))' (8)

Obviously, v -> u can be denoted by an edge with direction
from u to v in G(V, E), and v -* u can be denoted by a path
from u to v in G(V,E). The relations bs -* u (Vu C S)
required in Problem 1 can be denoted by a number of paths
in graph G(V, E). The union of these paths forms a subgraph
of G(V, E).

According to Equation (7), the energy required to maintain
v -> u is linearly related to the weight of edge defined in
Equation (8). The objective of Problem 1, i.e., minimizing
the energy consumed to preserve all the -> relations that are
required for maintaining bs -* u (Vu e V and u :tbs),
is therefore equivalent to minimizing the weight of the sub-
graph formed by the union of paths denoting relations bs -* u

(Vu e Vand#u bs).

3.2. Theoretical solution

According to the antisymmetry property of -*, there is no
loop in the union of paths in G(V, E) denoting the -* rela-
tions between nodes. So the resulting subgraph should be a
tree. Because bs -* u (Vu e V and u :tbs), this tree is a
spanning tree rooted at the base station bs.

Therefore, the solution of the self-monitoring problem is to
find a spanning tree rooted at the base station bs and the
weight of the tree is minimized. Obvious, this is a Mini-
mum Spanning Tree (MST) of graph G(V, E). Classic al-
gorithms to find an MST of a graph include Prim's algorithm
[13], Kruskal's algorithm [14], and Boruvka's algorithm, etc
[15].

3.3. Properties ofMSTs

To facilitate our later discussions, in the rest of this section,
a theorem that describes some properties of the MST is pro-
vided. This serves as the foundation of the distributed algo-
rithm described in the following section.

2We consider that the base station does not have out-link edges in this
model.

Let us define the distance between two subgraphs of graph
G(V, E) as the minimum weights among the weights of the
shortest paths in G(V, E) between any vertex in a subgraph
and any vertex in anther subgraph.

For any proper subtree To in the MST of a graph, suppose
the subtree has n edges (n > 1), denoted by el, e/, ..., en,
connecting to other parts of the MST. Cut these n edges, then
the MST is divided into exactly n + 1 trees according to the
fact that the MST is a tree. Let To, T1, ..., Tn denote these
trees.

Lemma 1: Suppose with the above notations, the edge e'
(1< i < n) is with minimum weight among el, e/, ..., en.
weight(e') is also the minimum distance among all distances
between To and each tree of T1, ..., Tn.

Proof: If weight(e') is not the minimum distance among
all distances between To and each tree of T1, ..., Tn, sup-
pose the minimum distance is d which is the weight of a path
from a node in Tj (Tj is some tree in T1, ..., Tn) to a node
in To. Add this path to the MST and cut ej to form a new
subgraph. Purge any edges that result in loops in this sub-
graph to avoid loops and form a new spanning tree. Because
weight(e) > weight(el) > d, the weight of the new span-
ning tree is smaller than the MST, which contradict the defi-
nition of an MST. O

Theorem 2: For any subtree in the MST of G(V, E), suppose
the subtree has m edges (m > 1), denoted by el, e2, ...,em,
connecting to other parts of G(V, E) and the edge ek (1 <
k < m) is with minimum weight among el, e2,..., Cn. Then,
ek is also in an MST of G(V, E).

Proof: We prove this by contradiction again. Consider
that the subtree is the To in Lemma 1. Assume eC is not
in an MST. Because an MST is a subgraph of G(V, E),
{el,e/, en.} C {el, e2, ..., em}. As ek connects a vertex
u in To to a vertex v that is not in To, vertex v must be in
one of the trees T1, ..., Tn. Denote the tree Tp (1 < p < n).
Then the edge connecting Tp and To is e/ and weight(e/) >

weight(e')

According to Lemma 1, weight(e') is less than or equal to
the distance between To and Tp. This distance is less than
or equal to weight(ek) because edge eC connects To and
Tp. As weight(ek) is the minimum among all weights of
el, e2, ..., em, weight(ek) = weight(el) < weight(el). Re-
move e/ from the MST and add ek to the MST, the weight
of resulting spanning tree is less than or equal to the MST,
which is also an MST. It contradicts that ek is not in an MST.

An example is demonstrated in Figure 2. In this example,
suppose that the edges (vl, V3), (V2, V4), (V3, V4), and (V4, V5)
form a subtree of an MST in a graph. This subtree has eleven
edges connecting to the other parts of the graph. Note that we

4

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 11,2021 at 06:50:55 UTC from IEEE Xplore. Restrictions apply.

V-3 V4 5 The weight of

VI - this edge is the
- <;.- smallest.

Figure 2. An example showing how to apply Theorem 2

just show the vertices connected to the subtree by an edge in
this figure. Among all these eleven edges, the edge (v2. u) is
with the minimum weight. Theorem 2 tells us that this edge is
also in an MST of the graph. That is to say, the edges (vl, V3),
(V2, V4), (V3, V4), (V4, V5), together with (v2, U), form a sub-
tree of an MST.

4. SOLUTIONS IN A DISTRIBUTED
ENVIRONMENT

Theoretically, finding an MST in G(V, E) is simple in terms
of computational complexity of the algorithm. However, in
most applications of Sensor Webs, the scale of a Sensor Web
can be very large containing hundreds of sensor nodes. Dis-
tributed algorithms should be designed to attack this Sensor
Web self-monitoring problem. This section provides some
example algorithms we design.

For distributed networks like Sensor Webs, localized algo-
rithms, in which each node determines which edge is in the
MST with only the information of the nodes within some con-
stant hops, is highly desired for constructing the MST. Unfor-
tunately, such an algorithm does not exist [16]. Therefore,
in practical applications, it is inevitable for a distributed al-
gorithm to exchange a large number of packets to construct
an MST as each in-network node does not have a global pic-
ture of the whole network due to the large scale of the net-
work. The performance in terms of the number of packets
that should be exchanged is the main consideration in our al-
gorithm design.

We first design an distributed algorithm based on Theorem 2
to find the optimal solution of Problem 1, i.e., to find an MST
of G(V, E). Since exchanging information within the whole
network is very expensive, we then provide several approxi-
mation algorithms which exchange less packets to find sub-
optimal solution of Problem 1, i.e., to find a spanning tree of
G(V, E) of which the weight is comparable to that of an MST.

Note that although constructing such spanning trees for find-
ing the monitoring relations (i.e., the -> relations between
nodes) costs less energy, maintaining a self-monitoring Sen-
sor Web costs more as the weights of the corresponding span-

ning tree is larger than that of an MST. Such a trade-off will
be shown in our experimental study in Section 5.

4.]. Algorithm 1: Finding an MST

This algorithm contains two processes. In the first process, a
set of disjoint subtrees of an MST are found. These subtrees
contain all in-network nodes. In the second process, these
subtrees join together to form the MST.

In the first process, a subtree, say Ti, is found as follows.
First, a node informs its nearest neighbor to form subtree Ti.
The newly-added node then takes over the work and informs
its nearest neighbor to join Ti. This step continues and in this
way Ti grows. It stops when a newly-added node, say node
u, finds that its nearest neighbor is already in a subtree. If this
subtree is not Ti, the neighbor is informed and the two sub-
trees are merged. Then node u hands over to another neighbor
which is not in any subtree. And this neighbor begins to form
another subtree Ti+1 of the MST.

Figure 3. An example showing how the first process of Al-
gorithm 1 works

Let us demonstrate this process by an example. Consider the
graph shown in Figure 3. At first, v1 adds itself to a subtree,
say T1. It knows its nearest neighbor is v2, and informs v2
to join T1. v2 then takes over the work and knows that its
nearest neighbor is V3. It informs V3 to join T1. V3, similarly,
informs its nearest neighbor V4 to join T1. Now V4 takes over
the work and knows that its nearest neighbor is V3. As V3
is already in T1, V4 hands over to a neighbor (i.e., V5 in this
case) to find a new subtree. V5 adds itself to a new subtree, say
T2. And V5 knows it nearest neighbor is V3, which is already
in T1. Therefore, V3 is informed that T2 and T1 should be
merged. The resulting subtree of an MST is then composed
by the thick edges shown in Figure 3. V5 then hands over to a
neighbor that does not belong to any subtree to continue the
process. In this way, the other subtrees of the MST can be
found.

In the second process, nodes in a subtree should exchange
packets and find out the edge with minimum weight among all
the edges connecting the subtree to other subtrees of G(V, E).
Then the corresponding two subtrees connected by this edge
are merged. This merge procedure continues till all subtrees
are merged into one single tree. The resulting tree is the MST.

5

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 11,2021 at 06:50:55 UTC from IEEE Xplore. Restrictions apply.

This process is also demonstrated by an example, which is
shown in Figure 4. Suppose T1, T2, T3, and T4 are sub-
trees of an MST, which are constructed in the first process.
In the second process, through exchanging packets and per-
forming comparisons, T1 knows that e3 is the edge with min-
imum weight among all the edges connecting T1 to the other
subtrees. T1 and T4 are then merged into one subtree, i.e.,
T1UT4U{e3}. This new subtree, similarly, can know that e, is
the edge with minimum weight among all the edges connect-
ing the subtree to the other subtrees. Then T3 joins the subtree
via el and the subtree becomes T1 U T4 U {e3} U T3 U {el }.
Finally, T2 joins the subtree via e2 in a similar way and the
resulting tree is now T1 U T4 U {e3} U T3 U {el} U T2 U {e2}.
This is the MST.

AI I

T1 A

1%

Figure 4. An example showing how the second process of
Algorithm 1 works

Algorithm 1 is based on Theorem 2. Because a vertex is al-
ways a subtree of an MST, for each node, the edge to its near-
est neighbor is always an edge of an MST of G(V, E). There-
fore, subtrees constructed in the first process are subtrees of
an MST. Also, as a subtree, say Ti, merges into another sub-
tree on the other side of the edge which is with the minimum
weight among all the edges connecting Ti to other subtrees
of G(V, E), the newly-formed subtree is also a subtree of an
MST according to Theorem 2. Therefore, the resulting tree in
the second process is an MST eventually.

Nodes should exchange 0 (lV) packets (denotes the num-
ber of members in a set) totally in the first process. In the
second process 0 (lV 12) packets should be exchanged.

4.2. Algorithm 2: A variation ofAlgorithm] to find a span-
ning tree

Because the second process of Algorithm 1 requires much
more packets to be exchanged, we provide a variation of Al-
gorithm 1 in which only 0 (lV l) packets should be exchanged
in the second process. But note that the resulting spanning
tree in this algorithm is not an MST.

In the first process, a node also informs its nearest neighbor

the weight of the edge to its second nearest neighbor that is
not in any subtree (say, the weight is b). Nodes in a subtree
therefore can know which node in the subtree has the lowest
b. Then in the second procedure, we do not exchange pack-
ets to find out the edge with minimum weight among all the
edges connecting the subtree to other subtrees of G(V, E). In-
stead, the node that has the lowest b merges its subtree to an-
other subtree which contains the node's nearest neighbor that
is not in the same subtree as itself. In this way, the packets
exchanged in the second procedure is reduced to 0 (V)D.
4.3. Algorithm 3: Finding MSTs ofsubnetworks and merging
them

In this algorithm, the network area is divided into several sub-
areas and G(V, E) is divided into several subgraphs according
to which subarea each node is located in. For each subgraph,
Algorithm 1 is performed and an MST of each subgraph are
found. Then these MSTs merge into one spanning tree.

4.4. Algorithm 4: A simple greedy algorithm

In this algorithm, a spanning tree is found with a variation of
the first procedure in Algorithm 1. Instead of stopping when
a node finds that its nearest neighbor belongs to a subtree, the
node informs its nearest neighbor that does not belong to the
same subtree to join the subtree.

5. SIMULATION RESULTS
We study the performance of the algorithms discussed in Sec-
tion 4 with simulations. We randomly deploy n sensor nodes
and the base station in a uniform manner. The network area
is 400m x 400m. In our simulation study, we change n in the
range of (80,150). For each setting of n, different random
seeds are selected to generate 10 randomized networks. The
algorithms are performed for each network and the results of
these 10 networks are averaged. When conducting simula-
tions of Algorithm 3, we partition the network into 2 x 2 and
3 x 3 grids.

We first study the performance of the algorithms in terms of
the weights of the spanning trees found. Figure 5 demon-
strates the results. Note that in these results, c in Equation
(8) is set 1, as the value of c is not important for comparison
purpose.

We can see that the weights of the resulting spanning trees
found by Algorithms 2 and 3 are much larger than the weights
of the trees found by Algorithms 1 and 4. This is not strange
as Algorithms 2 and 3 are approximation algorithms, which
are designed mainly to achieve a smaller number of packets
required to find a spanning tree. Algorithm 4, although also
an approximate algorithms, finds MSTs of subnetworks. We
can see its performance, in terms of the weights of the span-
ning trees found, is comparable to Algorithm 1.

We show the energy required to perform the algorithms in

6

l

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 11,2021 at 06:50:55 UTC from IEEE Xplore. Restrictions apply.

ning trees found by different algorithms does not differ too
much, although the weights of the spanning trees are differ-
ent. This should be noted especially when the time to perform
self-monitoring is not long in case that the network topology
changes frequently.

e Algorithm-1
--Algorithm-2

.5 --x-- Algorithm-3
x Algorithm-4 (2 x 2 partitions)

--o - Algorithm-4 (3 x 3 partitions)
0

70 80 90 100 110 120 130 140
Number of in-network nodes

The results in Figure 5 and 6 show that there is a trade-off
between the energy cost to find a spanning tree and the en-

ergy cost to self-monitoring sensor web, which is related to
how frequently the network topology is changing. We can-

not draw simple conclusions that one algorithm is superior to
the others. Such a trade-off should be carefully taken into ac-

count when designing a distributed algorithm to address the
self-monitoring problem for Sensor Webs.

-- - - - --

150 160

Figure 5. Weights of the spanning trees found

terms of the number of packets exchanged. Figure 6 demon-

strates the results. It can be found that Algorithms 2 and
3 require much less packets to be exchanged in finding the
spanning tree comparing to the other algorithms. Algorithm
1 requires quite a large number of packets exchanged.

5000
G Algorithm-1

4500 - Algorithm-2
Algorithm-3

D4000 - Algorithm-4 (2 x 2 partitions)
X -o Algorithm-4 (3 x 3 partitions)
0

x 3500
cn

.T 3000
0

- 2500

E 2000

U' 1500

> 1000

500

6. CONCLUSIONS
This paper investigates the sensor-node monitoring problem
for Sensor Webs. We notice that a life-condition monitor-
ing mechanism for sensor nodes is necessary to ensure the
function of a Sensor Web as sensor nodes are subject to fail-
ures and permanent damage. We consider in-network sen-

sor nodes are self-monitoring, i.e., the status of each sensor

node is monitored by another node. To be energy-efficient,
a mechanism for the implementation of the self-monitoring
of Sensor Web should minimize the total energy consump-

tion required to provide self-monitoring of the Sensor Web.
We provide a formulation of this problem specifically. It is
shown that this problem can be solved by finding a mini-
mum spanning tree of the graph that models a Sensor Web.
We provide some example distributed algorithms to address
this problem and conduct simulations to investigate the per-

formance of these algorithms. Finally, a trade-off between
the energy cost to find a spanning tree with a distributed al-
gorithm and the energy cost to self-monitoring Sensor Web is
identified.

REFERENCES

70 80 90 100 110 120 130
Number of in-network nodes

140 150 160

Figure 6. Number of packets that should be exchanged

As usually a Sensor Web contains a large number of re-

dundant nodes to achieve fault tolerance, a node's sleep-
ing/working scheduling mechanism is usually employed to
exploit such redundancy. As a result, the topology of a

Sensor Web may change frequently (we consider the topol-
ogy is determined only by the active nodes) and the self-
monitoring problem should be solved each time the network
topology changes. The overhead (i.e., the number of pack-
ets exchanged) in solving the problem with distributed algo-
rithms should be considered.

On the other hand, note that the rate of the heart-beat packets
can be very low. As a result, the energy consumption required
for self-monitoring a Sensor Web based on the resulting span-

[1] I. Akyildiz, W. Su, Y Sankarasubramaniam, and
E. Cayirci, "A survey on wireless sensor networks,"
IEEE Communications Magazine, vol. 40, no. 8, pp.

102-114, 2002.

[2] F. L. Lewis, "Wireless sensor networks," in Smart En-
vironments: Technologies, Protocols, and Applications,
D. J. Cook and S. K. Das, Eds. New York: John Wiley,
2004.

[3] K. A. Delin, "The sensor web: Distributed sensing for
collective action," Sensors Magazine, July 2006.

[4] , "The sensor web: A distributed, wireless moni-
toring system," Sensors Magazine, April 2004.

[5] The Huntington Library, "The Botanical Gardens,"
http://www.huntington.org/BotanicalDiv/HEHBotanical
Home.html.

[6] SensorWare Systems, Inc., "Sensor webs deployments

7

-o
0

Un

$2.5

U,Xu 2-
cn
a)

40 1.5
Un

.9
a)

U,

>)>

3.5rF

_s

x-

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 11,2021 at 06:50:55 UTC from IEEE Xplore. Restrictions apply.

- Huntington Botanical Gardens,"
http://www.sensorwaresystems.com/historical/resources
/huntington sw5.shtml.

[7] K. A. Delin, R. Harvey, N. A. Chabot, S. Jackson,
M. Adams, D. Johnson, and J. Britton, "Sensor web in
antarctica: Developing an intelligent, autonomous plat-
form for locating biological flourishes in cryogenic en-
vironments," in Proc. of the 34th Lunar and Planetary
Science Conference, Houston, TX, March 2003.

[8] K. A. Delin and S. P. Jackson, "Sensor web for in situ
exploration of gaseous biosignatures," in Proc. of the
IEEE Aerospace Conference, vol. 7, March 2000, pp.
465 - 472.

[9] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister, "System architecture directions for networked
sensors," in Proc. ofthe 9th International Conference on
Architectural Supportfor Programming Languages and
Operating Systems, Cambridge, MA, November 2000.

[10] D. Wang, Q. Zhang, and J. Liu, "Self-protection for
wireless sensor networks," in Proc. of the 26th IEEE In-
ternational Conference on Distributed Computing Sys-
tems (ICDCS'06), Lisboa, Portugal, July 2006.

[11] T. Rappaport, Wireless Communications: Principles
and Practices (2nd Edition). Upper Saddle River:
Prentice Hall, 2002.

[12] N. Bulusu, J. Heidemann, and D. Estrin, "GPS-less low-
cost outdoor localization for very small devices," IEEE
Personal Communication, October 2000.

[13] R. C. Prim, "Shortest connection networks and some
generalisations," Bell System Technical Journal, vol. 36,
pp. 1389-1401, 1957.

[14] J. B. Kruskal, "On the shortest spanning subtree and the
traveling salesman problem," Proceedings of the Amer-
ican Mathematical Society, vol. 7, pp. 48-50, 1956.

[15] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein, "Minimum spanning trees," Chapter 23, Intro-
duction to Algorithms (2nd Edition), pp. 561-579, MIT
Press and McGraw-Hill, 2001.

[16] X.-Y. Li, Y. Wang, P.-J. Wan, W.-Z. Song, and
0. Frieder., "Localized low-weight graph and its ap-
plications in wireless ad hoc networks," in Proc. of the
2004 IEEE Infocom, Hong Kong, March 2004.

Yangfan Zhou (S'04) is currently a
PhD student in the Computer Science
and Engineering Department at the Chi-
nese University of Hong Kong. He re-
ceived the B.Sc. (2000) in electronics
from Peking University in 2000 and the
M.Phil (2005) in computer science and
engineeringfrom the Chinese University

ofHong Kong. He also worked in industrial area as hardware
engineer and later software engineer in China from 2000 to
2003. His research interests are in wireless ad hoc and sensor
networks.

Michael R. Lyu (S'84-M'88-SM'97-
F'04) received the B.S. (1981) in elec-
trical engineering from National Taiwan
University, the M.S. (1985) in computer
engineering from University of Cali-
fornia, Santa Barbara, and the Ph.D.
(1988) in computer sciencefrom Univer-
sity of California, Los Angeles. He is a

Professor in the Computer Science and Engineering Depart-
ment of the Chinese University of Hong Kong. He worked
at the Jet Propulsion Laboratory, Bellcore, and Bell Labs;
and taught at the University of Iowa. His research interests
include software reliability engineering, software fault toler-
ance, distributed systems, image and video processing, multi-
media technologies, and mobile networks. He has published
over 200 papers in these areas. He has participated in more
than 30 industrial projects, and helped to develop many com-
mercial systems and software tools. Professor Lyu was fre-
quently invited as a keynote or tutorial speaker to conferences
and workshops in U.S., Europe, and Asia. He initiated the
International Symposium on Software Reliability Engineer-
ing (ISSRE), and was Program Chair for ISSRE'1996, Pro-
gram Co-Chair for WWW10 and SRDS'2005, and General
Chair for ISSRE'2001 and PRDC'2005. He also received
Best Paper Awards in ISSRE'98 and in ISSRE'2003. He is
the editor-in-chieffor two book volumes: Software Fault Tol-
erance (Wiley, 1995), and the Handbook of Software Relia-
bility Engineering (IEEE and McGraw-Hill, 1996). He has
been an Associate Editor ofIEEE Transactions on Reliabil-
ity, IEEE Transactions on Knowledge and Data Engineering,
and Journal ofInformation Science and Engineering. Profes-
sor Lyu is an IEEE Fellow and an AAAS Fellow.

8

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 11,2021 at 06:50:55 UTC from IEEE Xplore. Restrictions apply.

