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Abstract—The exponential growth of Web service makes
building high-quality service-oriented applications an urgent
and crucial research problem. User-side QoS evaluations of
Web services are critical for selecting the optimal Web service
from a set of functionally equivalent service candidates. Since
QoS performance of Web services is highly related to the
service status and network environments which are variable
against time, service invocations are required at different
instances during a long time interval for making accurate
Web service QoS evaluation. However, invoking a huge number
of Web services from user-side for quality evaluation pur-
pose is time-consuming, resource-consuming, and sometimes
even impractical (e.g., service invocations are charged by
service providers). To address this critical challenge, this
paper proposes a Web service QoS prediction framework,
called WSPred, to provide time-aware personalized QoS value
prediction service for different service users. WSPred requires
no additional invocation of Web services. Based on the past Web
service usage experience from different service users, WSPred
builds feature models and employs these models to make
personalized QoS prediction for different users. The extensive
experimental results show the effectiveness and efficiency of
WSPred. Moreover, we publicly release our real-world time-
aware Web service QoS dataset for future research, which
makes our experiments verifiable and reproducible.
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I. INTRODUCTION

Web services are software systems designed to support
interoperable machine-to-machine interaction over a net-
work [1]. With the exponential growth of Web service as a
method of communications between heterogeneous systems,
Service-Oriented Architecture (SOA) is becoming a popular
and major framework for building Web applications in the
era of Web 2.0 [2], whereby Web services offered by
different providers are discovered and integrated over the
Internet. Typically, a service-oriented application consists of
multiple Web services interacting with each other in several
tiers. How to build high quality service-oriented applications
becomes an urgent and crucial research problem.

With the growing number of Web services over the
Internet, designers of service-oriented applications can
choose from a broad pool of functionally identical or

similar Web services when creating applications. Web ser-
vices are usually deployed in remote servers and accessed
by users through Internet connections. The quality of a
service-oriented application, therefore, is greatly influenced
by the quality of the invoked Web services. To build
high-quality service-oriented applications, non-functional
Quality-of-Service (QoS) performance of Web services be-
comes a major concern for application designers when mak-
ing service selections [3]. However, the QoS performance of
Web services observed from the users’ perspective is usually
quite different from that declared by the service providers
in Service Level Agreement (SLA), due to:

∙ QoS performance of Web services is highly related to
invocation time, since the service status (e.g., workload,
number of clients, etc.) and the network environment
(e.g., congestion, etc.) change over time.

∙ Service users are typically distributed in different ge-
ographical locations. The user-observed QoS perfor-
mance of Web services is greatly influenced by the
Internet connections between users and Web services.
Different users may observe quite different QoS per-
formance when invoking the same Web service.

Based on the above analysis, providing time-aware person-
alized QoS information of Web services is becoming more
and more essential for service-oriented application designers
to make service selection [3], [4], service composition [5],
[6], and automatically late-binding at runtime [7].

In reality, a service user usually only invokes a limited
number of Web services in the past and thus only observes
QoS values of these invoked Web services. Without suffi-
cient time-aware personalized QoS information, it is difficult
for application designers to select optimal Web services at
design time and replace low quality Web services with better
ones at runtime. In practice, invoking Web services from
users’ perspectives for evaluation purpose is quite difficult,
and includes the following critical drawbacks:

∙ Executing service invocations to obtain QoS informa-
tion is too expensive for service users, since service
providers may charge for invocations. At the same time,
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invocations for evaluation purpose consume resources
of service users and service providers.

∙ With the growing number of Web services over the
Internet, it is time-consuming to evaluate all the Web
services. Moreover, some potentially appropriate Web
services may not be discovered by the current user.

∙ To monitor the QoS performance of Web services
continuously, service users need to conduct service
invocations periodically, which will introduce a heavy
workload to service users.

∙ Since service users are not experts in service evalu-
ation, it will take a solid effort from service users to
evaluate the Web services in-depth. The time-to-market
constraints will also limit the amount of resources for
service evaluation.

It becomes an urgent task to explore a time-aware
personalized prediction approach for efficiently estimating
missing QoS information of Web services for different
service users. To address this critical challenge, we propose
a model-based approach, called WSPred, for time-aware
and personalized QoS prediction of Web services. WSPred
collects time-aware QoS information from geographically
distributed service users, and combines the local information
to get a global user-service-time tensor. By performing
tensor factorization, user-specific, service-specific and time-
specific latent features are extracted from the past QoS
experiences of different service users. The unknown QoS
values are therefore estimated by analyzing how the user
features are applied to the corresponding service features
and time features. We collect a large-scale real-world Web
service QoS dataset and conduct extensive experiments to
compare the QoS prediction accuracy with several other
state-of-the-art approaches. The experimental results show
the effectiveness and efficiency of our proposed approach
WSPred.

In summary, this paper makes the following contributions:

∙ We formally identify the critical problem of time-
aware Web service QoS prediction and propose a novel
collaborative framework to achieve QoS information
sharing among service users. A user-side light-weight
middleware is designed for automatically recording and
sharing QoS experiences.

∙ We propose a novel time-aware personalized QoS
prediction approach WSPred, which analyzes latent
features of user, service and time by performing tensor
factorization. We consider WSPred as the first QoS
prediction approach which addresses the difference over
time in service computing literature.

∙ We conduct large-scale real-world experiments to study
the prediction accuracy and efficiency of our WSPred
compared with other state-of-the-art approaches. More-
over, we publicly release our large-scale Web service
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Figure 2. A Toy Example

QoS dataset1 for future research. To the best of our
knowledge, it is the first multi-user QoS dataset with
time series information in the Web service literature.

The remainder of this paper is organized as follows:
Section II describes the collaborative framework for sharing
QoS information between service users. Section III presents
our WSPred approach in detail. Section IV introduces the
experimental results. Section V discusses related work and
Section VI concludes the paper.

II. COLLABORATIVE FRAMEWORK FOR WEB SERVICES

In this section, we present the collaborative framework for
QoS prediction of Web services. Figure 1 shows the system
architecture. Within a service-oriented Web application, sev-
eral Web services are employed to implement complicated
functions. These Web services are connected with each other
in multiple tiers. For each tier, an optimal Web service will
be selected from a set of functional equivalent service can-
didates. Typically the Web service candidates are provided
by different organizations and are distributed in different
geographic locations and time zones. When invoked through
communication links, the user-side usage experiences are
influenced by the network environments and the server-side
status at invocation time.

The mechanism proposed in this paper is to (1) share local
Web service usage experiences from different service users,
(2) combine these pieces of local information together to get

1http://www.wsdream.net/
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global QoS information for all service candidates, (3) extract
time-specific user features and service features, and (4) make
personalized time-aware QoS value prediction based on
these features. As shown in Figure 2, each service user keeps
local records of QoS usage experience on Web services
and is encouraged to contribute its local records to obtain
records from other users. By contributing more individually
observed Web service QoS information, a service user
can obtain more global QoS information from other users,
thus obtaining more accurate Web service QoS prediction
values. Given accurate QoS prediction results, service users
could select the potentially optimal services for composing
service-oriented Web applications. The detailed collaborative
prediction approach will be presented in Section III.

Since most of the service users are not experts in service
testing, to reduce the efforts of service users spent on testing
the service QoS performance, we design a user-side light-
weight middleware for service users to automatically record
QoS values of invocations and to contribute the local records
to the server for obtaining more invocation results from
other service users. Within the middleware, there are three
management components: Monitor, Collector and Predictor.
Monitor is responsible for monitoring the QoS performance
of Web services when users sends invocations. Collector is
responsible for contributing local QoS information to other
users and for collecting shared QoS information from other
users. Predictor is responsible for providing time-aware
personalized QoS value prediction based on local and other
users’ QoS information collected by Collector.

III. TIME-AWARE QOS PREDICTION

Previous Web service related techniques such as selection,
composition, and orchestration only employ average QoS
performance of service candidates at design-time. In recent
Web service literatures, most of the state-of-the-art tech-
niques can automatically update corresponding Web services
with better ones at run-time, which requires time-specific
QoS performance of Web services.

In this section, we first formally describe the QoS value
prediction problem on Web services in Section III-A. Then
we propose a latent feature learning algorithm to learn the
user-specific, service-specific, and time-specific features in
Section III-B. The missing QoS values are predicted by ap-
plying the proposed algorithm WSPred in Section III-C. Fi-
nally, the complexity analysis is conducted in Section III-D.

A. Problem Description

Figure 2 illustrates a toy example of the QoS prediction
problem we study in this paper. In this figure, user 𝑢1
has used three Web services 𝑠1, 𝑠2 and 𝑠4 in the past. 𝑢1
recorded the observed QoS performance of Web services
𝑠1, 𝑠2 and 𝑠4 with specific invocation time in local site.
By integrating all the QoS information from other users, we
form a three-dimensional user-service-time tensor as shown
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Figure 3. User-Service-Time Tensor

in Figure 3. In this example, totally there are 5 users (from
𝑢1 to 𝑢5), 5 services (from 𝑠1 to 𝑠5) and 5 time intervals
(from 𝑡1 to 𝑡5). The tensor is split into several slices with
each one representing a time interval. Within a slice, each
entry denotes an observed QoS value of a Web service from
a user during the specific time interval. The problem we
study in this paper is how to efficiently and precisely predict
the missing entries in the user-service-time tensor based on
the existing entries.

Now we formally define the problem of QoS prediction
for Web services as follows: Given a set of users and a set
of Web services, based on the existing QoS values from
different users, predict the missing QoS values of Web
services when invoked by users at different time intervals.
More precisely:

Let 𝑈 be the set of 𝑚 users, 𝑆 be the set of 𝑛
Web services, and 𝑇 be the set of 𝑐 time intervals.
A QoS element is a quartet (𝑖, 𝑗, 𝑘, 𝑞𝑖𝑗𝑘) repre-
senting the observed quality of Web service 𝑠𝑗 by
user 𝑢𝑖 at time interval 𝑡𝑘, where 𝑖 ∈ {1, ⋅ ⋅ ⋅ ,𝑚},
𝑗 ∈ {1, ⋅ ⋅ ⋅ , 𝑛}, 𝑘 ∈ {1, ⋅ ⋅ ⋅ , 𝑐} and 𝑞𝑖𝑗𝑘 ∈ ℝ

𝑝 is a
𝑝-dimensional vector representing the QoS values
of 𝑝 criteria. Let Ω be the set of all triads {𝑖, 𝑗, 𝑘}
and Λ be the set of all known triads (𝑖, 𝑗, 𝑘) in
Ω. Consider a tensor 𝑌 ∈ ℝ

𝑚×𝑛×𝑐 with each
entry 𝑌𝑖𝑗𝑘 representing the observed 𝑝𝑡ℎ criterion
value of service 𝑠𝑗 by user 𝑢𝑖 at time interval 𝑡𝑘.
Then the missing entries {𝑌𝑖𝑗𝑘∣(𝑖, 𝑗, 𝑘) ∈ Ω − Λ}
should be predicted based on the existing entries
{𝑌𝑖𝑗𝑘∣(𝑖, 𝑗, 𝑘) ∈ Λ}.

Typically, the QoS values can be integers from a given
range (e.g., {0, 1, 2, 3}) or real numbers. Without loss of
generality, we can map the QoS values to the interval [0, 1]
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using the following function:

𝑓(𝑥) =

⎧⎨
⎩

0, if 𝑥 < 𝑌𝑚𝑖𝑛

1, if 𝑥 > 𝑌𝑚𝑎𝑥
𝑥−𝑌𝑚𝑖𝑛

𝑌𝑚𝑎𝑥−𝑌𝑚𝑖𝑛
, otherwise

where 𝑌𝑚𝑎𝑥 and 𝑌𝑚𝑖𝑛 are the specified upper bound and
lower bound of QoS values respectively.

B. Latent Features Learning

In order to learn the latent features of users, services,
and time, we employ tensor factorization technique to fit a
factor model to the user-service-time tensor. The factorized
user-specific, service-specific and time-specific matrices are
utilized to make further missing entries prediction. The idea
behind the factor model is to derive a high-quality low-
dimensional feature representation of users, services and
time by analyzing the user-service-time tensor. The premise
behind a low-dimensional factor model is that there is only a
small number of factors influencing QoS usage experiences,
and that a user’s QoS usage experience vector is determined
by how each factor applies to that user, the corresponding
service and the specific time interval. Examples of physical
feature are network distance between the user and the
server, the workload of the server, etc. Latent features are
orthogonal representing the decomposed results of physical
factors.

In the paper, we consider an 𝑚 × 𝑛 × 𝑐 QoS tensor
consisting of 𝑚 users, 𝑛 services and 𝑐 time intervals. A
low-rank tensor factorization approach seeks to approximate
the QoS tensor 𝑌 by a multiplication of 𝑙-rank factors [8],

𝑌 ≈ 𝐶 ×𝑢 𝑈 ×𝑠 𝑆 ×𝑡 𝑇, (1)

where 𝐶 ∈ ℝ
𝑙×𝑙×𝑙, 𝑈 ∈ ℝ

𝑚×𝑙, 𝑆 ∈ ℝ
𝑛×𝑙 and 𝑇 ∈ ℝ

𝑐×𝑙

are latent feature matrices. 𝑙 is the number of latent features.
Each column in 𝑈 , 𝑆 and 𝑇 representing a user, a Web
service and a time interval, respectively. ×𝑢, ×𝑠 and ×𝑡

are tensor-matrix multiplication operators with the subscript
showing in which direction on the tensor to multiply the
matrix (i.e., 𝐶 ×𝑢 𝑈 =

∑𝑙
𝑖=1 𝐶𝑖𝑗𝑘𝑈𝑖𝑗). 𝐶 is set to the

diagonal tensor:

𝐶 =

{
1, if 𝑖 = 𝑗 = 𝑘
0, otherwise

Typically, 𝑙 ≪ 𝑚𝑛𝑐 since in the real world, each user has
invoked only a small portion of Web services, and the tensor
𝑌 is usually very sparse. From the above definition, we
can see that the low-dimensional matrices 𝑈 , 𝑆 and 𝑇 are
unkonwn and need to be estimated.

To estimate the quality of tensor approximation, we need
to construct a loss function for evaluating the error between
the estimated tensor and the original tensor. The distance
between two tensors is usually employed to define the loss
function:

1

2
∣∣𝑌 − 𝑌 ∣∣2𝐹 , (2)
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Figure 4. Response-Time of Two Pairs of User-Service

where ∣∣ ⋅ ∣∣2𝐹 denotes the Frobenius norm. However, due to
the reason that there are a large number of missing values,
we only factorize the observed entries in tensor 𝑌 . Hence,
we employ the following loss function instead:

1

2

𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝑐∑
𝑘=1

𝐼𝑖𝑗𝑘(𝑌𝑖𝑗𝑘 − 𝑌𝑖𝑗𝑘)2, (3)

where 𝐼𝑖𝑗𝑘 is the indicator function that is equal to 1 if user
𝑢𝑖 invoked service 𝑠𝑗 during the time interval 𝑡𝑘 and equal
to 0 otherwise. To avoid the overfitting problem, we add
three regularization terms to Eq. (3) to constrain the norms
of 𝑈 , 𝑆 and 𝑇 . Hence we conduct the tensor factorization
as to solve the following optimization problem:

min
𝑈,𝑆,𝑇

ℒ(𝑌, 𝑈, 𝑆, 𝑇 ) =
1

2

𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝑐∑
𝑘=1

𝐼𝑖𝑗𝑘(𝑌𝑖𝑗𝑘 − 𝑌𝑖𝑗𝑘)2

+
𝜆1
2
∣∣𝑈 ∣∣2𝐹 +

𝜆2
2
∣∣𝑆∣∣2𝐹 +

𝜆3
2
∣∣𝑇 ∣∣2𝐹 ,

(4)

where 𝜆1, 𝜆2, 𝜆3 > 0. The optimization problem in Eq. (4)
minimizes the sum-of-squared-errors objective function with
quadratic regularization terms.

Figure 4 gives a comprehensive illustration of the Web
service response-time observed by different service users.
We randomly select two service users (User 1 and User 2)
and two real-world Web services (Web Service A and Web
Service B) from the experiment described in Section IV. As
shown in Figure 4, during different time intervals, a user
has different QoS experiences on the same Web service. In
general, the differences are limited within a range (e.g., most
of the response-time values of (User 1, Web Service A) are
within the range of 0.2-0.6s and most of the response-time
values of (User 2, Web Service B) are within the range
of 0.7-0.9s). This observation indicates that although the
QoS values of a particular user-service are different during
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different time intervals, they fluctuate around the average
QoS value of the user-service pair during all time intervals.
Based on this observation, we further add a regularization
term to Eq. (4) to prevent the predicted QoS values from
varying a lot against the average QoS value. We define
the prediction with average QoS value constraint as the
following optimization problem:

min
𝑈,𝑆,𝑇

ℒ𝒜(𝑌, 𝑈, 𝑆, 𝑇 ) =
1

2

𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝑐∑
𝑘=1

𝐼𝑖𝑗𝑘(𝑌𝑖𝑗𝑘 − 𝑌𝑖𝑗𝑘)2

+
𝜆1
2
∣∣𝑈 ∣∣2𝐹 +

𝜆2
2
∣∣𝑆∣∣2𝐹 +

𝜆3
2
∣∣𝑇 ∣∣2𝐹

+
𝜂

2

𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝑐∑
𝑘=1

𝐼𝑖𝑗𝑘(𝑌𝑖𝑗𝑘 − 𝑌𝑖𝑗)2,

(5)

where 𝜂 > 0, and 𝑌𝑖𝑗 denotes the average QoS value of
Web service 𝑠𝑗 observed by user 𝑢𝑖 during all the time
intervals. 𝜂 controls how much the prediction method should
engage the information of average QoS performance. In the
extreme case, if we use a very small value of 𝜂, we only
perform tensor factorization without considering the global
QoS information. On the other side, if we use a very large
value of 𝜂, the average QoS performance will dominate the
learning processes.

A local minimum of the objective function given by
Eq. (5) can be found by performing incremental gradient
descent in feature vectors 𝑈𝑖, 𝑆𝑗 and 𝑇𝑘:

∂ℒ𝒜
∂𝑈𝑖𝑓

=
𝑛∑

𝑗=1

𝑐∑
𝑘=1

𝐼𝑖𝑗𝑘(𝑌𝑖𝑗𝑘 − 𝑌𝑖𝑗𝑘)𝑆𝑇
𝑗 𝑇𝑘 + 𝜆1𝑈𝑖𝑓

+ 𝜂

𝑛∑
𝑗=1

𝑐∑
𝑘=1

𝐼𝑖𝑗𝑘(𝑌𝑖𝑗𝑘 − 𝑌𝑖𝑗)𝑆𝑇
𝑗 𝑇𝑘,

∂ℒ𝒜
∂𝑆𝑗𝑓

=

𝑚∑
𝑖=1

𝑐∑
𝑘=1

𝐼𝑖𝑗𝑘(𝑌𝑖𝑗𝑘 − 𝑌𝑖𝑗𝑘)𝑈𝑇
𝑖 𝑇𝑘 + 𝜆2𝑆𝑗𝑓

+ 𝜂

𝑚∑
𝑖=1

𝑐∑
𝑘=1

𝐼𝑖𝑗𝑘(𝑌𝑖𝑗𝑘 − 𝑌𝑖𝑗)𝑈𝑇
𝑖 𝑇𝑘,

∂ℒ𝒜
∂𝑇𝑘𝑓

=

𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝐼𝑖𝑗𝑘(𝑌𝑖𝑗𝑘 − 𝑌𝑖𝑗𝑘)𝑈𝑇
𝑖 𝑆𝑗 + 𝜆3𝑇𝑘𝑓

+ 𝜂

𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝐼𝑖𝑗𝑘(𝑌𝑖𝑗𝑘 − 𝑌𝑖𝑗)𝑈𝑇
𝑖 𝑆𝑗 . (6)

Algorithm 1 shows the iterative process for latent feature
learning. We first initialize matrices 𝑈 , 𝑆 and 𝑇 with small
random non-negative values. Iteration of the update rules
derived from Eq. (6) converges to a local minimum of the
objective function given in Eq. (5).

Algorithm 1: Latent Features Learning Algorithm
Input: 𝑌 , 𝑙, 𝜆, 𝜂
Output: 𝑈 , 𝑆, 𝑇
Initialize 𝑈 ∈ ℝ

𝑙×𝑚, 𝑆 ∈ ℝ
𝑙×𝑛 and 𝑇 ∈ ℝ

𝑙×𝑐 with small1
random numbers;
repeat2

for all (𝑖, 𝑗, 𝑘) ∈ Λ do3

𝑌𝑖𝑗𝑘 =
∑𝑙

𝑓=1 𝑈𝑖𝑓𝑆𝑗𝑓𝑇𝑘𝑓 ;4
end5
for all (𝑖, 𝑗) do6

𝑌𝑖𝑗 =
∑𝑐

𝑘=1 𝐼𝑖𝑗𝑘𝑌𝑖𝑗𝑘∑𝑐
𝑘=1

𝐼𝑖𝑗𝑘
;7

end8
for all (𝑖, 𝑗, 𝑘) ∈ Λ do9

for (𝑓 = 1; 𝑓 ≤ 𝑙; 𝑓 ++) do10

𝑈𝑖𝑓 ← 𝑈𝑖𝑓 − [(𝑌𝑖𝑗𝑘 − 𝑌𝑖𝑗𝑘)𝑆
𝑇
𝑗 𝑇𝑘 + 𝜆𝑈𝑖𝑓 +11

𝜂(𝑌𝑖𝑗𝑘 − 𝑌𝑖𝑗)𝑆
𝑇
𝑗 𝑇𝑘];

𝑆𝑗𝑓 ← 𝑆𝑗𝑓 − [(𝑌𝑖𝑗𝑘 − 𝑌𝑖𝑗𝑘)𝑈
𝑇
𝑖 𝑇𝑘 + 𝜆𝑆𝑗𝑓 +12

𝜂(𝑌𝑖𝑗𝑘 − 𝑌𝑖𝑗)𝑈
𝑇
𝑖 𝑇𝑘];

𝑇𝑘𝑓 ← 𝑇𝑘𝑓 − [(𝑌𝑖𝑗𝑘 − 𝑌𝑖𝑗𝑘)𝑈
𝑇
𝑖 𝑆𝑗 + 𝜆𝑇𝑘𝑓 +13

𝜂(𝑌𝑖𝑗𝑘 − 𝑌𝑖𝑗)𝑈
𝑇
𝑖 𝑆𝑗 ];

end14
end15

until Converge ;16

C. Missing Value Prediction

After the user-specific, service-specific and time-specific
latent feature spaces 𝑈 , 𝑆 and 𝑇 are learned, we can predict
the QoS performance of a given service observed by a user
during the specific time interval. For the missing entry 𝑌𝑖𝑗𝑘
in the QoS tensor, the value predicted by our method is
defined as

𝑌𝑖𝑗𝑘 = 𝐼𝑖𝑗𝑘

𝑙∑
𝑓=1

𝑈𝑖𝑓𝑆𝑗𝑓𝑇𝑘𝑓 . (7)

D. Complexity Analysis

The main computation of gradient methods is evaluating
the objective function ℒ𝒜 and their gradients against vari-
ables. The computational complexity of evaluating the objec-
tive function ℒ𝒜 is 𝑂(𝜌𝑌 𝑙+ 𝜌𝑌 𝑐), where 𝜌𝑌 is the number
of nonzero entries in the tensor 𝑌 , 𝑙 is the dimensions of
the latent features, and 𝑐 is the number of time intervals.
The computational complexities for the gradients ∂ℒ𝒜

∂𝑈 , ∂ℒ𝒜
∂𝑆

and ∂ℒ𝒜
∂𝑇 in Eq. (6) are 𝑂(𝜌𝑌 𝑙 + 𝜌𝑌 𝑐). Therefore, the total

computational complexity in one iteration is 𝑂(𝜌𝑌 𝑙+ 𝜌𝑌 𝑐),
which indicates that theoretically, the computational time of
our method is linear with recept to the number of observed
QoS values in the user-service-time tensor 𝑌 . Note that
because of the sparsity of 𝑌 , 𝜌𝑌 << 𝑚𝑛𝑐, which indicates
that the computation time grows slowly with respect to the
size of Tensor 𝑌 . This complexity analysis shows that our
proposed approach is very efficient and can be applied to
large-scale systems.
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IV. EXPERIMENTS

In this section, we conduct several experiments to com-
pare our approach with several state-of-the-art collaborative
filtering prediction methods. In the following, Section IV-A
introduces the experimental setup and gives the descrip-
tion of our experimental dataset, Section IV-B defines the
evaluation metrics, Section IV-C compares the prediction
quality of our approach with other competing methods, and
Section IV-D and Section IV-E study the impact of tensor
density and dimensionality, respectively.

A. Experimental Setup and Dataset Collection

To evaluate our proposed QoS prediction approach in the
real-world, we implement a tool WSMonitor for monitoring
the QoS performance of Web service, and collect a large-
scale Web service QoS dataset for conducting various ex-
periments.

WSMonitor is implemented and deployed with JDK 6.0,
Eclipse 3.3, Axis 2, and Apache 2.2.17. WSMonitor first
crawls a set of WSDL files from the Internet and generates a
list of openly-accessible Web services. For each Web service
in the list, WSMonitor automatically generates a java class
for service invocation by employing the WSDL2Java tool
from the Axis package [9]. Totally, 5,871 classes are gener-
ated for 5,871 Web services. By calling the functions within
a class, null operation requests are sent to the corresponding
Web service for capturing the QoS performance.

We deploy the WSMonitor on 142 distributed comput-
ers located in 22 countries from PlanetLab2, which is a
distributed test-bed consisting of hundreds of computers
all over the world. Totally, 4,532 publicly available real-
world Web services from 57 countries are monitored by
each computer continuously. 1,339 of the initially selected
Web services are excluded in this experiment due to: 1)
authentication required and 2) permanent invocation failure
(e.g., the Web service is shutdown). In our experiment, each
of the 142 computers sends null operation requests to all
the 4,532 Web services during every time interval. The
experiment lasts for 16 hours with a time interval lasting
for 15 minutes.

By collecting invocation records from all the computers,
finally we include 30,287,611 QoS performance results into
the Web service QoS dataset. Each invocation record is a 𝑘
dimension vector representing the QoS values of 𝑘 criteria.
We then extract a set of 142× 4532× 64 user-service-time
tensors, each of which stands for a particular QoS property,
from the QoS invocation records. For simplicity, we employ
two tensors, which represent response-time and throughput
QoS criteria respectively, for experimental evaluation in this
paper. Without loss of generality, our approach can be easily
extended to include more QoS criteria.

2http://www.planet-lab.org

Table I
STATISTICS OF WS QOS DATASET

Statistics Response-Time Throughput

Scale 0-20s 0-1000kbps
Mean 3.165s 9.609kbps

Num. of Users 142 142
Num. of Web Services 4,532 4,532
Num. of Time Intervals 64 64

Num. of Records 30,287,611 30,287,611
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Figure 5. QoS Value Distributions

The statistics of Web service QoS dataset are summarized
in Table I. Response-time and throughput are within the
range of 0-20 seconds and 0-1000 kbps respectively. The
means of response-time and throughput are 3.165 sec-
onds and 9.609 kbps respectively. The distributions of the
response-time and throughput values of the user-service-
time tensors are shown in Figure 5(a) and Figure 5(b)
respectively. Most of the response-time values are between
0.1-0.8 seconds and most of the throughput values are
between 0.8-3.2 kbps.

B. Metrics

We assess the prediction quality of our proposed approach
in comparison with other methods by computing Mean Ab-
solute Error (MAE) and Root Mean Squared Error (RMSE).
The metric MAE is defined as:

𝑀𝐴𝐸 =

∑
𝑖𝑗𝑘 ∣𝑌𝑖𝑗𝑘 − 𝑌𝑖𝑗𝑘∣

𝑁
, (8)

and RMSE is defined as:

𝑅𝑀𝑆𝐸 =

√∑
𝑖𝑗𝑘(𝑌𝑖𝑗𝑘 − 𝑌𝑖𝑗𝑘)2

𝑁
, (9)

where 𝑌𝑖𝑗𝑘 is the QoS value of Web service 𝑠𝑗 observed by
user 𝑢𝑖 at time interval 𝑡, 𝑌𝑖𝑗𝑘 denotes the QoS value of Web
service 𝑠𝑗 would be observed by user 𝑢𝑖 at time interval 𝑡𝑘
as predicted by a method, and 𝑁 is the number of predicted
QoS values.

C. Performance Comparisons

In this section, in order to show the effectiveness of our
proposed Web service QoS prediction approach, we compare
the prediction accuracy of the following methods:
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1) MF1-This method considers the user-service-time ten-
sor as a set of user-service matrix slices in terms of
time. For each slice, the prediction method proposed
by Lee and Seuing in [10] is employed. It applies non-
negative matrix factorization on user-item matrix for
missing value prediction.

2) MF2-This method first compresses the user-service-
time tensor into a user-service matrix. For each entry
in the matrix, the value is the average of the specific
user-service pair during all the time intervals. After
obtaining the compressed user-service matrix, it ap-
plies the non-negative matrix factorization technique
proposed by Lee and Seuing [10] on user-item matrix
for missing value prediction.

3) TF-This is a tensor factorization-based prediction
method. It applies tensor factorization on user-service-
time tensor to extract user-specific, service-specific
and time-specific characterizes. The missing value is
then predicted based on how these characterized apply
to each other.

4) WSPred-This method is proposed in this paper. It
is a tensor factorization-based recommendation with
average QoS value constraints.

Since memory-based approaches require much more com-
putation time than model-based approaches, we only com-
pare the above four model-based approaches. Since the
matrix factorization technique cannot be directly applied
to time-aware prediction problem, we extend the prediction
approach [10] in two different ways, which derive method
MF1 and MF2 respectively.

In order to evaluate the performance of different ap-
proaches in reality, we randomly remove some entries from
the tensors and compare the values predicted by a method
with the original ones. The tensors with missing values
are in different densities. For example, 10% means that we
randomly remove 90% entries from the original tensor and
use the remaining 10% entries to predict the removed entries.
The prediction accuracy is evaluated using Eq. (8) and
Eq. (9) by comparing the original value and the predicted
value of each removed entry. The values of 𝜆 and 𝜂 are
tuned by performing cross-validation [11] on the observed
QoS data. Without lost of generality, the parameter settings
of all the approaches are 𝑙 = 20 and 𝜆1 = 𝜆2 = 𝜆3 = 𝜂 =
0.001 in the experiments conducted in this paper. Detailed
impact of tensor density and dimensionality is studied in
Section IV-D and Section IV-E.

The QoS value prediction accuracies evaluated by MAE
and RMSE are shown in Table II. For each row in the table,
we highlight the best performer among all methods. From
Table II, we can observe that the tensor factorization-based
prediction methods (i.e., TF and WSPred) outperform the
matrix factorization-based prediction methods (i.e., MF1 and
MF2), since the tensor factorization-based methods use the
time-specific features as additional information. We also ob-

serve that our approach WSPred constantly performs better
(smaller MAE and RMSE values) than the other approaches,
including TF, for both response-time and throughput under
both dense tensors and sparse tensors. This demonstrates
the advantage of time-aware prediction algorithm with the
constraints of average QoS performance. In Table II, the
MAE and RMSE values of dense tensors (e.g., tensor density
is 45% or 50%) are smaller than those of sparse tensors
(e.g., tensor density is 5% or 10%), since a denser tensor
provides more information for predicting the missing values.
In general, the MAE and RMSE values of throughput are
larger than those of response-time because the scale of
throughput is 0-1000 kbps, while the scale of response-
time is 0-20 seconds. Compared with other methods, the im-
provements of our approach WSPred are significant, which
demonstrates that the idea of considering time information
for QoS prediction is realistic and reasonable.

D. Impact of Tensor Density

In Figure 6, we compare the prediction accuracy of all
the methods under different tensor densities. We change the
tensor density from 5% to 50% with a step value of 5%.
The parameter settings in this experiment are 𝑙 = 20 and
𝜆1 = 𝜆2 = 𝜆3 = 𝜂 = 0.001.

Figure 6(a) and Figure 6(b) show the experimental results
of response-time, while Figure 6(c) and Figure 6(d) show the
experimental results of throughput. The experimental results
show that our approach WSPred achieves higher prediction
accuracy (lower MAE and RMSE values) than other com-
peting methods under different tensor density. In general,
when the tensor density is increased from 5% to 20%, the
prediction accuracy of our approach WSPred is significantly
enhanced. When the tensor density is further increased from
20% to 50%, the enhancement of prediction accuracy is quite
limited. This observation indicates that when the tensor is
very sparse, collecting more QoS information will greatly
enhance the prediction accuracy, which further demonstrates
that considering both the difference between time intervals
and the average QoS performance could effectively provide
personalized QoS estimation.

In the experimental results, we observe that the per-
formance of MF1 is worse than that of other methods.
The reason is that MF1 only extracts the user-specific and
service-specific features without considering the relationship
between QoS performance in time intervals. In general, MF2
performs better than MF1, since MF2 computes the average
QoS performance before performing matrix factorization.
Applying the features extracted from the original tensor,
MF2 predicts the average QoS performance for a particular
user-service pair. This observation further demonstrates that
the average QoS performance of a particular user-service
pair can provide valuable information when predicting the
missing QoS value of the user-service pair in a particular
time interval.
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Table II
PERFORMANCE COMPARSIONS ( A SMALLER MAE OR RMSE VALUE MEANS A BETTER PERFORMANCE)

Tensor Response-Time (seconds) Throughput (kbps)
Density

Metrics
MF1 MF2 TF WSPred MF1 MF2 TF WSPred

MAE 3.4137 2.9187 2.9184 2.5580 10.5460 8.8317 8.7997 8.2761
5% RMSE 5.3423 5.1024 4.7508 4.3626 46.6735 43.4769 39.5133 39.0962

MAE 2.8518 2.8421 2.7888 2.4990 9.9839 8.7522 8.5080 8.0131
10% RMSE 5.0667 4.5563 4.5696 4.2892 46.6656 39.7740 39.2792 38.6251

MAE 2.4241 2.2679 2.2511 2.1462 8.6773 7.9590 7.9471 6.9398
45% RMSE 4.3240 4.2541 4.2071 3.9200 45.0077 39.9388 38.6964 36.5724

MAE 2.3959 2.2596 2.2127 2.1266 8.6224 7.8306 7.8045 6.8558
50% RMSE 4.2996 4.1490 4.0169 3.8943 44.9407 38.9388 38.6964 36.5724
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Figure 6. Impact of Tensor Density
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Figure 7. Impact of Dimensionality in Response-Time Dataset

E. Impact of Dimensionality

The parameter dimensionality 𝑙 determines the number
of latent features applied to characterize user, service and
time. In Figure 7 and Figure 8, we study the impact of
parameter dimensionality by varying the values of 𝑙 from
5 to 50 with a step value of 5. Other parameter settings are
𝜆1 = 𝜆2 = 𝜆3 = 𝜂 = 0.001.

Figure 7 and Figure 8 show the MAE and RMSE values of
response-time and throughput respectively. We observe that
in both figures, as 𝑙 increases, the MAE and RMSE decrease
(prediction accuracy increases), but when 𝑙 surpasses a
certain threshold like 20, the MAE and RMSE increase
(prediction accuracy decreases) with further increase of the
value of 𝑙. This observation indicates that too few latent
factors are not enough to characterize the features of user,
service and time, while too many latent factors will cause

an overfitting problem. There exists an optimal value of 𝑙
for characterizing the latent features. In both Figure 7 and
Figure 8, when the tensor density is 50%, we observe that
our approach WSPred achieves the best performance when
the value of dimensionality is 25, while smaller values like 5
or larger values like 50 can potentially reduce the prediction
accuracy. When the tensor density is 5%, we observe that
the prediction accuracy of our approach WSPred achieves
the best performance when the value of dimensionality is
20, while smaller values like 5 or larger values like 50 can
potentially reduce the prediction accuracy. This observation
indicates that when the user-service-time tensor is sparse, 20
latent factors are already enough to characterize the features
of user, service and time which are mined from the limited
user-service-time QoS information. On the other hand, when
the tensor is dense, more latent factors, like 25, are needed to
characterize the latent features since more QoS information
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Figure 8. Impact of Dimensionality in Throughput Dataset

can be obtained from the original tensor.

V. RELATED WORK

Web application has been in spotlight recently. SOA has
become a popular framework for building Web applications.
A number of research investigations are focusing on different
kinds of issues such as Web service selection [3], [4],
Web service composition [5], [6], failure prediction [12],
reliability prediction [13], etc. Traditionally, reliability of
a system [14], [15] is analyzed without considering the
QoS performance, which is not accurate when applied to
modern systems. Recently, Quality-of-Service (QoS) has
been widely employed for representing the nonfunctional
characteristics of Web services [4], [16]. QoS performance
of Web services can be measured either from the service
provider’s perspective or from the user-side. QoS properties
(e.g. price, availability, etc.) measured at the service provider
side are usually identical for different users, while QoS prop-
erties (e.g., response-time, throughput, failure probability,
etc.) observed by different users may vary significantly due
to the unpredictable communication links and heterogeneous
network environments. Based on the QoS performance of
Web services, several approaches have been proposed for
Web service selection [3], [4] which enable service users
to identify optimal Web service from a set of functionally
similar or identical Web service candidates for improving
the whole quality of Web applications.

The above approaches usually assume that the values
of user-dependent QoS properties are already known. To
obtain the QoS values, user-side Web service evaluations
are required [17]. However, in reality a user typically has
engaged a limited number of Web services in the past and
cannot exhaustively invoke all the available Web service
candidates. In this paper, we focus on predicting missing
QoS values by collaborative filtering approaches to enable
the optimal Web service selection.

Collaborative filtering approaches are widely adopted in
commercial recommender systems [18], [19]. Generally,
traditional recommendation approaches can be categorized
into two classes: memory-based and model-based. Memory-
based approaches, also known as neighborhood-based ap-

proaches, are one of the most popular prediction methods in
collaborative filtering systems. Memory-based methods em-
ploy similarity computation based on past usage experiences
to find similar users and services for making the QoS value
prediction. The most analyzed examples of memory-based
collaborative filtering include user-based approaches [20],
[21], item-based approaches [22], [23], and their fusion [13],
[24], [25]. In [13], the reliability of active user is predicted
based on the reliability of similar users found. However,
the method proposed in [13] only considers two dimensions
(i.e., user and Web service) while time factor is not included.
Moreover, the high computational complexity makes it dif-
ficult to extend memory-based approaches (e.g. approach
proposed in [13]) to handle large amounts of time-aware
QoS data.

Model-based approaches employ machine learning tech-
niques to fit a predefined model based on the training
datasets. Model-based approaches include several types:
the clustering models [26], the latent factor models [27],
the aspect models [28], etc. Lee et al. [10] presented an
algorithm for non-negative matrix factorization that is able to
learn the parts of facial images and semantic features of text.
The premise behind a low-dimensional factor model is that
there is only a small number of factors influencing the QoS
values in the user-service-time tensor, and that a user’s factor
vector is determined by how much each factor applies to that
user. For three-dimensional tensor data, tensor factorization
techniques are employed for item recommendation [8].

The memory-based approaches employ the information
from similar users and services for predicting missing val-
ues. When the number of users or services is too small,
similarity computation for finding similar users or services
is not accurate. When the number of users or services is too
large, calculating similarity values for each pair of users
or services is time-consuming. In contrast, model-based
approaches are very efficient for missing value prediction,
since they assume that only a small number of factors
influence the QoS performance. In this paper, we take
advantage of a model-based method and extend it to three
dimensional user-service-time tensor data. The proposed
method is efficient in predicting the missing QoS values as
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analyzed in Section III-D. Moreover, we constrain that the
predicted value should not vary a lot from the average QoS
value, which improves the prediction accuracy significantly.

VI. CONCLUSION AND FUTURE WORK

Based on the intuition that a user’s Web service QoS
usage experience can be predicted by using the past usage
experience from different users, we propose a novel model-
based approach, called WSPred, for time-aware personalized
QoS value prediction for Web services. By employing a
collaborative framework, WSPred performs feature mod-
eling on user, Web service and time based on the QoS
usage experience collected from both local and global users.
Requiring no additional invocation of Web services, WSPred
makes the QoS prediction by evaluating how the user-
specific, service-specific and time-specific latent features
apply to each other. The extensive experimental results show
that our proposed WSPred outperforms the state-of-the-art
QoS prediction approaches for Web services.

For future work, we will investigate more techniques for
improving the prediction accuracy (e.g., data smoothing,
utilizing content information, etc.). Currently, we predict
the values of different QoS properties independently. In
the future, we will also conduct more investigations on
the correlations and combinations on the different QoS
properties. WSPred predicts missing QoS values based on
the past QoS experience and the available QoS information
in the current time interval. If no QoS information is avail-
able in the current time interval, WSPred purely depends
on the past experience. In the future, we will explore an
online prediction algorithm to perform time series analysis
for prediction and extend WSPred to handle updated QoS
information at run-time.
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