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Abstract—Cloud computing provides access to large pools of
distributed components for building high-quality applications.
User-side performance of cloud components highly depends on
the remote server status as well as the unpredictability of the
Internet, which are variable over time. It is an important task
to explore an method to predict the real-time performance
of cloud components. To address this critical challenge, this
paper proposes a prediction framework to predict real-time
component performance effectively. Our prediction framework
builds feature models based on the past usage experience of
different users and employs time series analysis techniques on
feature trends to make performance prediction. The results of
large-scale experiments show the effectiveness and efficiency of
our method.

I. INTRODUCTION

Cloud computing [1] is a new type of Internet-based com-

puting, whereby shared resources, software, and information

are provided to computers and other devices on demand.

A cloud application typically consists of multiple cloud

components communicating with each other over application

programming interfaces, usually Web services [2]. How to

build high-quality cloud applications becomes an urgent and

crucial research problem.

Low response-time is one of the most important re-

quirements of cloud applications. However, the response-

time performance of cloud applications is greatly influenced

by the invoked cloud components. Typically, the cloud

components are deployed in different geographical locations

and invoked via Internet connections. Moreover, the remote

cloud components may be deployed on cheap and poor

performing servers, leading to a decrease of performance. It

becomes a great challenge to build cloud applications with

good response-time performance.

Usually, cloud application customers expect to receive

a certain level application performance as specified in

Service Level Agreement (SLA). The customers expected

performance of cloud applications should be guaranteed at

run-time. In order to maintain the performance of cloud

applications, which are typically running in highly dynamic

environments, real-time performance of the involved cloud

components needs to be continuously monitored. Moreover,

real-time performance information of cloud components is

important for improving the overall performance of the cloud

applications by replacing poor performing components with

better ones.

Based on the above analysis, providing real-time perfor-

mance information of cloud component is essential for cloud

application designers to build high-quality applications and

to maintain the performance of the systems at run-time.

However, evaluating the real-time performance of cloud

applications is not an easy task, due to:

• Executing invocations for evaluation purposes becomes

too expensive, since cloud providers who maintain and

host cloud components (e.g., Amazon EC21, Amazon

S32, etc.) may charge for invocations.

• More cloud components are available over the Inter-

net, conducting performance evaluations on all cloud

components becomes time-consuming and impractical.

• Performance of cloud components is highly related to

the time of invocation, since the server status (e.g.,

workload, number of clients, etc.) and the network

environment (e.g., congestions, etc.) may change over

time. Real-time performance testing may introduce

extra transaction workload, which may impact the user

experience of using the systems. Moreover, with intro-

duced transaction workloads, the performance evaluat-

ing may not be accurate.

It becomes an urgent task to explore a personalized

prediction approach for efficiently estimating the real-time

performance of cloud applications for different users. In

this paper, we propose a system performance estimation

framework for providing personalized performance informa-

tion to the customers at run-time. We collect time-aware

performance information from geographically distributed

component users. We then extract the features of users and

components in each time slice. By analyzing the trend of

the feature changes, we estimate the features of users and

components in the coming future. Then the personalized

1http://aws.amazon.com/ec2
2http://aws.amazon.com/s3
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Figure 1. Cloud Application Architecture

performance of cloud components is predicted by evaluating

how the features of users apply to features of components.

In summary, this paper makes the following contributions:

• We propose an real-time performance prediction frame-

work for estimating the user observed performance of

cloud components. Our approach employs the past us-

age experiences of different users to efficiently predict

the performance of cloud components.

• We conduct large-scale extensive experiments for eval-

uating the performance of our proposed approach.

The rest of this paper is organized as follows: Section II

describes the cloud application architecture and introduces

the real-time performance prediction procedures. Section III

presents our real-time cloud component performance predic-

tion approach in detail. Section IV presents the experimental

results, Section V discusses related work and Section VI

concludes the paper.

II. SYSTEM ARCHITECTURE

Figure 1 shows a typical cloud application architecture.

Within a cloud application, the complicated functions can

be implemented by combing several abstract tasks. For each

abstract task, an optimal cloud component is selected from

a set of functionally equivalent component candidates. By

composing the selected components, a cloud application

instance is implemented for task execution. Typically the

cloud component candidates are distributed in different ge-

ographical locations and time zones. When invoked through

communication links, the user-side usage experiences are

influenced by the network environments and the server-

side status at invocation time. Since cloud applications are

increasingly running on large numbers of dynamic compo-

nents, users often encounter highly dynamic and uncertain

performance of cloud applications.

As shown in Figure 2, the real-time performance predic-

tion mechanism proposed in this paper contains three phases.

Figure 2. Real-Time Performance Prediction Procedures

In phase 1, each component user keeps local performance

records of the cloud components. In phase 2, local cloud

component usage experiences are shared among different

component users. Each user is encouraged to contribute

its local records to obtain records from other users. By

contributing more individually observed cloud component

performance information, a component user can obtain

more global performance information from other users,

thus obtaining more accurate cloud component performance

prediction values. By combining the local records of com-

ponent performance, global performance information for all

component is obtained. In phase 3, time series analysis [3]

is conducted on the extracted time-specific user features

and component features. A performance model is built for

personalized real-time component performance prediction.

The detailed real-time performance prediction approach is

presented in Section III.

In this paper, we focus on the design of Performance
Monitor within a cloud platform. User-side real-time per-

formance of cloud components is monitored by the module

Performance Monitor. The Performance Monitor consists of

two sub-units: Collector, which is used to collect perfor-

mance information from various component users and Pre-
dictor, which is supposed to provide real-time performance

prediction for different component users.

III. REAL-TIME CLOUD COMPONENT PERFORMANCE

PREDICTION

In this section, we propose a collaborative method to make

personalized real-time performance prediction of cloud com-

ponents for different users. We first propose a latent feature

learning algorithm to build the time-aware user-specific and

component-specific feature models in Section III-A. The

performance of components is then predicted by applying

the proposed prediction algorithm in Section III-B.

A. Time-Aware Latent Feature Model

As shown in Fig. 3, let U be the set of m users and

C be the set of n cloud components. In each time slice

t, the observed response-time from all users is represented

as a matrix R(t) ∈ R
m×n with each existing entry rui(t)

representing the response-time of component i observed

by user u in time slice t. Given the set of matrices

Ψ = {R(k)|k < tc}, matrix R(tc) should be predicted

representing the expected response-time of components in

time slice tc.
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Figure 3. A Toy Example of Performance Prediction

Without loss of generality, we can map the response-time

values to the interval [0, 1] using the following function:

f(x) =

⎧⎨
⎩

0, if x < rmin

1, if x > rmax
x−rmin

rmax−rmin
, otherwise

where rmax and rmin are the upper bound and lower bound

of the response-time values, respectively, which can be

defined by users.

In order to learn the latent features of users and compo-

nents, we employ a matrix factorization technique to fit a

feature model to user-component matrix in each time slice.

The factorized user-specific and component-specific features

are utilized to make further performance prediction. The idea

behind the feature model is to derive a high-quality low-

dimensional feature representation of users and components

by analyzing the user-component matrices. It is noted that

there is only a small number of features influencing perfor-

mance experiences, and that a user’s performance experience

vector is determined by how each feature is applied to

that user and the corresponding component. Examples of

physical features are network distance between the user and

the server, the workload of the server, etc. Latent features

are orthogonal representation of the decomposed results

of physical features. Consider the matrix R(t) ∈ R
m×n

consisting of m users and n components. Let p(t) ∈ R
l×m

and q(t) ∈ R
l×n be the latent user and component feature

matrices in time slice t. Each column in p(t) represents

the l-dimensional user-specific latent feature vector of a

user and each column in q(t) represents the l-dimensional

component-specific latent feature vector of a component. We

employ an approximating matrix to fit the user-component

matrix R(t), in which each entry is approximated as:

r̂ui(t) = pTu (t)qi(t) (1)

where l is the rank of the factorization which is generally

chosen so that (m + n)l < mn, since p(t) and q(t) are

low-rank feature representations [4].

We construct a cost function to evaluate the quality of

approximation in each slice. The cost function is usually

defined by evaluting the distance between two non-negative

matrices. In this paper, due to the reason that there are a large

number of missing values in practice, we only factorize the

observed entries in matrix R(t).

minL(pu(t), pi(t))

=
1

2

m∑
u=1

n∑
i=1

Iui(rui(t)− g(r̂ui(t)))
2

+
λ1

2
||p(t)||2 + λ2

2
||q(t)||2,

(2)

where λ1, λ2 > 0, Iui is the indicator function that is

equal to 1 if user u invoked component i during the time

slice t and equal to 0 otherwise. To avoid the overfitting

problem, we add two regularization terms to Eq. (2) to

constrain the norms of p(t) and q(t) where || · ||2 denotes

the Frobenius norm. The optimization problem in Eq. (2)

minimizes the sum-of-squared-errors objective function with

quadratic regularization terms. g(x) = 1/(1 + exp(−x)),
which maps r̂ui(t) to the interval [0, 1].

A local minimum of the objective function given by

Eq. (2) can be found by performing incremental gradient

descent in feature vectors p(t) and q(t):

∂L
pu(t)

= Iui(g(r̂ui(t))− rui(t))g
′(r̂ui(t))qi(t)

+λ1pu(t), (3)
∂L
qi(t)

= Iui(g(r̂ui(t))− rui(t))g
′(r̂ui(t))pu(t)

+λ2qi(t). (4)

B. Real-Time Performance Prediction

Given the latent feature vectors of users and components

in time slices before tc, the latent feature vectors in time

slice tc can be predicted by precisely modeling the trends of

features. Intuitively, older features are less correlated with a

component’s current status or a user’s current characteristics.

To characterize the latent features at time slice tc, the

prediction calculation should rely more on the information

collected in the latest time slices than that collected in

older time slices. In order to integrate the information from

different time slices, we therefore employ the following

temporal relevance function:

f(k) = e−αk, (5)

where k is the amount of time that has passed since the

corresponding information was collected. f(k) measures the

relevance of information collected from different time slices

for making prediction on latent features at time tc. Note that

f(k) decreases with k. By employing the temporal relevance

function f(k), we can assign a weight for each latent feature

vector depending on the collecting time when making the

prediction. In the temporal relevance function, α controls

the decaying rate. By setting α to 0, the evolutionary nature

of the information is ignored. A constant temporal relevance

108

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 04:45:30 UTC from IEEE Xplore.  Restrictions apply. 



value of 1 is assigned to latent feature vectors in all the time

slices, which means latent feature vectors in time slice tc are

predicted simply by averaging the vectors before time slice

tc. Since e−α is a constant value, the value of temporal

relevance function can be recursively computed: f(k+1) =
e−αf(k).

By analyzing the collected performance data, we obtain

two important observations: (1) Within a relatively long

time period such as one day or one week, the component

performance observed by a user may vary significantly due

to the highly dynamic component side status (e.g., workloads

of storage component may increase sharply at the opening

of stock markets.) and user side environment (e.g., network

latency would increase during the office hours). (2) Within a

relatively short time period such as one minute or one hour,

a component performance observed by a user is relatively

stable. The above two observations indicate that the feature

information of latent feature vectors in time slice tc can

be predicted by utilizing the feature information collected

before tc. Moreover, the performance curve in terms of time

should be smooth, which means more recent information is

placed with more emphasis for predicting the performance

in time slice tc. Therefore, we estimate the feature vectors in

time slice tc by computing the weighted average of feature

vectors in the past time slice:

p̂u(tc) =

∑w
k=1 pu(tc − k)f(k)∑w

k=1 f(k)
, (6)

q̂i(tc) =

∑w
k=1 qi(tc − k)f(k)∑w

k=1 f(k)
, (7)

where p̂u(tc) and q̂i(tc) are the predicted user feature vector

and component feature vector in time slice tc, respectively.

w controls the information of how many past time slices are

used for making prediction. In Eq. (6) and Eq. (7), large

weight values are assigned to the feature vectors in recent

slices while small weight values are assigned to the feature

vectors in old slices.

Given the predicted latent feature vectors p̂u(tc) and

q̂i(tc), we can calculate the component performance value

observed by a user in time slice tc. For the user u and

the component i, the predicted performance value r̂ui(tc)
is defined as

r̂ui(tc) = p̂Tu (tc)q̂i(tc). (8)

IV. EXPERIMENTS

In the following, Section IV-A gives the description of our

experimental dataset, Section IV-B defines the evaluation

metrics, Section IV-C evaluates the prediction quality of

our approach, and Section IV-D studies the impact of data

density.

Table I
STATISTICS OF WEB SERVICE RESPONSE-TIME DATASET

Statistics Response-Time

Scale 0-20s
Mean 3.165s

Num. of Users 142
Num. of Web Services 4,532
Num. of Time Slices 64

Num. of Records 30,287,611
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Figure 4. Response-Time Value Distribution

A. Dataset Description

In real world, some commercial cloud components may

charge for invocations. We conduct experiments on our

Web service performance dataset to evaluate the prediction

quality of our proposed approach. Web service, a kind of

cloud component, can be integrated into cloud applications

for accessing information or computing component from a

remote system. The Web service performance dataset records

performance information of 4,532 real-world Web services

from 57 countries. We employ 142 distributed computers

located in 22 countries from PlanetLab3 to invoke Web

services. In our experiment, each of the 142 computers sends

operation requests to all the 4,532 Web services in every time

slice. The experiment lasts for 16 hours with one time slice

lasting for 15 minutes. The response-time of all the 4,532

Web services observed by all the 142 users during 64 time

slices can be presented as a set of 142×4532 matrices, each

of which stands for a particular time slice.

The statistics of Web service response-time dataset are

summarized in Table I. Response-time is within the range of

0-20 seconds, whose mean is 3.165 seconds. The distribution

of the response-time values of all the matrices is shown in

Figure 4(a). From Figure 4(a) we can observe that most of

the response-time values are between 0.1-0.8 seconds.

3http://www.planet-lab.org
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B. Metrics

We assess the prediction quality of our proposed approach

in comparison with other methods by computing Mean Ab-

solute Error (MAE) and Root Mean Squared Error (RMSE).

The metric MAE is defined as:

MAE =

∑
uit |r̂ui(t)− rui(t)|

N
, (9)

and RMSE is defined as:

RMSE =

√∑
uit(r̂ui(t)− rui(t))2

N
, (10)

where rui(t) is the response-time value of cloud component

i observed by user u in time slice t, r̂ui(t) denotes the

predicted response-time value of Web service i would be

observed by user u in time slice t, and N is the number of

predicted response-time values in the experiments.

C. Comparison

In this section, in order to show the effectiveness and

efficiency of our proposed real-time cloud component perfor-

mance prediction approach, we compare our approach with

the following methods:

• UPCC-This is a neighborhood-based method. It pre-

dicts response-time of components based on the ob-

served performance from similar users [5], [6]. Since

UPCC cannot perform real-time prediction for the next

time slice, we extend the traditional UPCC by using the

average performance from similar users for prediction.

• MF-This method first compresses the set of user-

component matrices into an average user-component

matrix. For each entry in the matrix, the value is the

average of the specific user-component pair during all

the time slices. After obtaining the compressed user-

component matrix, it applies the non-negative matrix

factorization technique proposed by Lee and Seuing [4]

on user-component matrix for missing value prediction.

The predicted values are used as the response-time of

the corresponding user-component pair in the next time

slice.

In order to evaluate the performance of different ap-

proaches in reality, we randomly remove some entries from

the performance matrices and compare the values predicted

by a method with the original ones. The matrices with

missing values are in different densities. For example,

10% means that we randomly remove 90% entries from

the original matrices and use the remaining 10% entries

for prediction. The prediction accuracy is evaluated using

Eq. (9) and Eq. (10) by comparing the original values and the

predicted values in the corresponding matrices. The values

of λ1 and λ2 are tuned by performing cross-validation [7] on

the observed performance data. Without lost of generality,

the parameter settings of all the approaches are l = 20,

w = 10, α = 1 and λ1 = λ2 = 0.001 in the experiments
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Figure 5. Performance Comparisons

conducted in this paper. Detailed impact of tensor density is

studied in Section IV-D.

The component performance prediction accuracies evalu-

ated by MAE and RMSE are shown in Figure 5. A smaller

MAE or RMSE value means a better performance. From

Figure 5, we can observe that our time-aware prediction

method outperforms the non time-aware prediction methods

(i.e., UPCC and MF), since our method employs the time-

specific features as additional information for performance

prediction. In Figure 5, the MAE and RMSE values of dense

data (e.g., data density is 45% or 50%) are smaller than

those of sparse data (e.g., data density is 5% or 10%), since

denser data provide more information for prediction. On

average, our real-time approach RTP improves the predic-

tion accuracy by 18.9% and 10.3% relative to UPCC and

MF, respectively. The improvements are significant, which

indicates the prediction effectiveness of RTP.

D. Impact of Data Density

In Figure 5, we compare the prediction accuracy of all

the methods under different data densities. We change the
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data density from 5% to 50% with a step value of 5%. The

parameter settings in this experiment are l = 20, w = 10,

α = 1 and λ1 = λ2 = 0.001.

In Figure 5(a) and Figure 5(b), the experimental results

show that our approach RTP achieves higher prediction accu-

racy (smaller MAE and RMSE values) than other competing

methods under different data density. In general, when the

data density is increased from 5% to 20%, the prediction

accuracy of our approach RTP is significantly enhanced.

When the data density is further increased from 20% to

50%, the enhancement of prediction accuracy will decrease.

This observation indicates that collecting more performance

information will greatly enhance the prediction accuracy

when the data are very sparse.

V. RELATED WORK

Cloud computing [1] has been in spotlight recently. A

number of investigations have been carried out focusing

on different kinds of research issues such as fault tol-

erance [8], resiliency quantification [9], and performance

prediction [10].

Usually, performance of cloud components is measured

from the user’s observations. Based on the performance

of components, several approaches have been proposed

to optimize web component selection [11], [12], [13] in

improving the whole quality of web applications.

The above approaches focus on how to employ the com-

ponent performance information for component selection.

However, in reality, user cannot exhaustively invoke all

the components in a cloud. In this paper, we focus on

predicting missing performance information by collaborative

filtering approach to enable the optimal cloud component

selection [14]. Typically, existed performance prediction

approaches (e.g., Zhang el at. [10]) only perform static

analysis on historical data while time factor is not included.

To enable performance prediction in real-time Web systems,

we propose a timely performance prediction framework for

cloud components in this paper.

VI. CONCLUSION AND FUTURE WORK

In this paper we propose a novel real-time cloud com-

ponent performance prediction approach called RTP, for

personalized performance prediction at run-time. RTP builds

feature models and employs time series analysis techniques

on feature trends to make personalized performance predic-

tion for different component users. The extensive experi-

mental results shows the effectiveness and efficiency of our

framework.

For future work, we will investigate more techniques for

improving the prediction accuracy (such as data smoothing

and utilizing context-aware information).
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