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Abstract

Web services are becoming prevalent nowadays. Finding
desired Web services is becoming an emergent and chal-
lenging research problem. In this paper, we present WS-
Express (Web Service Express), a novel Web service search
engine to expressively find expected Web services. WSEx-
press ranks the publicly available Web services not only by
functional similarities to users’ queries, but also by non-
functional QoS characteristics of Web services. WSExpress
provides three searching styles, which can adapt to the sce-
nario of finding an appropriate Web service and the sce-
nario of automatically replacing a failed Web service with a
suitable one. WSExpress is implemented by Java language
and large-scale experiments employing real-world Web ser-
vices are conducted. Totally 3,738 Web services (15,811
operations) from 69 countries are involved in our experi-
ments. The experimental results show that our search en-
gine can find Web services with the desired functional and
non-functional requirements. Extensive experimental stud-
ies are also conducted on a well known benchmark dataset
consisting of 1,000 Web service operations to show the re-
call and precision performance of our search engine.

1. Introduction

With a set of standard protocols, i.e., SOAP (Simple Ob-
ject Access Protocol), WSDL (Web Services Description
Language), and UDDI (Universal Description, Discovery
and integration), Web services provided by different orga-
nizations can be discovered and integrated to develop ap-
plications [2]. With the growing number of Web services
in the Internet, many alternative Web services can provide
similar functionalities to fulfill users’ requests. Syntactic
or semantic matching approaches based on services’ tags in
UDDI repository are usually employed to discover suitable
Web services [13]. However, discovering web services from
UDDI repositories suffers several limitations. First, since
UDDI repository is no longer a popular style for publishing

Web services, most of the UDDI repositories are seldom
updated. This means that a significant part of information
in these repositories is out of date. Second, arbitrary tag-
ging methods used in different UDDI repositories add to
the complexity of searching Web services of interest.

To address these problems, an automated mechanism is
required to explore existing Web services. Considering that
WSDL files are used for describing Web services and can
be obtained in several ways other than UDDI repositories,
several WSDL based Web service searching approaches are
proposed. Such as Binding Point1, Grand Central2, Salcen-
tral3, and Web Service List4. However, these engines only
simply exploit keyword-based search techniques which are
obviously insufficient for catching the Web services’ func-
tionalities. First, keywords cannot represent Web services’
underlying semantics. Second, since a Web service is sup-
posed to be used as part of the user’s application, keywords
cannot precisely specify the information user needs and the
interface acceptable to the user. In this paper, we employ
not only keywords but also operation parameters to com-
prehensively capture Web service’s functionality.

In addition, Web services sharing similar functionali-
ties may possess very different non-functionalities (e.g.,
response time, throughput, availability, usability, perfor-
mance, integrity, etc.). In order to effectively provide per-
sonalized Web service ranking, it is requisite to consider
both functional and non-functional characteristics of Web
services. Unfortunately, the Web service search engines
mentioned above cannot distinguish the non-functional dif-
ferences between Web services.

QoS-driven Web service selection is a popular research
problem [1, 9, 15]. A basic assumption in the field of selec-
tion is that all the Web services in the candidate set share
identical functionality. Under this assumption, most of
the selection approaches can only differentiate among Web

1http://www.bindingpoint.com/
2http://www.grandcentral.com/directory/
3http://www.salcentral.com/
4http://www.webservicelist.com/
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services’s non-functional QoS characteristics, regardless of
their functionalities. While these QoS-driven selection ap-
proaches are directly employed to Web service search en-
gines, several problems will arise. One is that Web ser-
vices whose functionalities are not exactly equivalent to the
user searching query are completely excluded from the re-
sult list. Another problem is that Web services in the result
list are ordered only according to their QoS metrics, while
combining both functional and non-functional attributes is
a more reasonable method.

To address the above issues, we propose a new Web ser-
vice discovering approach by paying respect to functional
attributes as well as non-functional features of Web ser-
vices. A search engine prototype, WSExpress, is built as
an implementation of our approach. Experimental results
show that our search engine can successfully discover user-
interested Web services within top results. In particular, the
contributions of this paper are three-fold:

• Different from all previous work, we propose a brand
new Web service searching approach considering both
functional and non-functional qualities of the service
candidates.

• We conduct a large-scale distributed experimental
evaluation on real-world Web services. 3,738 Web ser-
vices (15,811 operations) located in 69 countries are
evaluated both on their functional and non-functional
aspects. The evaluation results show that we can rec-
ommend high quality Web services to the user. The
precision and recall performance of our functional
search is substantially better than the approach in pre-
vious work [11].

• We publicly release our large-scale real-world Web
service WSDL files and associated QoS datasets5 for
future research. To the best of our knowledge, our
dataset is the first publicly-available real-world dataset
for functional and non-functional Web service search-
ing research.

The rest of this paper is organized as follows: Section
2 introduces Web service searching scenarios and the sys-
tem architecture. Section 3 presents our QoS-aware search-
ing approach. Section 4 describes our experimental results.
Section 5 introduces related work and Section 6 concludes
the paper.

2. Preliminaries

2.1. A Motivating Example

Figure 1 shows a common Web service query scenario.
A user wants to find an appropriate Web service which con-
tains operations that can be integrated as part of the user’s

5http://wiki.cse.cuhk.edu.hk/user/ylzhang/doku.php?id=icwsdata
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Figure 1. Web Service Query Scenario

application. The user needs to specify the functionality of
a suitable operation by filling the fields of keywords, in-
put and output. Also the user may have some special re-
quirements on service quality, such as the maximum price.
These personal requirements can be represented by setting
the QoS constraint field. The criticality of different quality
criteria for a user can be defined by setting the QoS weight
field.

A lot of Web services can be accessed over the Internet.
Each service candidate provides one or more operations.
Generally, these operations can be described in the struc-
ture shown in Figure 1. Each operation includes a name,
the parameters of input and output elements, and the de-
scriptions about the functionality of this operation as well
as the Web services it belongs to in its associated WSDL
document. The service quality associated with this opera-
tion is represented by several criteria values, e.g., Q1, Q2 in
Figure 1.

Table 1 shows Web service query examples. In query
1, a user wants to find a Web service that can provide ap-
propriate operations for displaying prices of different types
and brands of cars. The input information provided by the
user for that particular operation is the types and names of
cars. This query is structured into three parts: keywords,
input and output. The keywords part defines in which do-
main is the query about. In this example, the user concerns
about the domain “car”. The input part contains “name”
and “type” since they can be provided by the user. The out-
put part is set as “price” to specify the information the user
wants to obtain from an appropriate operation.

In Table 2 we enumerate three possible results for the
user’s search query. Web service 1 provides one opera-
tion CarPrice and this operation’s functionality is almost
the same as what the user specifies in the query. In addi-
tion, the service quality meets the user’s requirements. Web
service 2 provides operation AutomobileInformation. Oper-
ation AutomobileInformation can provide many information
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Table 1. User Query Examples
Functionality QoSUser Query

Keywords Input Output Constraint (C1, C2, C3) Weight (W1, W2, W3)
query 1 car name, type price (0.5, 0.5, 0.2) (0.4, 0.4, 0.2)
query 2 weather city, country weather (0.6, 0.3, 0.3) (0.3, 0.4, 0.3)

Table 2. Web Service Examples
Web Service Name Operation Name Input Output QoS (Q1, Q2, Q3)

WS 1 CarPrice name, type price (0.8, 0.6, 0.6)
WS 2 AutomobileInformation name, model price, color, company (0.2, 0.4, 0.6)
WS 3 VehicleRecommend name, model, usage rent, primecost, provider (0.6, 0.8, 0.5)
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Figure 2. System Architecture

details including the price of the automobiles after invoked
with “name” and “model” as input. However, some ser-
vice quality criteria, such as the service price (Q1) and the
response time (Q2), are beyond the user’s tolerance. Op-
eration VehicleRecommend provided by Web service 3 rec-
ommends suitable vehicles for the user to rent. Although
its target is to suggest the most suitable vehicle and vehi-
cle rental companies to the user, it can also be invoked for
obtaining the prices of cars due to the prime cost informa-
tion provided. Besides, operation VehicleRecommend’s ser-
vice quality fits the user’s constraints and preferences quit
well. Among these three Web services, the most suitable
Web service is the first one, and another acceptable one is
Web service 3, but Web service 2 is not highly suggested
due to its service quality. Thus, a reasonable order of the
recommendation list for the user’s query is Web service 1,
Web service 3, and Web service 2.

2.2. System Architecture

Now we describe the system architecture of our Qos-
aware Web service search engine. As shown in Figure 2,
after accepting a user’s query specification, our search en-
gine should be able to provide a practical Web service rec-
ommendation list. The search engine consists of three com-
ponents: non-functional evaluation, functional evaluation,
and QoS-aware Web service ranking.

There are two phases in the non-functional evaluation
component. In phase 1, the search engine obtains QoS cri-

teria values of all the available Web services. In phase 2, the
search engine computes the QoS utilities of different Web
services according to the constraints and preferences speci-
fied in the QoS part of the user’s query.

The functional evaluation component contains two
phases. In phase 1, the search engine carries out a pre-
processing work on the WSDL files associated to the Web
services. This work aims at removing noise and improving
accuracy of functional evaluation. In phase 2, the search
engine evaluates the Web service candidates’ functional fea-
tures. These features are described by similarities between
the functionality specified in the query and the functionality
of operations provided by those Web services.

Finally, the search engine combines both functional and
non-functional features of Web services in the QoS-aware
Web service ranking component. A practical and reason-
able Web service recommendation list is then provided as a
result to the user’s search query.

3. QoS-Aware Web Service Searching

3.1. QoS Model

In our QoS model we describe the quantitative non-
functional properties of Web services as quality criteria.
These criteria include generic criteria and business specific
criteria. Generic criteria are applicable to all Web services
like response time, throughput, availability and price, while
business criteria such as penalty-rate are specified to certain
kinds of Web services.

By assuming m criteria are employed for representing a
Web service quality, we can describe the service quality us-
ing a QoS vector (qi,1, qi,2, . . . , qi,m), where qi,j represents
the jth criterion value of Web service i.

Some QoS criteria values of Web services, such as
penalty rate and price, can be obtained from the service
providers directly. However, other QoS attributes’ values
like response time, availability and reliability need to be
generated from all the users’ invocation records due to the
differences between network environments. In this paper,
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we use the approach proposed in [16] to collect QoS perfor-
mance on real-world Web services.

By putting all the Web services’ QoS vectors together,
we can obtain the following matrix Q. Each row in Q rep-
resents a Web service, while each column represents a QoS
criterion value.

Q =

⎛
⎜⎜⎜⎝

q1,1 q1,2 . . . q1,t

q2,1 q2,2 . . . q2,t

...
...

...
...

qs,1 qs,2 . . . qs,t

⎞
⎟⎟⎟⎠ (1)

A utility function is used to evaluate the multi-
dimensional quality of a Web service. The utility function
maps a QoS vector into a real value for evaluating the Web
service candidates. To represent user priorities and prefer-
ences, two steps are involved into the utility computation.
First, the QoS criteria values are normalized to enable a
uniform measurement of the multi-dimensional quality of
service independent of their units and ranges. Second, the
weighted evaluation on criteria needs to be carried out for
representing user’s constraints, preference and special re-
quirements.

Normalization In this step each criterion value is trans-
formed to a real value between 0 and 1 by comparing it
with the maximum and minimum values of that particular
criterion among all available Web service candidates. The
maximum value Qmax(k) and minimum value Qmin(k) of
kth criterion are computed as follows:

Qmax(k) = max
∀j∈[1,n]

qj,k (2)

Qmin(k) = min
∀j∈[1,n]

qj,k (3)

The normalized value of qi,j can be represented by q′i,j
as follows:

q′i,j =
qi,j − Qmin(k)

Qmax(k) − Qmin(k)
(4)

Thus, the QoS matrix Q is transformed into a normalized
matrix Q′ as follows:

Q′ =

⎛
⎜⎜⎜⎝

q′1,1 q′1,2 . . . q′1,t

q′2,1 q′2,2 . . . q′2,t
...

...
...

...
q′s,1 q′s,2 . . . q′s,t

⎞
⎟⎟⎟⎠ (5)

Utility Computation Some Web services need to be ex-
cluded from the candidate set due to their inconsistency
with the user’s QoS constraints. Assume a user’s constraint
vector is C = (c1, c2, . . . , cm), in which ci sets the mini-
mum normalized ith criterion value. We will only consider
those Web services whose criteria values are all larger than

the constraints. In other words, we delete the rows which
fail to satisfy the constraints from Q′ and produce a new
matrix Q∗. For the sake of simplicity, we only consider pos-
itive criteria whose values need to be maximized (negative
criteria can be easily transformed into positive attributes by
multiplying -1 to their values).

A weight vector W = (w1, w2, . . . , wm) is used to rep-
resent user’s priorities on preferences given to different cri-
teria with wk ∈ R

+
0 and

∑m
k=1 wk = 1. The final QoS

utilities vector U = (u1, u2, . . . ) of Web service candidates
are therefore can be computed as follows:

U = Q∗ ∗ WT (6)

in which ui is the ith Web service QoS utility value within
range [0, 1].

3.2. Similarity Search
Now we describe a similarity model for computing simi-

larities between a user query and Web service operations. In
this model, a vector (Keywords, Input,Output) is used
to represent the functionality part of a user query as well
as the functionality part of Web service operations. Par-
ticularly, the keywords of a Web service operation are ab-
stracted from the descriptions in its associated WSDL file.
Two phases are involved in the similarity search: WSDL
preprocessing and similarity computation.

WSDL Preprocessing In order to improve the accuracy
of similarity computation for operations and user query in
our approach, we first need to preprocess the WSDL files.
There are two steps as follows:

1. Identify useful terms in WSDL files. Since the de-
scriptions, operation names and input/output parame-
ters’ names are made manually by the service provider,
there are a lot of misspelled and abbreviated words in
real-world WSDL files. This step replace such kind of
words with normalized forms.

2. Perform word stemming and remove stopwords. A
stem is the basic part of the word that never changes
even when morphologically infected. This process
can eliminate the difference between inflectional mor-
phemes. Stopwords are those with little substantive
meaning.

Similarity Computation Now we describe how to mea-
sure the similarities of Web service operations to a user’s
query. The functionality part a user’s query Rf con-
sists of three elements Rf = (rk, rin, rout). The key-
words element is a vector rk = (rk

1 , rk
2 , . . . , rk

l ), where
rk
i is the ith keyword. Moreover, the input element

rin = (rin
1 , rin

2 , . . . , rin
m ) and the output element rout =

(rout
1 , rout

2 , . . . , rout
n ), where rin

i and rout
i are the ith terms

of input element and output element respectively. A Web
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service operation also consists of three elements OPf =
(K, In,Out). The keywords element of operation i is a
vector of words Ki = (ki

1, k
i
2, . . . , k

i
l′). The input and the

output elements are vectors Ini = (ini
1, in

i
2, . . . , in

i
m′) and

Outi = (outi1, outi2, . . . , outin′) respectively. Thus, users’
queries and Web service operations are described as sets of
terms. By applying the TF/IDF (Term Frequency/Inverse
Document Frequency) measure [12] into these sets, we can
measure the cosine similarity si between Web service oper-
ation i and a user’s query.

3.3. QoS-Aware Web Service Searching

With an increasing number of Web services being made
available in the Internet, users are able to choose func-
tionally appropriate Web services with high non-functional
qualities in a much larger set of candidates than ever before.
It is highly necessary to recommend to the user a list of ser-
vice candidates which fulfill both the user’s functional and
non-functional requirements.

To attack the above problem, we propose a novel search
engine which can provide the user with brand new searching
styles. We define a user search query in the form of a vector
R = (Rf , Rq), which contains functionality part Rf and
non-functionality part Rq for representing the user’s ideal
Web service candidate. Rq = (C,W ) defines the user’s
nonfunctional requirements, where C and W set the user’s
constraints and preferences on QoS criteria separately as
mentioned in Section 3.1. Our new searching procedure
consists of three styles in the following discussion.

Keywords Specified In this searching style, the user
only needs to simply enter the keywords vector rk and QoS
requirements Rq. The keywords should capture the main
functionality the user requires in the search goal. In Table 1
as an example, since the user needs price information of
cars, it is reasonable to specify “car” or “car, price” as the
keywords vector.

Interface Specified In order to improve the searching ef-
ficiency, we design the “interface specified” searching style.
In this style, the user specifies the expected functionality by
setting the input vector rin and/or output vector rout as well
as QoS requirements Rq. The input vector rin represents
the largest amount of information the user can provide to
the expected Web service operation, while the output vector
represents the least amount of information that should be
returned after invoking the Web service operation.

Similar Operations For a more accurate and advanced
Web service searching, we design the “similar operation”
searching style by combining above two styles. This style
is especially suitable in the following two situations. In the
first situation, the user has already received a Web service
recommendation list by performing one of the above search-
ing styles. The user decides the Web service to explore in
detail, checks the inputs and outputs of its operations, and

even tries some of the operations. After carefully inspect-
ing a Web service the user may find that this Web service
is not suitable for the applications. However, the user does
not want to repeat the time-consuming inspecting process
for other service candidates. This style enables the user
to find similar Web service operations by only modifying
a small part of the previous query to exclude these inap-
propriate features. In the second situation, the user already
integrates a Web service into the application for a partic-
ular functionality. However, due to some reason this web
service becomes unaccessible. Without requesting an ex-
tra query process, the search engine can automatically find
other substitutions.

After receiving the users’ query, the functional compo-
nent of WSExpress computes the similarity si in Section
3.2 between search query Rf and operations of Web ser-
vice i, while the non-functional component of WSExpress
employs Rq to compute the QoS utility ui in Section 3.1 of
each Web service i.

A final rating score ri is defined to evaluate the confor-
mity of each Web service i to achieve the search goal.

ri = λ · 1
log(psi

+ 1)
+ (1 − λ) · 1

log(pui
+ 1)

, (7)

where psi
is the functional rank position and pui

is the non-
functional rank position of Web service i among all the ser-
vice candidates. Since the absolute values of similarity and
service quality indicate different features of Web service
and include different units and range, rank positions rather
than absolute values is a better choice to indicate the ap-
propriateness of all candidates. 1

log(p+1) calculates the ap-
propriateness value of a candidate in position p for a query.
λ ∈ [0, 1] defines how much the functionality factor is more
important than the non-functionality factor in the final rec-
ommendation.

λ can be a constant to allocate a fixed percentage of the
two parts’ contributions to the final rating score ri. How-
ever, it is more realistic if λ is expressed as a function of
psi

:
λ = f(psi

) (8)

λ is smaller if the position in similarity rank is lower. This
means a Web service is inappropriate if it cannot provide
the required functionality to the users no matter how well
it serves. The relationship between searching accuracy and
the formula of λ will be identified to extend the search en-
gine prototype in our future work.

3.4. Application Scenarios

Now we discuss in detail how the functional evaluation
component operates in different scenarios.

• If only the keywords vector in the functionality part of
the user query is defined, the similarity is computed in
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Section 3.2 using the keywords vector rk of the query
and the keywords vector K extracted from the descrip-
tions, operation names, and parameter names.

• If the input and output vectors in the functionality part
of the user query are defined, the input similarity and
output similarity are computed in Section 3.2 using the
input/output vector rin/rout of the query and the in-
put/output vector In/Out of an operation. The func-
tional similarity is a combination of input and output
similarities.

• If the whole functionality part of a query is available.
The functional similarity of an operation is a combi-
nation of the above two kinds of similarities, which is
computed using Rf and OPf .

4. Experiments

The aim of the experiments is to study the performance
of our approach compared with other approaches (e.g., the
one proposed by [11]). We conduct two experiments in
Section 4.1 and Section 4.2, respectively. Firstly, we show
that the top-k Web services returned by our approach have
much more QoS gain than other approaches. Secondly, we
demonstrate that our approach can achieve highly relevant
results as good as other similarity based service searching
approaches even there is no available QoS values.

4.1. Evaluate QoS Recommendation

In this section, we conduct a large-scale real-world ex-
periment to study the QoS performance of the top-k Web
services returned by our searching approach.

To obtain real-world WSDL files, we developed a Web
crawling engine to crawl WSDL files from different Web
resources (e.g., UDDI, Web service portal, and Web ser-
vice search engine). We obtain totally 3,738 WSDL files
from 69 countries. Totally 15,811 operations are contained
in these Web services. To measure the non-functional per-
formance of these Web services, 339 distributed computers
in 30 countries from Planet-lab 6 are employed to moni-
tor these Web services. The detailed non-functional per-
formance of Web service invocations are recorded by these
service users (distributed computer nodes).

In most of the searching scenarios, users tend to look at
only the top items of the returned result list. The items in the
higher position, especially the first position, is more impor-
tant than the items in lower positions in the returned result
list. To evaluate the qualities of top-k returned results in
a result list, we employ the well-known DCG (Discounted
Cumulative Gain) [6] approach as performance evaluation
metric. DCG value can be calculated by:

6http://www.planet-lab.org
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Figure 3. DCG of Top-K Web services

DCGk =
∑ (2ui − 1)

log(1 + pi)
, (9)

where ui is the ith Web service’s QoS utility value and
DCGk is the discounted cumulative gain of top-k QoS util-
ities in a Web service searching result list. The gain is accu-
mulated starting at the top of the ranking and discounted at
lower ranks. A large DCGk value means high QoS utilities
of the top-k returned Web services.

To study the performance of our approach, we com-
pared our WSExpress Web service searching engine with
the URBE [11], a keywords matching approach, employ-
ing our real-world dataset described above. Totally 5 query
domains are studied in this experiment. Each domain con-
tains 4 user queries. Figure 3 shows the DCG values of top-
k recommended Web services. The top-k DCG values of
our WSExpress engine are considerably higher than URBE
(i.e., 2.99 of WSExpress compared with 2.04 of URBE for
Top5 and 4.51 of WSExpress compared with 2.84 of URBE
for Top10). This means that, given a query, our search en-
gine can recommend high quality Web services in the first
positions.

Table 3 shows the DCG values of top-k recommended
Web services in the five domains. In most of the queries,
DCG values of WSExpress are much higher than URBE.
In some search scenarios such as query 2, the DCG values
of WSExpress and URBE for Top5 are identical, since in
this particular case the most functional appropriate Web ser-
vices have the most appropriate non-functional properties.
In other words, these Top5 Web services have highest QoS
utilities and similarity values. However, while more top
Web services are considered, such as Top10, the DCG val-
ues of WSExpress are becoming much higher than URBE.
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Table 3. DCG values ( A larger DCG value means a better performance)
Top5 Top10 Top20 Top40Domain Query ID

URBE WSExpress URBE WSExpress URBE WSExpress URBE WSExpress

1 0.92319 1.26869 1.28565 2.23302 1.67495 3.54423 2.89918 5.50935
2 1.78734 1.78734 1.98998 2.77874 2.06252 4.57952 3.71728 6.67234
3 1.92026 3.92026 2.84943 6.04943 3.11603 8.58338 5.01238 10.14127

Business

4 2.01145 3.11132 2.12231 3.51222 3.20799 6.50290 6.09782 11.03268
5 3.23724 3.70326 4.50062 5.51494 6.43578 7.92093 8.62007 9.54324
6 0.57667 2.99091 0.61375 3.20971 2.65626 6.44770 2.92685 10.09865
7 3.20702 3.20702 4.69254 4.72084 7.07175 7.40789 10.43138 11.23330

Education

8 1.89318 3.92354 2.81159 5.84194 3.91664 8.03091 4.35944 11.25589
9 2.61991 2.61991 3.18756 3.56422 3.84717 5.71656 4.93499 7.63056
10 1.87491 3.56752 2.39238 5.08499 3.78722 8.19333 4.81376 11.56507
11 1.79498 3.79838 2.03920 5.28091 3.77072 8.01607 4.89320 9.98399

Science

12 4.03468 4.06767 5.28830 5.88298 6.95064 8.00397 7.71733 11.03150
13 2.96600 3.49303 4.02625 5.63695 5.98159 7.96931 6.62071 9.50699
14 1.61654 3.61654 3.03344 5.03344 3.34175 7.29602 3.61817 8.74989
15 2.74210 3.37171 3.42493 5.05464 4.33416 7.45542 4.67509 8.52925

Weather

16 2.69374 3.19009 3.23268 4.91186 5.06458 6.14829 7.67168 7.81805
17 2.75209 3.92562 3.94521 4.09088 4.53422 5.86099 5.98866 7.26564
18 0.64006 3.07782 1.33133 4.77681 2.09854 5.67896 4.08878 8.57189
19 0.77538 0.80422 1.30784 1.49103 2.36067 3.41562 2.71115 4.93933

Media

20 0.90447 2.92768 1.77655 4.51621 2.14091 6.41959 3.05966 8.64248

4.2. Functional Matching Evaluation

In this experiment, we study the relevance of the recom-
mended Web services to the user’s query without consid-
ering non-functional performance of the Web services. By
comparing our approach with URBE, we observe that the
top-k Web services in our recommendation list are highly
relevant to the user’s query even without any available QoS
values.

The benchmark adopted for evaluating the performance
of our approach is the OWL-S service retrieval test collec-
tion OWLS-TC v2 [8]. This collection consists of more
than 570 Web services and 1,000 operations covering seven
application domains (i.e., education, medical care, food,
travel, communication, economy, and weaponry). The
benchmark includes WSDL files of the Web services, 32
test queries, and a set of relevant Web services associated to
each of the queries. Since the QoS feature is not considered
in this experiment, we set the QoS utility value of each Web
service as 1.

Top-k recall (Recallk) and top-k precision (Precisionk)
are adopted as metrics to evaluate the performance of differ-
ent Web search approaches. Recallk and Precisionk can
be calculated by:

Recallk =
|Rel ∩ Retk|

|Rel| , (10)

Precisionk =
|Rel ∩ Retk|

|Retk| , (11)
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Figure 4. Recall and Precision Performance

where Rel is the relevant set of Web services for a query,
and Retk is a set of top-k Web services search results.

Since user tends to check only top few Web services in
common search scenario, an approach with high top-k pre-
cision values is very practical in reality. Figure 4 shows the
experimental results of our WSExpress approach and the
URBE approach. In Figure 4(a), the top-k recall values of
WSExpress are higher than URBE. In Figure 4(b), the top-
k precision values of WSExpress are considerably higher
than URBE, indicating that more relevant Web services are
recommended in high positions by our approach.

5. Related Work

Web service discovery is a fundamental research area in
service computing. Several papers can be found on discov-
ering Web services through syntactic or semantic tag match-
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ing in a centralized UDDI repository [10, 13]. As discussed
before, since UDDI repository is no longer a popular style
for publishing Web services, these approaches are not prac-
tical now.

Text-based matching approaches have been proposed for
querying Web service [4, 14]. These works employ term
frequency analysis to perform keywords searching. How-
ever, most text descriptions are highly compact, and contain
a lot of unrelated information to the Web service function-
ality. The performances of this approaches are not fine in
practice. Plebani et al. [11] extract the information from
WSDL files for Web service matching. By comparing with
other works [3, 5, 7], it shows better performance in both
recall and precision. However, it also dose not consider
non-functional qualities of Web services. Our searching ap-
proach, on the other hand, take both functional and non-
functional features into consideration.

Alrifai et al. [1], Liu et al. [9] and Tao et al. [15] fo-
cus on efficiently QoS-driven Web service selection. Their
works are all based on the assumption: the Web service
candidates which can be select for composition have al-
ready been discovered and all meet requesters’ functional
requirements. As mentioned before, under this assumption
these approaches cannot be directly applied into Web ser-
vice search engine. While our proposed approach employs
QoS computation into Web service discovering can address
this challenge.

6. Conclusion and Future Work

In this paper we present a novel Web service search en-
gine WSExpress to find the desired Web service. Both
functional and non-functional characteristics of Web ser-
vices are captured in our approach. We provide user
three searching styles in the WSExpress to adapt different
searching scenarios. A large-scale real-world experiment
in distributed environment and a experiment on benchmark
OWLS-TC v2 are conducted to study the performance of
our search engine prototype. The results show that our ap-
proach outperforms related works.

In future work, we will conduct data mining in our
dataset to identify for which formulas of λ our search ap-
proach can achieve optimized performance. Clustering al-
gorithms for similarity computation will be designed for im-
proving functional accuracy of searching result. Finally, the
non-functional evaluation component will be extended to
dynamically collect quality information of Web services.
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