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Abstract
Wasserstein Generative Adversarial Nets (GANs)
are newly proposed GAN algorithms and widely
used in computer vision, web mining, informa-
tion retrieval, etc. However, the existing algo-
rithms with approximated Wasserstein loss con-
verge slowly due to heavy computation cost and
usually generate unstable results as well. In this
paper, we solve the computation cost problem by
speeding up the Wasserstein GANs from a well-
designed communication efficient parallel archi-
tecture. Specifically, we develop a new problem
formulation targeting the accurate evaluation of
Wasserstein distance and propose an easily paral-
lel optimization algorithm to train the Wasserstein
GANs. Compared to traditional parallel architec-
ture, our proposed framework is designed explicitly
for the skew parameter updates between the gener-
ator network and discriminator network. Rigorous
experiments reveal that our proposed framework
achieves a significant improvement regarding con-
vergence speed with comparable stability on gen-
erating images, compared to the state-of-the-art of
Wasserstein GANs algorithms.

1 Introduction
Generative Adversarial Networks (GANs) [Goodfellow et
al., 2014] have recently achieved significant progress for
numerous applications such as computer vision [Wu et al.,
2018], information retrieval [Wang et al., 2017; Su et al.,
2017] and recommender system [Zhao et al., 2016; 2018;
Zhang et al., 2019]. GANs consist of two networks: a gen-
erator network that creates plausible data given some noise
as the latent seed variable, and a discriminator network that
is trained to distinguish between the generator’s fake output
and real data sample. The critical issue in the GAN train-
ing process is to measure the difference between the real data
distribution and the generated fake data distribution. For bet-
ter measurement between the two distributions, Wasserstein
GANs [Arjovsky et al., 2017] are proposed with better train-
ing stability over prior Jensen-Shannon (JS) divergence and
∗Corresponding Author

Kullback-Leibler (KL) divergence GANs [Goodfellow et al.,
2014].

Wasserstein GANs have attracted much interest in the com-
munity recently. The original Wasserstein GAN and its vari-
ants employ Kantorovich-Rubinstein duality, which involves
a saddle-point objective with a strong 1-Lipschitz constraint
for the discriminator function. On the other hand, some re-
searchers approximate the Wasserstein distance in the primal
form rather than solving a dual problem to improve stability.
[Deshpande et al., 2018] introduces a random projection to
estimate the Wasserstein distance from samples directly. [Sal-
imans et al., 2018] employs the Sinkhorn algorithm to cal-
culate the primal form of Wasserstein distance with entropic
regularization. Although the performance of the state-of-the-
art Wasserstein GAN is better than the original version, the
computation complexity of the approximation to dual or pri-
mal Wasserstein measures keeps increasing.

In general, the Wasserstein GAN framework consists of
two time-consuming components: the forward and backward
updates of the discriminator and the generator, and the ap-
proximation of Wasserstein distance. Since the discrimina-
tor employs the approximated Wasserstein distance to esti-
mate the distance between the real distribution and the gener-
ated distribution, we should guarantee the correctness of the
Wasserstein distance per generator update. Otherwise, the
discriminator may mislead the generator during the training
process. Overall, the computation cost is much heavier when
the inaccurate approximation involves the frequent update of
the discriminator. In practice, we usually spend several days
training a generator model with edging NVIDIA GPUs.

In this paper, we explore the parallel computation to speed
up the Wasserstein GAN training. A straightforward solution
is based on data-parallelism. A set of worker unit contain-
ing model replicas is fed with different partitions of the input
dataset, and the model replicas are synchronized via a param-
eter server. Unfortunately, the above approach is not ideal
because of the skew parameter updates in GAN framework—
most of GAN algorithms update the discriminator several
times for every generator update. The frequent update of
discriminator easily becomes a bottleneck due to the limited
communication bandwidth in all distributed systems.

In order to eliminate the communication bottleneck for the
synchronization of the discriminator, we intend to remove
the synchronization requirements by allowing the discrimi-
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nators different among worker units. Besides this, we also
follow the data-parallelism to split the whole dataset into
different worker unit. In this case, we can consider that
each worker unit contains different real distribution supported
by portions of the whole dataset. Then we formulate the
objective function as minimizing the averaged Wasserstein
distance between the generated distribution and the multi-
ple real distributions. Inspired by [Genevay et al., 2016;
Staib et al., 2017], we optimize the objective function by the
stochastic algorithm for discrete optimal transport problem,
which can be efficiently paralleled.

In summary, our contributions to parallel Wasserstein
GANs are highlighted as follows:
• To our best knowledge, we are the first to propose a par-

allel architecture for Wasserstein GANs framework to
speed up the training of GANs from the computational
perspective.
• Different from common Wasserstein GANs, we de-

velop an efficient stochastic algorithm to approximate
the Wasserstein distance with higher accuracy for the
newly proposed parallel framework.
• In experiments, we show that the proposed parallel ar-

chitecture enjoys the superior convergence speed and
comparable stability.

2 Preliminary and Related Work
The GAN defines two competing networks: The generator
network G produces a data x from a source of noise z ∼ Pz .
The discriminator network D is trained to distinguish be-
tween the generated fake sample and a real sample. Formally,
the GAN defines the following minimax objective:

min
G

max
D

Exr∼Pr [log (D (xr))] + Exg∼Pg [log (1−D (xg))] ,

(1)
where Pr and Pg denote the real distribution and the gen-
erated distribution respectively. Practically, the expectations
are empirically evaluated using samples. Unfortunately, well-
learned discriminators may suppress the training of genera-
tors. We need to well tune the rounds of discriminator updates
after every generator update to ease this training instability.

To enhance the training stability, [Arjovsky et al., 2017]
introduces Wasserstein-1 distance to GAN framework. The
Wasserstein distance is derived from the optimal transport
problem, which is defined as follows:

Wc (Pr,Pg) = min
γ∈Π(Pr,Pg)

∫
X×X

c (xr, xg) dγ(xr, xg), (2)

where Π (Pr,Pg) represents all joint distributions, and
c (xr, xg) is the cost to move a unit of mass from xr to xg .
When c (xr, yg) = dX (xr, xg)

p in Eq. (2), W 1/p
c is called

Wasserstein-p distance between probability measures. The
Wasserstein distance is made known as a more geometric-
aware cost function for learning the distributions supported
by the low-dimensional manifold, which is a widely adopted
assumption in the feed-forward neural network.

Wasserstein GAN (WGAN) employs Kantorovich-
Rubinstein duality of Wasserstein-1 distance, which relies on
1-Lipschitz continuity of the discriminator:

W1 (Pr,Pg) = sup
‖Dθ‖L≤1

Exr∼Pr [Dθ (xr)]− Exg∼Pg [Dθ (xg)] ,

(3)
where Pg ∼ Gϑ (Pz). To approximate the supremum in
Eq. (3), [Arjovsky et al., 2017] proposes to clip the param-
eters θ to enforce the discriminator Dθ to be 1-Lipschitz.

Currently, the Wasserstein GAN approach is considered
as the state-of-the-art method due to the theoretical contri-
butions and competitive performance. However, to approx-
imate the 1-Lipschitz constraint is very challenging in the
Kantorovich-Rubinstein dual form of the Wasserstein-1 met-
ric. [Gulrajani et al., 2017] introduces a soft penalty for the
violation of 1-Lipschitzness (WGAN-GP). The gradient is
evaluated as a linear interpolation between the training data
and generated samples as a proxy to the optimal coupling.
The gradient penalty only takes effect on the observed data
{x}, the other support domain is not covered. [Wei et al.,
2018] follows WGAN-GP to enforces the Lipschitz continu-
ity over all the data manifold and its surrounding regions.

An alternative way to solve the problem in Eq. (2) is to
minimize the primal of optimal transport. The primal formu-
lation is numerically stable because it does not involve differ-
entiating the dual solution. [Bousquet et al., 2017] proposes
to minimize a regularized primal form of optimal transport
problem. [Petzka et al., 2018] explores the theoretical prop-
erties of such regularization under Wasserstein GANs frame-
work. [Deshpande et al., 2018] employs random projection
to approximate the Wasserstein distance directly. The dis-
criminator is not mandatory in their approach. [Genevay et
al., 2018b] proposes a divergence measurement based on the
Sinkhorn algorithm, which is originally designed for discrete
optimal transport with entropic regularization.

To tackle with parallel computation, [Chavdarova and
Fleuret, 2018] proposes an ensemble method of pairs of the
generator and discriminator, which can be trained in paral-
lel naturally. However, the communication demand is se-
vere, because the “messenger” discriminators and generators
with a massive number of parameters need to be synchronized
among workers.

3 Proposed Approach
In all Wasserstein GANs framework, the Wasserstein distance
plays a pivotal role to estimate the distance between the real
distribution Pr and the generated distribution Pg . In real-
world applications, we estimate the distributions by the em-
pirical probabilistic measure with sampled data. Formally,
we formulate the empirical measure of the real distribution µr
and the artificially generated distribution µg by Dirac mass as
follows:

µr =

nr∑
i=1,x∈R

pri δxri , (4)

µg =

ng∑
j=1,x∈G

pgj δxgj , (5)

where δxri and δxgj are Dirac function at location xri and xgj ,
pri and pgj are probability masses associated to the i-th real
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(a) Parameter Server (b) Proposed Architecture

Figure 1: Comparisons of the popular parameter server and the proposed architecture.

and j-th generated samples respectively, and nr and ng are
the cardinality of the set of real data and generated fake data
in a mini-batch respectively.

When the number of data in each mini-batch increases, the
empirical distribution µr approximates the real distribution
Pr with higher accuracy [Genevay et al., 2018a]. However,
the size of the mini-batch is constrained due to the limited
memory in each worker (e.g., GPU). To solve this problem,
we turn to a parallel training mechanism in a distributed en-
vironment.

3.1 Framework
We propose a communication-efficient framework for parallel
Wasserstein GAN. The details are shown in Figure 1.

Figure 1 (a) shows the traditional parallel approach [Dean
and et al., 2012; Li et al., 2016]. In this framework, we split
the training dataset across several workers first. Then, for
each iteration, each worker with a model replica conducts
forward-backward computation to calculate the gradients in
parallel. Finally, the model parameters are synchronized with
a global parameter server before the next iteration starts. This
framework is widely used in distributed deep learning sys-
tems like Tensorflow [Abadi et al., 2016].

However, the traditional parallel approach in Figure 1 (a)
contains two drawbacks. The parameter server is not proper
to train the discriminator for GAN framework. Because the
frequent synchronization of the parameters in the discrimi-
nator and the generator leads to massive communication de-
mand, which degrades the training speed in any parallel solu-
tions. Another drawback of the parameter server comes from
the gradient aggregation for a large-scale batch. Tradition-
ally, the gradient used for back-propagation is the arithmetic
mean of gradients from different portions of mini-batch. The
averaged gradient can not preserve the geometry information,
which is vital to depict the semantic information.

To overcome the drawbacks in traditional parallel ap-
proaches, we propose a new parallel framework for Wasser-
stein GAN training, shown in Figure 1 (b). In our approach,
we assignK worker unit with a discriminatorDθk and a mas-
ter unit with a generator Gϑ. θk and ϑ represent the parame-
ters of the neural networks in the discriminator k and the gen-
erator respectively. Note that θk 6= θk′ in our proposed archi-
tecture generally. Our proposed framework relaxes the com-

munication constraints by eliminating the synchronization of
the discriminator among workers. In addition, this relaxed
requirement could improve the diversity of the discriminator
model and intuitively enhance the generator by increasing the
difficulty of cheating the discriminator.

In our proposed architecture, the training real dataset R
is split into K workers. Then, for worker k, the empirical
measure µrk is supported by the subset of real dataRk.

Similar to the original Wasserstein GAN, we try to mini-
mize the sum of the Wasserstein distance between the gener-
ated distribution µg and all real distribution µrk with empirical
measures as follows:

L
(
µg, {µrk}Kk=1

)
=

1

K

K∑
k=1

Wc (µg, µ
r
k) . (6)

3.2 Parallel Wasserstein GAN Algorithm
We develop a novel parallel Wasserstein GAN algorithm to
solve the objective function in the our proposed architec-
ture, namely Eq. (6). The loss function defined in Eq. (6)
is similar to the Wasserstein barycenter problem introduced
in [Agueh and Carlier, 2011]. Intuitively, the optimal gener-
ated fake distribution should be approximated to the barycen-
ter of the real distributions in all workers. Specifically, we
employ the empirical distribution of the barycenter of all real
distributions as the supervised information to train the gener-
ator network. In order to solve the problem in Eq. (6) with
more accuracy, we consider to calculate the Wasserstein dis-
tance directly, which is different from the recently popular
solutions with entropic regularization [Genevay et al., 2016;
Cuturi, 2013].

In the proposed framework, we follow [Genevay et al.,
2016; Claici et al., 2018] to consider the semi-discrete Kan-
torovich’s dual formulations of the primal optimal transport
problem in Eq. (2):

Wc (µg, µr) =

max
ϕ∈Rng


ng∑
j=1

ϕjp
g
j +

∫
Ω

ϕc(xr)dµr(xr)

 , (7)

where ϕc (xr) = c
(
xr, x

g
j

)
− ϕj is the c-transform of the

Kantorovich potential ϕj [Villani, 2008]. Therefore, L is re-
formulated as:
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Algorithm 1: Generator as Master Unit
Input: K: number of worker unit, ng: batch size in

generator, nr: batch size in worker, T : number of
iteration for the estimation of the probability
Dirac mass.

Output: Gϑ: the generator model.
while ϑ has not converged do

Sample Gaussian noise z1, . . . , zng from N (0, 1)

Generate fake images
{
xgj ;x

g
j = Gϑ (zj)

}ng
j=1

ϕj ← 0 ∀j ∈ [1, nr]
Broadcast {xgj}

ng
j=1 to workers

for t=1,. . . ,T do
ϕj ← 1

K

∑K
k=1 ϕ

k
j ∀j ∈ [1, ng]

Broadcast {ϕj , pgj}
ng
j=1 to workers

Receive {ϕkj , Nk
j }

ng
j=1 from workers

pgj ← 1
K

∑K
k=1N

k
j ∀j ∈ [1, ng]

end
Conduct back-propagation with the loss:
Loss({Dg

θ(Gϑ(zj))}
ng
j=1, {p

g
j})

end

L
(
µg, {µrk}

K
k=1

)
=

max
ϕ∈Rng

F (ϕ) =

ng∑
j=1

ϕjp
g
j +

1

K

K∑
k=1

∫
Ωk

ϕc(xr)dµ
r
k(xr)


(8)

From Eq. (8), we can know that F (ϕ) is a concave func-
tion. Then we can derive Wc from the optimization using the
stochastic gradient ascent method. Since F (ϕ) is derivative
with respective to each individual ϕj :

∂F

∂ϕj
= pgj −

1

K

K∑
k=1

∫
Vorkϕj

dµrk (xr) , (9)

where Vorϕj is Voronoi cells of the point xgj [Santambro-
gio, 2015] defined in the following:

Vorϕj ={
x ∈ R : c

(
x, xgj

)
− ϕj ≤ c

(
x, xgj′

)
− ϕj′∀j′

}
. (10)

Therefore, Wc is obtained when ∂F
∂ϕj

= 0 and the optimal
p∗j is calculated as:

p∗j =
1

K

K∑
k=1

∫
Vorkϕj

dµrk (xr) (11)

=
1

K

K∑
k=1

Exr∼µrk
[
Ixr∈Vorkϕj

]
(12)

≈ 1

K

K∑
k=1

nrk∑
i=1

Ixki ∈Vorkϕj
, (13)

Algorithm 2: Discriminator as Worker Unit
Input: K: number of worker unit, nr: batch size in

worker unit, η : learning rate for Kantorovich
potential, T : number of iterations for the Dirac
mass estimation.

for all worker k ∈ [1,K] do in parallel
Sample {xi}nri=1 a batch from the real datasetRk
Receive fake images

{
xgj
}ng
j=1

from the master unit

Evaluate cost cij =
∥∥Dθk (xri )−Dθk

(
xgj
)∥∥ ∀i ∈

[1, nr], j ∈ [1, ng]
for t = 1, . . . , T do

Receive {ϕj , pgj}
ng
j=1 from master

for j = 1, . . . , ng do
Compute Vorϕj from Eq. (10)

Nk
j ←

∑nrk
i=1 Ixki ∈Vorkϕj

ϕkj ← ϕj − ηNk
j

end
Send {ϕkj , Nk

j }
ng
j=1 to master

end
Conduct back-propagation with the loss:
Loss({Dk

θ (xgj )}
ng
j=1, {Nk

j })
end

where I is denoted as the indicator function of a given set.
p∗j is the valuable supervised information of our GAN frame-
work for the generated fake point xgj since pgj represents the
weight of the point xgj in the empirical distribution.

In our framework, the computation of p∗j in Eq. (11) is eas-
ily decomposed to all workers in parallel, because the Voronoi
cells Vorkϕj in each worker k are independent with each other.
When the empirical estimation in each worker is finished, p∗j
is reduced to the master worker with xgj . Algorithm 1 and 2
detail the proposed parallel algorithm with mini-batch.

In many machine learning algorithms armed with Wasser-
stein distance, the ground cost function on the given metric
is relatively simple, such as the `2 norm in Euclidean space.
However, `2 norm is not proper for high-dimensional image
data in GAN framework, because it lacks complex geomet-
ric information. Therefore, we parameterize the cost function
c (xr, xg) from the discriminator as follows:

cθ (xr, xg) = ‖Dθ (xr)−Dθ (xg)‖ , (14)

where Dθ is the discriminator network with parameters θ.
When p∗ is obtained, we update the discriminator network
Dk
θ in all workers and the generator network Gϑ by back-

propagation.
It is important to note that our approach does not contain

any cumbersome communication policy that may increase the
negative effect of mismatching communication bandwidth in
the distribution environment. For each worker unit, they only
receive generated data and send a simple vector of size ng
to optimize the proposed objective function collaboratively.
Moreover, our approach is compatible with different configu-
rations for parallel computation: (a) All GPUs are installed
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via PCI Express in a single workstation. In this setting,
each GPU is considered as an isolated computation worker
in the parallel concept. (b) There are multiple machines, each
of which may contain more than one GPU, deemed as dis-
tributed computation. In the following, we take experiments
in case (b) to evaluate our approach.

4 Experiments
In the experimental part, we evaluate the proposed parallel
approach on two widely used image datasets CIFAR-10 and
LSUN [Yu et al., 2015]. CIFAR-10 contains 60,000 small
color images with size 32× 32. LSUN is a large-scale scene
understanding dataset. Following the setting in many Wasser-
stein GANs papers, we mainly use the bedroom category
from LSUN dataset. The bedroom category contains 3 mil-
lion color images with a size of 128× 128.

All experiments in this section are conducted in a cluster
with four machines with 2 NVIDIA GTX 1080 GPUs each.
Therefore, we could scale our approach up to 8 GPUs setting,
which contains one master unit for the generator and seven
workers for the discriminators.

We implement our algorithms with PyTorch [Paszke et al.,
2017], and utilize the 101-layer ResNet block in generator
and discriminator. We assign the number of iteration for per
mini-batch update T = 5 for all experiments. Intuitively, the
probability of Dirac mass for each generator update should be
more accurate when T increases. However, larger T means
that the communication rounds between the master and work-
ers will increase as well.

4.1 Convergence Speed for Scalability
In a parallel environment, we assume that all workers have
the same batch size nr. Therefore, in the proposed parallel
approach, the total number of real images sampled from the
dataset for a single generator update is K · nr, where K is
the number of worker unit. Usually, the range of nr is con-
strained to the memory in GPUs. Then, the batch size of real
images scales linearly with the number of machines. For the
special “2 GPUs” setting in experiments, we utilize two GPUs
equipped at different machines to make a fair comparison, be-
cause the inner-machine communication is much faster than
the inter-machine protocol.

To demonstrate the advantage of our proposed method
compared to the traditional distributed deep learning frame-
work, we implement parallel WGAN-GP through MPI inter-
face in PyTorch. MPI follows All-Reduce policy, equivalent
to parameter server framework depicted in Figure 1 (a).

Figure 2 (a) and (b) illustrate the convergence speed with
regard to the number of the GPUs, where the y-axis shows
the change of estimated Wasserstein distance between the real
distribution and the generated distribution during the training.
From the figures, we can see both of the proposed method and
WGAN-GP with more GPUs always converge faster than the
same approach with fewer GPUs.

We also employ the standard speedup measurement in dis-
tributed computation to demonstrate the scalability of our
proposed method, and the measurement is defined as below:

Method LSUN bed. (FID) CIFAR-10 (IS)

WGAN-GP (8 GPUs) 27.3 7.73
Ours (2 GPUs) 23.2 7.12
Ours (4 GPUs) 21.9 7.68
Ours (8 GPUs) 21.0 7.81

Table 1: Quantitative evaluations on CIFAR-10 and LSUN dataset.
Smaller FID is better, larger IS is better.

Speedup(N) =
The execution time of one unit
The execution time of N units

. (15)

In the experiments, we measure the duration from starts
to the first checkpoint where the corresponding estimated
Wasserstein distance is less than 5.0. We consider 5.0 as an
ending point because all methods converge with less vibra-
tion when the estimated distance is less than 5.0. From Fig-
ure 2 (c), we can easily conclude that our method enjoys a
better convergence speed than the traditional distributed deep
learning framework, which is coincident with our expecta-
tion.

Due to limited space, we do not demonstrate the figures for
CIFAR10 dataset. Actually, the behavior of two methods in
CIFAR10 is quite similar to Figure 2–both methods converge
faster if more GPUs, and our approach is faster than the tra-
ditional parallel framework.

4.2 Quantitative and Qualitative Evaluation
We first conduct the quantitative evaluation to demonstrate
the stability of the proposed method. We calculate the Incep-
tion Score during the training and evaluate the generator per-
formance on CIFAR-10. A higher Inception Score indicates
a better ability of the generative model to produce samples
with variability. Practically, we calculate the maximal Incep-
tion Score reached in 20,000 generator updates.

We also follow [Wu et al., 2018] to evaluate the model
performance on LSUN dataset by Fréchet Inception Distance
(FID) [Heusel et al., 2017], which measures the difference
between real and fake data distributions.

From Table 1, we observe that the performance of the pro-
posed method becomes better when the number of worker
unit increases, which mainly benefits from larger size of
real data batch among multiple worker units. Moreover, our
method enjoys much better performance over WGAN-GP.

We also take qualitative evaluation from the visualization
performance. Figure 4 indicates that the generated images of
our proposals with different number of GPUs are compara-
ble to results in WGAN-GP. Moreover, comparable results in
Figure 4 (b-d) show that our parallel method has no restriction
on the number of GPUs used to generate plausible results.
Figure 3 shows the performance of our proposed method is
also comparable with WGAN-GP on CIFAR-10 data. Hence
our method enjoys superior performance concerning the con-
vergence speed with the comparable generation quality.

5 Conclusions
In this paper, we introduce a novel parallel architecture de-
signed for GANs framework to speed up the costly compu-
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(a) WGAN-GP with default distributed frame-
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Figure 2: The estimated Wasserstein distance of WGAN-GP and the proposed method both trained on LSUN Bedroom dataset. To make
fair comparisons, we employ PyTorch’s default MPI interface to train WGAN-GP in parallel. In (c), we calculate the speedup based on the
execution time from the start to the first checkpoint where the estimated Wasserstein distance is less than 5.0.

(a) WGAN-GP (8 GPUs) (b) Proposed (8 GPUs)

Figure 3: Qualitative comparisons between the state-of-the-art
WGAN-GP and the proposed method.

tation in Wasserstein GANs with multiple computation units.
Experimental reports demonstrate that our proposed architec-
ture enjoys an attractive scalability performance to decrease
the training time remarkably. Moreover, both quantitative
scores and qualitative demonstration display the proposed
loss function with the Wasserstein metric and the parallel al-
gorithm are reasonable and suitable for the parallel environ-
ment.
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(a) WGAN-GP (8 GPUs) (b) Proposed (2 GPUs)

(c) Proposed (4 GPUs) (d) Proposed (8 GPUs)

Figure 4: Qualitative comparisons between WGAN-GP and the pro-
posed method with different configurations. Images in (a) are gen-
erated by WGAN-GP; images in (b, c, d) are generated by the pro-
posed model trained with the different number of GPUs. All models
are trained on LSUN bedroom dataset within 24 hours.
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