
Experience Report: Detecting Poor-Responsive UI
in Android Applications

Yu Kang†‡, Yangfan Zhou∗¶, Min Gao∗¶, Yixia Sun§, Michael R. Lyu†‡
∗School of Computer Science, Fudan University, Shanghai, China

†Computer Sci. & Eng. Dept., The Chinese University of Hong Kong, China
‡Shenzhen Research Institute, The Chinese University of Hong Kong, China
§School of Management, Zhejiang University, Hangzhou, Zhejiang, China

¶Engineering Research Center of Cyber Security Auditing and Monitoring, Ministry of Education, China

{ykang, lyu}@cse.cuhk.edu.hk, {zyf, 14210240071}@fudan.edu.cn, sunyixia@zju.edu.cn

Abstract—Good user interface (UI) design is key to successful
mobile apps. UI latency, which can be considered as the time
between the commencement of a UI operation and its intended
UI update, is a critical consideration for app developers. Current
literature still lacks a comprehensive study on how much UI
latency a user can tolerate or how to identify UI design defects
that cause intolerably long UI latency. As a result, bad UI
apps are still common in app markets, leading to extensive user
complaints. This paper examines user expectations of UI latency,
and develops a tool to pinpoint intolerable UI latency in Android
apps. To this end, we design an app to conduct a user survey
of app UI latency. Through the survey, we find the tendency
between user patience and UI latency. Therefore a timely screen
update (e.g., loading animations) is critical to heavy-weighted
UI operations (i.e. those that incur a long execution time before
the final UI update is available). We then design a tool that, by
monitoring the UI inputs and updates, can detect apps that do
not follow this criterion. The survey and the tool are open-source
released on-line. We also apply the tool to many real-world apps.
The results demonstrate the effectiveness of the tool in combating
app UI design defects.

I. INTRODUCTION

Rapid user interface (UI) responsiveness is a critical factor

in the software quality of mobile apps. Apps with poor UI

responsiveness lead to many user complaints [1]. Such perfor-

mance defects are threat to software reliability [2], [3], [4].

Figure 1 presents two examples of user complaints on Google

Play, a popular Android app market. Users give the app a low

rating due to its poor responsiveness. Users may also have

different expectations about UI latency (i.e., the time between

the commencement of a user operation and the corresponding

UI update) in different UI operations. As suggested by the

comments shown in Figure 1a, users “hate longer waiting than

expected waiting time.” Achieving rapid UI responsiveness and

designing better UIs to boost user patience have long been

goals of both the academic and industrial communities [5].

The key to user satisfaction with UI responsiveness is

to offer timely UI feedback (e.g., showing an animation

to indicate a background task is being conducted) on user

operations [6]. It is widely accepted that mobile devices may

not be able to immediately complete all of the tasks intended

by a UI operation due to resource limitations. For example,

operations that involve loading Internet resources or accessing

Hamzah S

Latest update is okay, but still horrible It
seems that you can't revert it back to
last version, but that okay. One problem
is loading... I hate longer waiting than
expected waiting time. Even, I keep
touch somewhere and no response for
5 or 10 seconds. That's LAGGY. Period.
Try again... I love this game so much.

(a) Rates 3 vs. avg. rating 4.4

K Bailey

I haven't had any problems until
the last update. Now everything's
super laggy all of a sudden. And
now, on top of being laggy, all of
my rubies are gone. I'm not im-
pressed.

(b) Rating 2 vs. avg. rating 4.3

Fig. 1: Examples of user ratings and comments about bad UI

responsiveness

remote databases are types of “heavy-weighted” operations

that require long waits before they are complete. In such cases,

it is necessary to provide quick UI feedback to the user to let

her know that the operation is being processed.

However, designing such feedback for every possible heavy-

weighted UI operations requires a daunting amount of develop-

ment effort. Moreover, developers generally have no idea on

the latency on each UI operation. Without a comprehensive

performance test and a handy tool to record UI latency,

developers may neglect potential heavy-weighted operations.

We consider operations that may require a long execution

time without offering quick UI feedback as poor-responsive

operations. Poor-responsive operations, as software design

defects, should be detected before an app is released to

limit their influence on user experience. However, there are

currently no methods for detecting such defects. First, there is

no comprehensive understanding of what degree of UI latency

(i.e., latency threshold) leads to poor-responsive operations.

The Android framework expects Android apps to be responsive

in 5 seconds, otherwise it produces an “Application Not

Responding (ANR)” alert [7]. Therefore, 5 seconds can be

viewed as a loose upper bound for the latency threshold

of poor-responsive operations. Alternatively, Google suggests

that 200 ms as a general threshold beyond which users will

perceive slowness in an application [7]. Therefore, 200 ms

can be viewed as a lower bound for the latency threshold of

poor-responsive operations. However, how much UI latency a

typical user can really tolerate remains unknown, this informa-

tion is a prerequisite for detecting poor-responsive operations.

2016 IEEE 27th International Symposium on Software Reliability Engineering

2332-6549/16 $31.00 © 2016 IEEE

DOI 10.1109/ISSRE.2016.16

490

Second, currently there is no tool that can detect poor-

responsive operations during an app test run. The official

tool StrictMode [8] or other tools like Asynchronizer [9] can

detect operations that block the UI thread, but they cannot

detect non-blocking operations that incur long UI latency. The

official performance diagnosing tools Method Tracing (and

TraceView) cannot correlate operations with UI updates [10].

Other performance diagnosis tools such as Panappticon [11]

also cannot capture the performance of UI feedback while a

UI operation is being processed.

Hence, a tool that can detect poor-responsive operations

during an app test run is necessary to combat poor UI

responsiveness. In this paper, we first provide a threshold

for classifying poor-responsive operations based on a real-

world user study. Moreover, we observe that Android apps

generally use a unique pattern when conducting UI updates.

Specifically, although Android has a complicated procedure for

conducting UI updates that involves diverse components, we

find that every app uses a similar communication pattern based

on a specific system process of Android when it conducts UI

updates. Therefore, we can design a tool to track such patterns

and detect poor-responsive operations.

The contributions of this paper are as follows.

1) We conduct a real-world user study via a comprehensive

survey. Where we find many insights on the user expe-

riences and the UI latency. We thus find a reasonable

threshold to detecting poor-responsive operations.

2) A handy tool, called Pretect (Poor-Responsive UI

Detection in Android Applications), is implemented and

open-source released [12]. The tool aims at detecting

poor-responsive operations. We use the tool to find many

UI design defects in many real-world Android apps.

The rest of this paper is organized as follows. Section II

motivates the work by introducing an example of common pro-

gram defect that causes poor-responsive operations. Section III

presents our study on the relationship between user patience

and operations delay levels, which also provides the motivation

for developing our new tool. Sections IV and V illustrate the

framework design and implementation of our tool. Section VI

uses case studies to demonstrate the correctness and effective-

ness of the tool. Section VII provides some discussions on

the tool design considerations. Section VIII discusses related

work. Finally, Section IX concludes this paper.

II. MOTIVATION

Android has unique UI design patterns. The main thread

of an app is the sole thread that handles the UI-related

operations [13], such as processing user inputs and displaying

UI components (e.g., buttons and images). When a valid

user input (i.e., a UI event) comes, the main thread invokes

the corresponding UI event procedure, i.e., the codes that

handle the UI event. However, some UI event procedures may

be time-consuming; for example, a procedure may involve

downloading a large file from the Internet. Android prevents

such procedures from blocking the main thread, i.e., unable to

private�class�ImageDownloader�extends�AsyncTask<String,�Void,�Bitmap>�{
����protected�Bitmap�doInBackground(String...�urls)�{
��������return�downloadBitmap(urls[0]);
����}

����protected�void�onPostExecute(Bitmap�result)�{
��������imageView.setImageBitmap(result);
����}
}

Fig. 2: Screenshot and related source code of a simple gallery

respond to other user operations, by introducing the Applica-

tion Not Responding (ANR) [14] mechanism.

Commonly, Android apps conduct heavy tasks in an asyn-

chronous manner so as not to block the UI thread. More

specifically, when accepting a user operation, an app will start

executing time-consuming tasks asynchronously in threads

other than the main thread. Once the asynchronous task is

finished, there is usually a callback to the main thread to

update the UI accordingly [13].

The UI responsiveness is poor if the asynchronous task

takes a long time to execute and there is no feedback (e.g., no

loading animation) during its execution. Providing no feedback

to users is a common mistake of developers. Figure 2 shows

a simple gallery design and the source code of its core

functionality. The ImageDownloader task downloads the

image with the given URL and then updates the imageView.

Although such functionality is trivial, it contains a defect

that may lead to slow UI responsiveness. When the image

is large, or the Internet connection is poor (e.g., on a cellular

network), the user has to wait a long time before the image

is loaded. The app provides no feedback during this waiting

period. The user may be uncertain whether she has success-

fully touched the “next” sign shown in Figure 2. A better

design for this case is showing the progress of loading with

onProgressUpdate function or displaying an instance of

ProgressBar/ProgressDialog.

Although Google has offered some responsive Android

widgets such as SwipeRefreshLayout, in most cases,

they only provide suggestions for improving responsive UI

design (e.g., showing the progress of background work using

a ProgressBar) [14]. In next section, we present a user study

that shows how poor-responsive UI design hurts an app.

III. USER STUDY

Unlike traditional PC apps, mobile apps are usually exe-

cuted in an exclusive manner. Users generally do not switch

their focus to other windows while an app is being used.

Therefore, users tend to be more impatient with delays in

mobile apps. This effect is not studied before, thus we design

491

Fig. 3: Screen shot of survey app

a user study to reveal it. The study is available online [12].

Our study examines the relationship between UI latency and

user patience. The results can guide the design of our tool.

We implement a mobile app with different delay levels by

force sleeping and collect user feedback. The feedback reveals

user tolerance under different delay levels. The app interacts

with the users using common multimedia (e.g., video, audio,

microphone, etc.). The app requests user interaction (e.g.,

clicking buttons) before it continues to the next page (i.e., an

Android activity). A designed delay is attached to each user

interaction. A sample page of the app is shown in Figure 3.

After running the app with a designed procedure, we ask the

subjects to rate 1-9 for UI responsiveness, their patience (e.g.,
rate 1 for user impatient, 9 for user patient) and their free-text

feedback on their experience of using the app. The statistical

analysis of the ratings show the trends in user patience.

A. Test settings

In the study, we set three delay levels: 200 ms, 500 ms, and

2 seconds. As it is hard for a single user to rate fairly each

separate operation with a different delay, we use a between-

subject design [15], [16]. Thus, each user has one assigned

delay level throughout the test and rates the app’s overall

performance; then the rates are compared between the sets

of similar users.

The parameter settings are chosen based on the previous

study of Johnson [6]; 200 ms is the editorial “window” for

events that reach user consciousness, 500 ms is the attentional

“blink” (inattentiveness to other objects) following recognition

of an object, and 2 seconds is the maximum duration of a

silent gap between turns in person-to-person conversation [6].

Google suggests 100 to 200 ms as the threshold at which users

will perceive slowness in an application [7].

We take the following measures to address possible threats

to the validity of our user study. 1) Subjects do not rate

objectively if they know the purpose of the study. Therefore,

we design more questions than required to hide our purpose.

We ask the subjects to rate for about ten common questionnaire

questions (e.g., [17], [18], [19]), only two of which are related

to user patience. We also ask the subjects their understanding

on the purpose of the study. The results verify that the subjects

are unaware of our real purpose. 2) The ability to learn a new

app varies among subjects. To remove this effect, we conduct

a practice before the study, but do not include the results of

TABLE I: Patience measurement under different delay levels

#��
���

�������� $
%&&��� ' '(% ") *+
'&&���) ,+ " +& *-
%&&&���) %) %)*)"
.����) +% % %" "",

�����������

TABLE II: Pairwise patience measurement comparisons on

different delay levels

�������
/�������

�������
/�������

0%1���� 0%1����
�& (% �" *'
& && & &&

�& (% �" *'
& '& &)+
& &- & &"

2�3��
0��� �" (&

2�3��
0��� �% *"

4����
0��� & &-

4����
0��� �& *(

%&&&���
�� �%&&���

5�������6�������
7��������8���/����
����������96���������
��� �6����
��:
(';
5�������
1����������
���������

'&&������
%&&���

5�������6�������
7��������8���/����
����������96���������
��� �6����
��:
(';
5�������
1����������
���������

�������������������5�������������������������5������

the practice in our analysis. 3) Internet delays are a common

source of delay [2], [20], which can make subjects impatient.

Therefore, to avoid introducing extra Internet delays, our tests

are all conducted on local area networks.

B. Results

We collect 116 valid replies. All of the subjects are college

students between the ages of 20 and 27. We first collect the

user feedback to get a general impression of user patience.

Then we utilize SPSS tool for a detailed statistical analysis

of the rating scores.

The written user feedback gives a general impression of

the variation in user patience. Under the 200 ms delay condi-

tion, the subjects seldom complain about the responsiveness,

whereas under the 500 ms delay condition, there are many

complaints. For example, “very slow response”, “Lagged

response”, “poor performance and UI”, “very irresponsive”,

“It really responds slowly”, etc. When the UI delay reaches

2 seconds, most subjects complain about the responsiveness,

and some even become angry. For example, “slow as f**k”,

“too lag to use”, “seriously, it is irresponsive”, “extremely

irrsponsive!”, etc. We can already see a relationship between

user patience and UI responsiveness. We resort to statistical

analysis for a more detailed understanding of the relationship.

To increase the reliability of the test, we ask questions about

both UI responsiveness and user patience. The statistical anal-

ysis demonstrates that the ratings of perceived responsiveness

and participants’ patience are highly correlated, with a .75

Pearson correlation value (significant at p < .01). Therefore,

we average the two ratings as a single patience measurement.

The patience measurement shows a clear negative rela-

tionship with the delay level. The descending trend in the

ratings with the delay levels can be instantly observed in

the mean and standard deviation values in Table I: 200 ms

(M = 5.59, SD = 2.14), 500 ms (M = 4.68, SD = 1.80),

and 2000 ms (M = 4.24, SD = 2.43). The between-subjects

test shows that the differences in the measurements are signif-

icant with F (2, 113) = 4.00 under significance level ≈ 0.021.

492

Further pairwise comparisons between different delay levels,

shown in Table II, reveal that users perceive a great difference

between 200 ms and 2000 ms delay (Mean diff = 1.35, SD

Error = 0.48, Sig = 0.01). Users’ impatience also increases

between 200 ms and 500 ms delay with a marginal significance

(Mean diff = 0.92, SD Error = 0.50, Sig = 0.07). However,

the 500 ms and 2000 ms delays do not provoke significantly

different levels of impatience (Sig > 1).

The results suggest that 1) mobile users are impatient and

sensitive to delays and 2) the developers should be careful

about operations with delays larger than 500 ms.

IV. OVERALL FRAMEWORK FOR POOR-RESPONSIVE UI

DETECTION

In this section, we first introduce the UI design problem

of our interest. Then, we propose a workflow to solve the

problem. Finally, we consider how our tool fits within the

execution flow.

A. Problem Specification

As mentioned in Section II, the Android framework is

specially tailored to suit the UI-driven requirements of Android

apps. Developers try to keep apps responsive. A common

practice when processing long-term operations is to provide

a loading bar/circle animation as feedback to users. However,

it requires daunting human efforts to design feedback for every

possible heavy-weighted operation. In practice, developers

only notice extremely long-term operations that may trigger

ANR. However, our user study shows that a 500 ms delay is

already long enough for users to perceive bad UI design.

To facilitate the following discussions, we define several

terms related to UI design.

Definition 1 (Operation feedback). A screen update that is

triggered after receiving a user operation (i.e., a button click).

Definition 2 (Feedback delay). The latency between a UI

operation and the first UI update that it triggers.

Definition 3 (Poor-responsive operations). A UI operation

is poor-responsive if its feedback delay is not less than a

threshold T.

In this work, we aim at detecting poor-responsive operations

with feedback that takes longer than T . The UI feedback

should be given as soon as the input event is accepted, but

not until the event has finished processing. The feedback can

reassure users that their input being processed by the app.

Without timely feedback, users are unsure whether their op-

erations have been accepted or the touch screen is insensible.

As a result, they become impatient.

B. Proposed Execution Flow

We propose an execution flow, shown in Figure 4, for

detecting poor-responsive operations. First, the system takes

a user input I from either a testing tool (e.g., Monkey [21],

MonkeyRunner [22]) or human input. Then an event monitor
module records the input event without interfering with the

�������

�		

������
�	�
�	�

�����

�������

�
�����
�	�
�	�

�������	��

�����

�	����������

����

Fig. 4: Detecting poor-responsive operations

execution of the app. After the input event is processed, the

display may or may not update within a preset time window.

A display monitor module captures all of the display updates.

All of the related information is logged and analyzed

offline. A log analyzer module analyzes the logs by calculating

feedback delays for each input event. It then generates a report

about poor-responsive operations. With the report, developers

can easily detect the UI designs that should be improved.

C. Framework Design

We design a framework called Pretect (Poor-responsive

UI Detection) for Android apps that realizes the proposed

execution flow in Figure 4. The main modules are as follows.

1) Event Monitor: The event monitor module monitors the

input events entered on the touchscreen. Whenever an input

event (e.g., touching a button) is performed, the event monitor

module records the event information in the log including the

type of event, the related UI component, and the time when

the input occurs.

2) Display Monitor: The display monitor module monitors

the screen updates. Whenever the screen refreshes, this module

logs the UI update information including the source of the

screen update (i.e., the process that requests the UI update)

and the update time.

3) Log Analyzer: The log analyzer module offline analyzes

the logs of input events and screen updates. The purpose of

this module is to identify the UI designs that could be im-

proved. It reports poor-responsive operations. The supporting

information it provides in the report includes the input event

information, the feedback delay, and the related logs.

V. IMPLEMENTATION DETAILS

We have implemented a poor-responsive UI detection tool

based on the proposed Pretect framework. The implemen-

tation of the main modules in Section IV-C is described in

detail in this section. Details could also be found from the

released source codes [12].

It is worth noting that we rely on a dynamic instrumentation

mechanism to keep Pretect compatible with most Android

versions and devices. The mechanism requires no changes to

493

the target app per se. It also does not require us to recompile

the underlying OS and the Android framework. Moreover, the

tool requires little human effort to install and apply.

We intercept Android framework methods in both Java and

C. This approach is more light-weight and easier to implement

than tracking the functions at the OS level, which typically

requires heavy-weighted and sophisticated tools for kernel

instrumentation. More importantly, we can rely on an Android-

specific feature to conveniently track the relevant methods.

For Java method tracking, we note that, unlike general Linux

processes, all Android app processes are created by duplicating

a system process called Zygote. The framework binaries

are loaded in Zygote before this duplication. Therefore, we

can instrument the Zygote process and “hijack” the Java-

based framework methods we are interested in before the app

runs. When the app is running, the method invocations are

inherently hijacked by Pretect via the forking of Zygote.

Hence, we can easily track the methods. We implement this

idea by adopting a tool called Xposed [23], which is usually

used to improve the appearance of user interfaces [24]. It can

substitute the original Zygote process with an instrumented

one. We rely on its mechanism, and program our own codes

to hijack the Java methods we are interested in.

For our C method interception, we note that the Android

OS is based on the Linux kernel. A well-known Linux system

tool named ptrace, which is commonly used in debugging

tools (e.g., gdb), is also available on Android. Ptrace makes

it possible to inspect the child process of the parent process.

Ptrace enables the parent process to read and replace the

value of the register of the child process. We can utilize

ptrace to attach code to a target process (with a known

process ID pid). Then, we are able to take over the execution

of the target process. By analyzing the elf-format library files

of the target process, we can locate the memory addresses

of the methods with the relevant names and invoke them

accordingly. Therefore, it is feasible to invoke the dlopen,

dlsym library-related system calls of the target process. We

implement the idea by adopting a tool called LibInject [25].

A. Event Monitor

We implement the event monitor by instrumenting the

related Android framework Java methods to obtain the in-

put event information. In particular, we intercept sever-

al event dispatch methods of the View class; all touch-

able widgets such as Buttons, ImageView and ListView

are subclasses of the View class. We carefully select

a set of methods to cover all types of possible in-

put events. The methods include dispatchKeyEvent,

dispatchTouchEvent and some rarely used methods such

as dispatchKeyShortcutEvent, dispatchKeyEve-
ntPreIme and dispatchTrackballEvent.

A sample log of an event is shown in line 1 of Figure 5.

From this line we can see that the input event is a touch

event, as indicated by the Motion-Up action. The touch

event is conducted on a ChildProportionLayout with

the ID cutout tab artistic. Besides the text ID, the unique

1. … 2365 …: com.cyberlink.youperfect[Event]com.cyberlink.youperfect.widgetpool.common.

ChildProportionLayout{425193c8V.E...C....P....270,0-540,67#7f0a051dapp:id/cutout_tab_art

istic}_null-Motion-UP : 125696

2. … 138 …: BIPC:****android.gui.SurfaceTexture****, sender_pid:2365, UptimeMilli: 127932

Fig. 5: Sample logs of Pretect

hexadecimal ID is also recorded. With the ID information,

we can locate the component easily via the Hierarchy Viewer

[26] tool published along with Android SDK. The event

is performed 125696 ms after the system is booted. The

highlighted information is important for the subsequent steps

of the analysis.

B. Display Monitor

There are numerous functions that can update Android app

displays (e.g., TextView.setText, ImageView.set-
ImageBitmap). Therefore, it is hard to list and instrument

all of them. Moreover, updating UI display is a cross-layer

procedure. Multiple layers created by the app, Android frame-

work, kernel, and driver are involved in the procedure. Many

components such as SurfaceFlinger, OpenGL ES, and

FrameBuffer are included. The complicated nature of

the UI display update mechanism makes it hard to trace.

Luckily, we find that all of the UI updates are done via

the surfaceflinger process provided by the Android

OS. All of the UI update requests from the app are sent

to the surfaceflinger process via binder, which is

the standard inter-process communication (IPC) mechanism

in Android.

Therefore, we can obtain the UI update informa-

tion by intercepting the communication related func-

tions of binder. More specifically, we intercept the

surfaceflinger process on ioctl method of the shared

library libbinder.so, which the binder mechanism is

embedded in. The ioctl method is responsible for reading

and writing the inter-process communication contents. We

successfully intercept the invocations of ioctl to get detailed

information about the UI update requests.

There are hundreds of binder communication messages

per second; the UI updating messages are the one type of

request that SurfaceTexture sends from the app under test

(pid 2365 in this example). We show a UI update message

in line 2 of Figure 5. The corresponding UI request time is

127932 ms after the system is booted.

C. Log Analyzer

The log analyzer extracts information from the logs collect-

ed during the offline tests. We implement it in Python.

The most important task of the log analyzer is to correlate

the input events with their associated UI updates. The log

analyzer first scans the logs to retrieve the input events.

For each input event I , we check the following binder
requests set (R), until it reaches the next input event. With

the information about the process ID (pid) of the sender

process (e.g., we record the sender’s pid, as shown in the

494

TABLE III: List of applications

��	� ���� �	�������

������������� �����������������!������������

"������� �����������������"�������

������$���%

&'�����

�����������������������$���%

&'�����

(������������ ���	����������������������

)�����
����� �����������������)�����
�����

+;<��� ��������������)���'

"
=����<������ ���	����������������������

">����? ���������!��������!���

"��@� �����������������������

�$�A���� ���������	������������	�����	�

�������

�	��

�����

second line in Figure 5); the analyzer is able to distinguish

the source of the binder request. We then search for the first

binder request from set R such that 1) the sender’s pid is

the same as that of the app process (which we can determine

from logs, for example, line 1 shown in Figure 5); and 2) the

requested component is SurfaceTexture, which means it

is a UI update request. We regard this UI update request as

feedback of the input event I . Then it is not hard to calculate

the feedback delay which is the time span between the input

event and the feedback.

Worse than long feedback delay, some operations may have

no feedback at all. For these operations, there are no following

UI update logs. We filter such events by calculating the interval

between the input event of interest and the following event.

If the interval is too large, we regard the event as having no

feedback. The log analyzer reports poor-responsive operations

as these input events without feedback (i.e., no following UI

update request by the app) or without timely feedback (i.e.,
feedback delay ≥ T).

From lines 1-2 in Figure 5, we can infer that: 1) the two lines

are an input event and its first UI update; and 2) the feedback

delay of the input event is 127932− 125696 = 2236 ms.

VI. EXPERIMENTAL STUDY

In this section, we first conduct several experiments on

synthetic apps and open source apps to show the effectiveness

of our tool. Then we illustrate how our tool improves the UI

designs by presenting several case studies.

A. Tool effectiveness validation

We examine the accuracy of Pretect by evaluating ten

apps, including five synthetic benchmarks and five open source

apps. These apps are selected to represent those with common

heavy-weighted UI operations that may incur long UI latency.

The apps and the selected operations are listed in Table III. The

details of test configurations can be found on our website [12].

As mentioned in Section II, various types of asynchronous

tasks and UI updates are common sources of poor-responsive

operations. We implement all the five Android asynchronous

mechanisms for this purpose, including Worker Thread,

AsyncTask, ThreadPoolExecutor, HandlerThread, and Intent

Service. The app loads an image after an asynchronous task

0

500

1000

1500

2000

De
la

y�
(u

ni
t:�

m
s)

With�timely�feedback Without�timely�feedback

Fig. 6: Feedback delay of applications detected by Pretect

finishes. We use sleep method to ensure the asynchronous

tasks finish in about 500 ms. To validate Pretect’s ability to

detect poor-responsive operations, we update the UI for each

type of asynchronous mechanisms with two settings: separate-

ly with timely feedback and without timely feedback. More

specifically, for the setting with timely feedback leading to

responsive operations, we set a loading circle to appear while

the asynchronous tasks are executing. For the setting without

timely feedback, leading to poor-responsive operations, we do

nothing when the asynchronous tasks are executing.

We validate our tool on open source projects. We se-

lect five open source projects from five different categories

of F-Droid, an app market that hosts only free and open-

source Android apps [27]. These open source projects have

representative heavy-weighted UI operations that may incur

long UI latency, as listed in Table III. These operations

may incur UI delays from various sources such as network

requests, database operations, system settings, disk scanning

with querying content provider, and CPU-intensive computing.

The original apps offer good timely UI feedback on these long-

term operations. During the experiment, we manually switch

off the UI feedback for comparison.

The results presented in Figure 6 show a notable difference

between poor-responsive operations and responsive operations.

Pretect can easily distinguish responsive operations from

poor-responsive operations.

B. Overview of Experimental Results

We apply the tool to 115 popular Android apps covering 23

categories (including BooksReferences, Photography, Sports,

etc.). We download apps on AndroidDrawer [28] from all of

the categories except the library demo category. We randomly

select five popular apps from each category. To test the

compatibility of the tool, we conduct the experiments on two

devices, Huawei G610-T11 with Android 4.2.2 and Lenovo

K50-T5 with Android 5.1.

The overall statistics for the case where the threshold is

500 ms are shown in Table IV. We find that poor-responsive

operations are common defects in UI designs. Of the 115

apps examined, 94 contain potential UI design defects. The

maximum number of defects in an app is 23 and the minimum

495

TABLE IV: Feedback delay statistics

0.00%

25.00%

50.00%

75.00%

100.00%

0

15

30

45

0 1 3 6 9 More

Fr
eq

ue
nc

y

Number�of�issues�per�app

Frequency Cumulative�%

Fig. 7: Distribution of number of issues

0.00%

25.00%

50.00%

75.00%

100.00%

0

50

100

150

500 800 1000 1200 1500 More

Fr
eq

ue
nc

y

Feedback�delay�(unit:�ms)

Frequency Cumulative�%

Fig. 8: Distribution of feedback delay

0 2 4 6 8 10 12

Medical

Finance

(Average)

Photography
(Median)

NewsMagazines

MusicAudio

1200ms 800ms 500ms

Fig. 9: Avg. number of cases per category by threshold

number is 0. On average, there are 2.8 (median 2) defects per

an app. Long feedback delays are common. We find totally

327 independent components with feedback delays larger than

500 ms. The maximum delay is larger than 29 seconds. The

distributions of the number of defects per app and UI feedback

delays are shown in Figure 7 and 8. Less than 6 defects are

reported for most apps. Therefore the report will not annoy

developers even some of the defects are not of their interest.

Developers can define their preferred threshold for poor

UI designs according to the category of their app. Figure 9

demonstrates the correlation of the number of bad components

per category with the threshold cutoff. We also note the

large differences between apps in different categories. For

example, Medical apps contain the most number of bad UI

design components (avg. 11.4 bad components), followed by

TABLE V: Top 10 components containing poor-responsive

operations

def�test_cutout_func(self):
����self._start_main()
����self._start_cutout_func()
����self._click_first_cover()
����self._click_first_image()
����self._draw_random_line()
����self._click_artistic_tab()
����self._click_fun_tab()
����self._save_image()
����saved_element�=�self.driver.find_view_by_text(
��������"Your�photo�was�saved")
����self.assertIsNotNone(saved_element)

Test script

Operation: com.cyberlink.youperfect.widgetpool.common.ChildProportionLayout cutout_tab_
artistic Click
No screen update delay: 2236 ms
Related logs:
2365 2365 D RefreshMon: com.cyberlink.youperfect[Event]com.cyberlink.youperfect.
widgetpool.common.ChildProportionLayout{425193c8V.E...C....P....270,0-540,67#7f0a051dapp:
id/cutout_tab_artistic}_null-Motion-UP : 125696

138 138 D RefreshMon: BIPC:****android.gui.SurfaceTexture****, sender_pid:2365,
UptimeMilli: 127932

Report

Fig. 10: Selected report for YouCam Perfect

Finance apps (avg. 6). Music Audio contains the least number

of bad UI design components (avg. 0.4), followed by News

Magazines (avg. 0.6). Moreover, the threshold for feedback

delay is a key factor for poor-responsive operations detection.

According to the user study, 500 ms is a reasonable choice.

Nevertheless, developers could choose their own threshold

based on their own criteria. We have chosen 500 ms, 800 ms,

1200 ms respectively as the thresholds for our tests.

We also investigate the top-ranked components that com-

monly suffer from poor responsiveness. They are shown in

Table V. When designing these UI components, developers

must take special care to ensure their responsiveness.

Next, we select three representative cases to show how

Pretect detects real-world poor-responsive operations.

C. Case Study 1: YouCam

YouCam Perfect - Selfie Cam (http://www.perfectcorp.com/

#ycp) is a popular selfie application. YouCam Perfect helps

users to create the perfect image each and every time. The

Android app has had more than 60 million downloads.

We apply Pretect to test Youcam Perfect, version 4.10.1.

A representative testing scenario is shown in the “Test script”

496

(a) Ver. 4.10.1 (b) Ver. 5.4.1

Fig. 11: Screenshots of Youcam Perfect

section of Figure 10. A portion of the report generated

by Pretect is shown in the lower section of Figure 10.

We test on the cutout functionality of Youcam Perfect; this

process cuts out a piece of an image and attaches it to a

pre-defined template. As can be seen from the report, the

ChildProportionLayout with ID “cutout tab artistic”

is problematic. We detect a delay of 2236 ms without UI

updates after the button is clicked. This decreases the qual-

ity of the software and hurts the user experience. This is-

sue is the only reported issue, which we can immediately

identify the defect. Via simply searching the component ID

“cutout tab artistic” with Hierarchy Viewer [26], we success-

fully locate the problematic component, circled in Figure 11a.

The component is the “Artistic” tab line 10 of the test scenario.

By repeating the test scenario manually, we observe the latency

that occurs without a feedback.

We have reported our findings to Perfect Corp. The leader of

the YouCam Perfect development team has provided us with

positive feedback on our results: “With your hint, we find that

we have used a widget which tends to be slower. We will fix as

soon as possible.” In a later version of Youcam Perfect 5.4.1,

the UI design has been modified, as shown in Figure 11b.

A test run with Pretect shows that this modification has

reduced the feedback delay to below 100 ms.

D. Case Study 2: Bible Quotes

Bible Quotes (http://www.salemwebnetwork.com/) is a pop-

ular Bible app that provides verses from the Bible. Users can

lookup verses in the Bible, save favorites, share quotes, etc.

The app has more than a million downloads on Google Play.

We apply Pretect to test Bible Quotes, version 4.9. A

representative testing scenario is shown in the “Test script”

section of Figure 12. A portion of the report generated by

Pretect is shown in the middle section of Figure 12. We

test the functionality of the donation process of Bible Quotes.

As from the report, the Button with ID “btnDonate01” is

problematic. Note that this is the first issue in our generated

report (other issues are about other donate buttons which

are similar to this one). Via searching the component ID in

Hierarchy Viewer, we immediately locate the button of the app.

We find that there are no UI update-related logs generated

between the time the “btnDonate01” button is clicked and

def�test_donate_func(self):
����self._start_main()
����self._click_donate_tab()
����self._click_donate_button(1)
����self._click_donate_button(5)
����self._click_donate_button(10)
����self._click_donate_button(20)
����self._click_donate_button(50)
����self._click_donate_button(100)
����donate_view_element�=�self.driver.find_view_by_text(
��������"Thank�you",is_regular_expr=True)
����self.assertIsNotNone(donate_view_element)

Test script

Operation: Button btnDonate01 Click
No screen update delay: 2073 ms
Related logs:
2519 2519 D RefreshMon: com.dodsoneng.biblequotes[Event]android.widget.Button{41a3da
0VF.D..C.........0,300-225,372#7f09005aapp:id/btnDonate01}_"Donate $1"-Motion-UP : 78535

2519 2519 D RefreshMon: com.dodsoneng.biblequotes[Event]android.widget.Button{41b63330
VF.D..C.......315,300-540,372#7f09005bapp:id/btnDonate02}_"Donate $5"-Motion-DOWN : 80608

Report

Screen Shot

Fig. 12: Selected report for Bible Quotes

the time the “btnDonate02” button is clicked (corresponding

to the test scenario steps 3-4). This means that the UI does

not update for more than 2 seconds after the “btnDonate01”

button is clicked. This clearly decreases the quality of the app.

We further investigate the app to find the relevant information

about the UI component. The logs reveal that the text on the

button is “Donate $1”; the component is circled in the lower

section of Figure 12. The component we are interested in is

the “Donate $1” button on line 3 of the test scenario.

By repeating the test scenario manually, we observe that the

operations provide no feedback. Similar issues can be found in

all of the donation buttons. The implementation of donation

functionality may have been omitted in this app. Therefore,

these operations produce no feedback.

E. Case Study 3: Illustrate

Illustrate - The Video Dictionary (http://www.mocept.com/

illustrate/) is an effective app for teaching new words and

their meanings. It provides videos with context and real-

life examples allowing the learner to grasp definitions and

usage with ease. ICAL TEFL, a leading provider of English

language courses, says that it is fun and will help students.

The University of Michigan Campus Life News recommend

497

def�test_clear_all_func(self):
����self._start_main()
����self._click_first_word()
����for�i�in�range(4):
��������self._explore_more_word()
����self._click_back()
����self._click_menu()
����self._click_recents()
����self._click_clear_all()
����count_recent�=�self._count_recent()
����self.assertEquals(count_recent,�0)

Test script

Operation: TextView clearall Click
No screen update delay: 2351 ms
Related logs:
2319 2319 D RefreshMon: com.mocept.illustrate[Event]android.widget.TextView{41c9c9f0V.ED..
C....P....0,17-100,54#7f09011fapp:id/clearall}_"Clear All"-Motion-UP : 181382
138 138 D RefreshMon: BIPC:****android.gui.SurfaceTexture**********, sender_pid:2319,
UptimeMilli: 183733

Report

Screen Shot

Fig. 13: Selected report for Illustrate

it as the best app in “7 Helpful Study Apps for GRE, LSAT,

and GMAT Preparation”.

We apply Pretect to test Illustrate, version 1.2.7. A

piece of the testing scenario is depicted in the upper section

of Figure 13. Part of the report generated by Pretect is

shown in the middle section of Figure 13. We test the history
clearing functionality of Illustrate. As can be seen from the

report, the TextView with ID “clearall” is problematic.

Note that this is the only issue in our generated report. Via

searching the ID in Hierarchy Viewer, we immediately locate

the component. We detect a delay of 2351 ms without UI

updates after the TextView is clicked. This decreases the

quality of the software and tests users’ patience. We further

investigate the app to find the relevant information about the

UI component. An examination of the logs reveals that the text

of the TextView is “Clear All”, which is circled in the lower

section of Figure 13. The component of interest is the “Clear

All” button in line 7 of the test scenario. By repeating the test

scenario manually, we observe the latency without feedback.

VII. DISCUSSIONS

Pretect is a tool for identifying poor responsiveness

designs instead of obtaining precise delay. We have shown that

Pretect can successfully distinguish poor responsiveness in

long-processing situations in Section VI-A.

Our user study results show that more than 500 ms delay can

cause the users become impatient. To conduct the survey, we

choose most active mobile users (between 20 to 27 years old)

and common usage scenarios (e.g., video, audio, map). Users

may tolerate 500 ms delay in other scenarios. Whereas, our

focus is on revealing the relationship between user patience

and UI latency, rather than obtaining the exact threshold of

user impatience. We have shown in Section VI-B that the

threshold is just a parameter of Pretectwhich can be easily

set to suit the requirement of developers.

We write Appium [29] scripts to exercise apps in Sec-

tion VI-C, VI-D and VI-E (complete scripts available on our

website [12]). Apps are generally tested with scripts on various

devices simultaneously to detect bugs in practice. Commonly

functional exceptions are recorded while the performance of

apps is not. It is hard to manually monitor the performance

of apps on all devices. Pretect aims at automating UI-

responsiveness test. With our tool, test scripts for functional

tests can be utilized for performance tests.

Current approaches cannot properly detect poor-responsive

operations. Approaches including StrictMode [8] and Asyn-

chronizer [9] can detect operations that block the UI, but fail

to detect asynchronous tasks that do not provide feedback.

Other approaches (e.g., Appinsight[30], Panappticon[11]) de-

fine a delay as the time interval between the initiation of an

operation and the completion of all of the triggered tasks.

These approaches aim to detect the abnormal execution of

asynchronous tasks rather than feedback delay. In such cases,

using Pretect to detect feedback delay is a better approach

to improving the responsiveness of UI design. Moreover,

these approaches may report some long-term background tasks

(e.g., download) as suspicious, as a result of focusing on the

life cycle of the tasks. However, this kind of tasks do not

update the display when finished. They are less relevant to

the responsiveness. In comparison, Pretect pays attention

to whether the app notifies the users that the operations that

will trigger the background tasks have been accepted.

The screen refreshes even when the app UI does not update,

as the action bar on the top of the screen also refreshes. How-

ever, the action bar is not our focus. Therefore, intercepting

low level system functions related to full screen display refresh

such as eglSwapBuffers in /system/lib/libsurfaceflinger.so

is not a good choice. We further inspect the related screen

update procedure and find binder used in the process. We

then intercept binder and measure the screen update time

of the app more precisely with the logged pid.

VIII. RELATED WORK

A. Performance and GUI Design of Mobile Apps

Performance is a critical concern for mobile apps [2], [31].

Liu et al. [32] show that many performance issues are

caused by blocking operations in the main thread. Strict-

Mode [8] analyzes the main thread to find such block-

ing operations. Asynchronizer [9] provides an easy way to

498

refactor specific blocking synchronous operations into stan-

dard AsyncTask implementations. AsyncDroid [33] further

refactors AsyncTask to IntentService to eliminate the

memory leakage problems. CLAPP [34] finds potential per-

formance optimizations by analyzing loops. However, such

static analysis-based tools cannot capture runtime execution

dependency. Banerjee et al. [35], [36] design static analysis-

driven testing for performance issues caused by anomalous

cache behaviors. Tango [37], Outatime [38] and Cedos [39]

optimize WiFi offloading mechanisms to keep a low-latency

for app. SmartIO [40] reduces the app delay by reordering

IO operations. Offloading tasks to remote servers can also

reduce the delay [3], [4]. Resource leakage is a common source

of performance issues and has been widely investigated [41].

These approaches solve specific performance issues.

User interface (UI) design is one of the key considerations

in mobile app development [42]. Methods for diagnosing UI

performance have captured much research attention recently.

Method tracing [10] is an official tool that is often used to

diagnose known performance issues due to its high overhead.

QoE Doctor [43] bases its diagnosis on Android Activity

Testing API [44], but can only handle pre-defined operations.

Appinsight [30] is a tracing-based diagnosis tool for Windows

phone apps. It traces all of the asynchronous executions from

a UI event to its corresponding UI update, and identifies the

critical paths that influence the performance. Panappticon [11]

adopts a similar approach on Android. These studies focus

on finding the anomalous task delays; in contrast, Pretect
focus on identifying the delays that affect user experience.

Performance diagnosis often requires researches to ex-

ecute the target app automatically. Script-based testing is

widely used (e.g., UIAutomator [45], Monkey runner [22],

and Robotium [46]). The record-and-replay approaches (e.g.,
MobiPlay [47], Reran [48] and SPAG-C [49]) record an

event sequence during the manual exercising of the app, and

generate replayable scripts. Complementary to these semi-

automatic approaches, fuzz testing approaches (e.g., Mon-

key [21], Dynodroid [50] and VanarSena [51]) generate ran-

dom input sequences to exercise Android apps. Symbolic

execution-based testing (e.g., Jensen et al. [52], EvoDroid [53],

A3E [54], and SIG-Droid [55]) aims at exploring the app

functions in a systematical way. Model-based testing (e.g.,
Android Ripper [56], SwiftHand [57], and PBGT [58]) aims

at generating a finite state machine model and event sequences

to traverse the model. TestPatch [59] utilizes the GUI ripping

methods for regression tests. Test case selection techniques

(e.g., [60], [61]) can also be adopted in exercising the target

apps. App exercising mechanisms can work as plugin modules

of Pretect, enabling the developers to exploit their merits

under different circumstances.

B. Response Time and User-Tolerant UI Design

Tolerance for delays on mobile devices has been studied

for long. Oulasvirta et al. [62] reveal that user attention spans

vary from 4 to 16 seconds on mobile devices once the page

loading has started. Anderson [5] suggests that user tolerance

for touch screen latency below 580 ms. Jota et al. [63] and

their follow-up work [64] showed that 1) the perceivable

initial delay feedback ranges from 10 to 20 ms, and 2) the

detectable threshold of direct and indirect operations ranging

from 11 ms to 96 ms. Ng et al. [65] show that the user

noticeable improvements below 10 ms. These results work as

suggestions for touch screen UI design, while we move one

step forward to detect the violations.

The above-mentioned research focuses on the absolute value

of delays and does not consider how feedback affects user

satisfaction with a delay. Visual and non-visual feedback is

an important design element of delay-tolerable UI. Duis et
al. [66] point out without experimental study that a system

should let a user know immediately that her input has been

received. Johnson [6] suggest showing a progress bar for

long-term operations rather than nothing or only a busy bar.

Roto et al. [67] show that multimodal feedback for delays

of more than 4 seconds is required. Lee et al. [68] note that

the absence of feedback affects user performance (e.g., typing

on flat piezo-electric buttons that have no tactile feedback

significantly reduce expert typists performance). Kristoffersen

et al. [69] suggest using audio feedback on mobiles. Ng et
al. [65] recommend providing low-fidelity visual feedback

immediately. Poupyrev et al. [70] find that tactile feedback is

most effective when the GUI widgets need to be held down or

dragged on the screen. Ripples [71] provide a special system

on top of the screen that can give feedback about the successes

and errors of the touch interactions. In contrast, we do not

modify the current mobile UI framework. Our work focuses

on detecting UI elements with long delays or with no feedback

that may cause ambiguity. This information can be used by

developers to avoid such problems.

IX. CONCLUSION

In this paper, we discuss the problem of responsive UI

design in Android apps. We motivate the problem of detecting

poor-responsive operations by conducting a user survey. The

survey results show that users’ patience is correlated with

UI responsiveness. We design and implement a tool called

Pretect that can detect poor-responsive operations. The tool

is shown to work correctly on synthetic benchmarks and on

open source apps. We further verify Pretect with real-

world case studies. The results demonstrate the effectiveness

of Pretect.

ACKNOWLEDGEMENT

The work described in this paper was supported by the

National Basic Research Program of China (973 Prj. No.

2014CB347701), the National Natural Science Foundation of

China (Prj. No. 61332010), the Research Grants Council of

the Hong Kong Special Administrative Region, China (No.

CUHK 14205214 of the General Research Fund), and 2015

Microsoft Research Asia Collaborative Research Program (Prj.

No. FY16-RES-THEME-005). The main work was conducted

when Yu Kang was a visiting student of Fudan University.

Yangfan Zhou is the corresponding author.

499

REFERENCES

[1] C. Gao, B. Wang, P. He, J. Zhu, Y. Zhou, and M. R. Lyu, “Paid:
Prioritizing app issues for developers by tracking user reviews over ver-
sions,” in Proc. of the International Symposium on Software Reliability
Engineering (ISSRE ’15), 2015, pp. 35–45.

[2] C. Amrutkar, M. Hiltunen, T. Jim, K. Joshi, O. Spatscheck, P. Traynor,
and S. Venkataraman, “Why is my smartphone slow? on the fly
diagnosis of underperformance on the mobile internet,” in Proc. of the
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN ’13), 2013, pp. 1–8.

[3] Q. Wang, H. Wu, and K. Wolter, “Model-based performance analysis
of local re-execution scheme in offloading system,” in Proc. of the
IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN ’13), 2013, pp. 1–6.

[4] Q. Wang, M. G. Jorba, J. M. Ripoll, and K. Wolter, “Analysis of local
re-execution in mobile offloading system,” in Proc. of the IEEE Inter-
national Symposium on Software Reliability Engineering (ISSRE ’13),
2013, pp. 31–40.

[5] G. Anderson, R. Doherty, and S. Ganapathy, “User perception of touch
screen latency,” vol. 6769, pp. 195–202, 2011.

[6] J. Johnson, Designing with the Mind in Mind: Simple Guide to Under-
standing User Interface Design Rules, 2010.

[7] Keeping your app responsive. [Online]. Available: http://developer.
android.com/training/articles/perf-anr.html

[8] StrictMode. [Online]. Available: http://developer.android.com/reference/
android/os/StrictMode.html

[9] Y. Lin, C. Radoi, and D. Dig, “Retrofitting concurrency for android
applications through refactoring,” in Proc. of the ACM SIGSOFT In-
ternational Symposium on the Foundations of Software Engineering
(FSE ’14), 2014, pp. 341–352.

[10] Profiling with Traceview and dmtracedump. [Online]. Available:
http://developer.android.com/tools/debugging/debugging-tracing.html

[11] L. Zhang, D. R. Bild, R. P. Dick, Z. M. Mao, and P. Dinda, “Panappticon:
Event-based tracing to measure mobile application and platform perfor-
mance,” in Proc. of the IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ISSS ’13),
2013, pp. 1–10.

[12] Pretect: Poor responsiveness ui detection for android applications.
[Online]. Available: http://www.cudroid.com/pretect

[13] Processes and Threads, http://developer.android.com/guide/components/
processes-and-threads.html. [Online]. Available: http://developer.
android.com/guide/components/processes-and-threads.html

[14] Keeping your app responsive. http://developer.android.com/training/
articles/perf-anr.html.

[15] J. A. Hoxmeier and C. Dicesare, “System response time and user
satisfaction: An experimental study of browser-based applications,” in
Proc. of the Association of Information Systems Americas Conference
(AMCIS ’00), 2000, pp. 10–13.

[16] C. J. Goodwin, Research in psychology : methods and design, 1995.
[17] J. P. Chin, V. A. Diehl, and K. L. Norman, “Development of an in-

strument measuring user satisfaction of the human-computer interface,”
in Proc. of the SIGCHI Conference on Human Factors in Computing
Systems (CHI ’88), 1988, pp. 213–218.

[18] D. D. Suthers, R. Vatrapu, R. Medina, S. Joseph, and N. Dwyer, “Be-
yond threaded discussion: Representational guidance in asynchronous
collaborative learning environments,” Computer & Education, vol. 50,
no. 4, pp. 1103–1127, May 2008.

[19] B. D. Harper, L. A. Slaughter, and K. L. Norman, “Questionnaire
administration via the www: A validation & reliability study for a user
satisfaction questionnaire.” in WebNet, vol. 97, 1997, pp. 1–4.

[20] S. Srinivasan, F. Buonopane, S. Ramaswamy, and J. Vain, “Verifying
response times in networked automation systems using jitter bounds,”
in Proc. of the IEEE International Symposium on Software Reliability
Engineering Workshops (ISSREW ’14), 2014, pp. 47–50.

[21] Ui/application exerciser monkey(monkey). [Online]. Available: http:
//developer.android.com/tools/help/monkey.html

[22] Monkeyrunner. [Online]. Available: http://developer.android.com/tools/
help/monkeyrunner concepts.html

[23] Xposed module repository. [Online]. Available: http://repo.xposed.info/
[24] Xposed module repository - module overview. [Online]. Available:

http://repo.xposed.info/module-overview
[25] Libinject – c/c++ code injection library. [Online]. Available: http:

//blog.csdn.net/jinzhuojun/article/details/9900105

[26] Hierarchy viewer. [Online]. Available: http://developer.android.com/
tools/help/hierarchy-viewer.html

[27] F-Droid. [Online]. Available: https://f-droid.org/

[28] Android drawer. [Online]. Available: http://www.androiddrawer.com/

[29] S. Shiwangi, R. Gadgil, and A. Chudgor, “Automated testing of mobile
applications using scripting technique: A study on appium,” Interna-
tional Journal of Current Engineering and Technology (IJCET), vol. 4,
no. 5, pp. 3627–3630, 2014.

[30] L. Ravindranath, J. Padhye, S. Agarwal, R. Mahajan, I. Obermiller, and
S. Shayandeh, “Appinsight: Mobile app performance monitoring in the
wild,” in Proc. of the 10th USENIX Conference on Operating Systems
Design and Implementation (OSDI ’12), 2012, pp. 107–120.

[31] L. Ravindranath, J. Padhye, R. Mahajan, and H. Balakrishnan, “Time-
card: Controlling user-perceived delays in server-based mobile applica-
tions,” in Proc. of the Twenty-Fourth ACM Symposium on Operating
Systems Principles (SOSP ’13), 2013, pp. 85–100.

[32] Y. Liu, C. Xu, and S.-C. Cheung, “Characterizing and detecting perfor-
mance bugs for smartphone applications,” in Proc. of the International
Conference on Software Engineering (ICSE ’14), 2014, pp. 1013–1024.

[33] Y. Lin, S. Okur, and D. Dig, “Study and refactoring of android
asynchronous programming,” in Proc. of the IEEE/ACM International
Conference on Automated Software Engineering (ASE ’15), 2015, pp.
224–235.

[34] Y. Fratantonio, A. Machiry, A. Bianchi, C. Kruegel, and G. Vigna,
“Clapp: Characterizing loops in android applications,” in Proc. of the
Joint Meeting on Foundations of Software Engineering (FSE ’15), 2015,
pp. 687–697.

[35] A. Banerjee, “Static analysis driven performance and energy testing,” in
Proc. of the ACM SIGSOFT International Symposium on Foundations
of Software Engineering (FSE ’14), 2014, pp. 791–794.

[36] A. Banerjee, S. Chattopadhyay, and A. Roychoudhury, “Static analysis
driven cache performance testing,” in Proc. of the 2013 IEEE 34th Real-
Time Systems Symposium (RTSS ’13), pp. 319–329.

[37] M. S. Gordon, D. K. Hong, P. M. Chen, J. Flinn, S. Mahlke, and Z. M.
Mao, “Accelerating mobile applications through flip-flop replication,”
in Proc. of the Annual International Conference on Mobile Systems,
Applications, and Services (MobiSys ’15), 2015, pp. 137–150.

[38] K. Lee, D. Chu, E. Cuervo, J. Kopf, Y. Degtyarev, S. Grizan, A. Wol-
man, and J. Flinn, “Outatime: Using speculation to enable low-latency
continuous interaction for mobile cloud gaming,” in Proc. of the Annual
International Conference on Mobile Systems, Applications, and Services
(MobiSys ’15), 2015, pp. 151–165.

[39] Y. Moon, D. Kim, Y. Go, Y. Kim, Y. Yi, S. Chong, and K. Park,
“Practicalizing delay-tolerant mobile apps with cedos,” in Proc. of the
Annual International Conference on Mobile Systems, Applications, and
Services (MobiSys ’15), pp. 419–433.

[40] D. T. Nguyen, G. Zhou, G. Xing, X. Qi, Z. Hao, G. Peng, and Q. Yang,
“Reducing smartphone application delay through read/write isolation,”
in Proc. of the Annual International Conference on Mobile Systems,
Applications, and Services (MobiSys ’15), 2015, pp. 287–300.

[41] D. Yan, S. Yang, and A. Rountev, “Systematic testing for resource leaks
in android applications,” in Proc. of the IEEE International Symposium
on Software Reliability Engineering (ISSRE ’13), 2013, pp. 411–420.

[42] M. E. Joorabchi, M. Ali, and A. Mesbah, “Detecting inconsistencies in
multi-platform mobile apps,” in Proc. of the International Symposium
on Software Reliability Engineering (ISSRE ’15), 2015, pp. 450–460.

[43] Q. A. Chen, H. Luo, S. Rosen, Z. M. Mao, K. Iyer, J. Hui, K. Sontineni,
and K. Lau, “Qoe doctor: Diagnosing mobile app qoe with automated ui
control and cross-layer analysis,” in Proc. of the Conference on Internet
Measurement Conference (IMC ’14), 2014, pp. 151–164.

[44] Automating User Interface Tests. [Online]. Available: http://developer.
android.com/training/testing/ui-testing/index.html

[45] Android ui testing (uiautomator). [Online]. Available: http://developer.
android.com/tools/testing/testing ui.html/

[46] Robotium. [Online]. Available: https://code.google.com/p/robotium/

[47] Z. Qin, Y. Tang, E. Novak, and Q. Li, “Mobiplay: A remote execu-
tion based record-and-replay tool for mobile applications,” in Proc.
of the ACM/IEEE International Conference on Software Engineering
(ICSE ’16), 2016.

[48] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein, “Reran: Timing-
and touch-sensitive record and replay for android,” in Proc. of the
International Conference on Software Engineering (ICSE ’13), 2013,
pp. 72–81.

500

[49] Y.-D. Lin, J. Rojas, E.-H. Chu, and Y.-C. Lai, “On the accuracy,
efficiency, and reusability of automated test oracles for android devices,”
IEEE Transactions on Software Engineering (TSE), vol. 40, pp. 957–970,
Oct 2014.

[50] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An input generation
system for android apps,” in Proc. of the Joint Meeting on Foundations
of Software Engineering (FSE ’13), 2013, pp. 224–234.

[51] L. Ravindranath, S. Nath, J. Padhye, and H. Balakrishnan, “Automatic
and scalable fault detection for mobile applications,” in Proc. of the
Annual International Conference on Mobile Systems, Applications, and
Services (MobiSys ’14), 2014, pp. 190–203.

[52] C. S. Jensen, M. R. Prasad, and A. Møller, “Automated testing with
targeted event sequence generation,” in Proc. of the International Sym-
posium on Software Testing and Analysis (ISSTA ’13), 2013, pp. 67–77.

[53] R. Mahmood, N. Mirzaei, and S. Malek, “Evodroid: Segmented evolu-
tionary testing of android apps,” in Proc. of the ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering (FSE ’14),
2014, pp. 599–609.

[54] T. Azim and I. Neamtiu, “Targeted and depth-first exploration for
systematic testing of android apps,” in Proc. of the ACM SIGPLAN
International Conference on Object Oriented Programming Systems
Languages & Applications (OOPSLA ’13), 2013, pp. 641–660.

[55] N. Mirzaei, H. Bagheri, R. Mahmood, and S. Malek, “Sig-droid:
Automated system input generation for android applications,” in Proc. of
the IEEE International Symposium on Software Reliability Engineering
(ISSRE ’15), 2015, pp. 461–471.

[56] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and
A. M. Memon, “Using gui ripping for automated testing of android
applications,” in Proc. of the IEEE/ACM International Conference on
Automated Software Engineering (ASE ’12), 2012, pp. 258–261.

[57] W. Choi, G. Necula, and K. Sen, “Guided gui testing of android apps
with minimal restart and approximate learning,” in Proc. of the ACM
SIGPLAN International Conference on Object Oriented Programming
Systems Languages & Applications (OOPSLA ’13), 2013, pp. 623–640.

[58] R. M. L. M. Moreira, A. C. R. Paiva, and A. Memon, “A pattern-based
approach for gui modeling and testing,” in Proc. of the IEEE Inter-
national Symposium on Software Reliability Engineering (ISSRE ’13),
2013, pp. 288–297.

[59] Z. Gao, C. Fang, and A. M. Memon, “Pushing the limits on automation
in gui regression testing,” in Proc. of the IEEE International Symposium
on Software Reliability Engineering (ISSRE ’15), 2015.

[60] K. Herzig, M. Greiler, J. Czerwonka, and B. Murphy, “The art of testing
less without sacrificing quality,” in Proc. of the International Conference
on Software Engineering (ICSE ’15), 2015, pp. 483–493.

[61] V. Terragni, S.-C. Cheung, and C. Zhang, “Recontest: Effective re-
gression testing of concurrent programs,” in Proc. of the International
Conference on Software Engineering (ICSE ’15), 2015, pp. 246–256.

[62] A. Oulasvirta, S. Tamminen, V. Roto, and J. Kuorelahti, “Interaction
in 4-second bursts: The fragmented nature of attentional resources in
mobile hci,” in Proc. of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’05), 2005, pp. 919–928.

[63] R. Jota, A. Ng, P. Dietz, and D. Wigdor, “How fast is fast enough? a
study of the effects of latency in direct-touch pointing tasks,” in Proc.
of the SIGCHI Conference on Human Factors in Computing Systems
(CHI ’13), 2013, pp. 2291–2300.

[64] J. Deber, R. Jota, C. Forlines, and D. Wigdor, “How much faster is fast
enough? user perception of latency & latency improvements in direct
and indirect touch,” in Proc. of the ACM Conference on Human Factors
in Computing Systems (CHI ’15), 2015, pp. 1827–1836.

[65] A. Ng, J. Lepinski, D. Wigdor, S. Sanders, and P. Dietz, “Designing
for low-latency direct-touch input,” in Proc. of the ACM Symposium on
User Interface Software and Technology (UIST ’12), 2012, pp. 453–464.

[66] D. Duis and J. Johnson, “Improving user-interface responsiveness de-
spite performance limitations,” in Proc. of the IEEE Computer Society
International Conference (Compcon Spring ’90), Feb 1990, pp. 380–
386.

[67] V. Roto and A. Oulasvirta, “Need for non-visual feedback with long
response times in mobile hci,” in Special Interest Tracks and Posters
of the International Conference on World Wide Web (WWW ’05), 2005,
pp. 775–781.

[68] S. Lee and S. Zhai, “The performance of touch screen soft buttons,”
in Proc. of the SIGCHI Conference on Human Factors in Computing
Systems (CHI ’09), 2009, pp. 309–318.

[69] S. Kristoffersen and F. Ljungberg, “ “making place” to make it work:
Empirical explorations of hci for mobile cscw,” in Proc. of the In-
ternational ACM SIGGROUP Conference on Supporting Group Work
(GROUP ’99), 1999, pp. 276–285.

[70] I. Poupyrev and S. Maruyama, “Tactile interfaces for small touch
screens,” in Proc. of the ACM Symposium on User Interface Software
and Technology (UIST ’03), 2003, pp. 217–220.

[71] D. Wigdor, S. Williams, M. Cronin, R. Levy, K. White, M. Mazeev,
and H. Benko, “Ripples: Utilizing per-contact visualizations to improve
user interaction with touch displays,” in Proc. of the Symposium on User
Interface Software and Technology (UIST ’09), 2009, pp. 3–12.

501

