
A Latency-aware Co-deployment Mechanism for Cloud-based Services

YU KANG*, ZIBIN ZHENG*, AND MICHAEL R. LYU*,+

*Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
+School of Computer Science, National University of Defense Technology, Hunan, China

{ykang, zbzheng, lyu}@cse.cuhk.edu.hk

Abstract—Cloud computing attracts considerable attention
from both industry and academic these years. Nowadays, a
number of research investigations have been conducted on
cloud-based services (e.g., IaaS, PaaS, SaaS, etc.). Deployment
of cloud-based services is one of the most important research
problems. In cloud computing, multiple services tend to cooper-
ate with each other to accomplish complicated tasks. Deploying
these services independently may not lead to good overall
performance, since there are a lot of interactions among dif-
ferent services. Making an optimal co-deployment of multiple
services is critical for reducing latency of user requests. When
deploying highly related services, taking only distribution of
users into consideration is not enough, since the deployment
of one service would affect others. To attack this challenge,
we employ cross service information as well as user locations
to build a new model in integer programming formulation.
To reduce the computation time of the model, we purpose
a sequential model running iteratively to obtain approximate
solution. Extensive experiments have been conducted over a
large real-world dataset, involving 307 distributed computers
in about 40 countries, and 1881 real-world Internet-based
services in about 60 countries. The experimental results show
the effectiveness of our proposed model. Our real-world dataset
is publicly released to promote future research, which also
makes our experiments reproducible.

Keywords-cloud; multi-service; deployment; integer pro-
gramming;

I. INTRODUCTION

As the coming of the cloud era, we have witnessed the
rapid growing of cloud-based services. The tendency of
cloud-based services is to deliver computation, software, and
data access as services located in data centers distributed
over the world [1], [2]. Typically, cloud provides three layers
of services namely infrastructure as a service, platform as
a service and software as a service (i.e., IaaS, PaaS and
SaaS). The cloud-based services are generally deployed on
virtual machines (VM) in the data centers (e.g., Amazon
EC2). Since there are typically a large number of VMs in a
cloud, making optimal deployment of cloud-based services
to suitable VMs is an important research problem.

To provide good service performance for users, auto scal-
ing and elastic load balance are widely studied . Currently,
different cloud services are typically deployed independently
by their own providers. Let’s take Facebook and Google
as examples. Facebook provides social network service in
its own cloud; Google also provides email services and

document services in its own cloud. These companies have
their own users. They make optimal deployment of their ser-
vices independently. Cloud-based services enjoy the feature
of centralization which means the services are deployed in
limited number of data centers and the network distance
between the data centers can be measured periodically.
This feature makes the deployment of cloud-based services
different from deployment of traditional web services. In
our previous work [3], a redeployment mechanism has been
proposed to make optimal deployment for such kind of
independent cloud services, considering the distribution of
users and workload of servers.

However, in reality, different cloud-based services may
cooperate with each other to complete complicated tasks.
For example, when watching a video on YouTube, you can
click the share button to share it to Facebook or Twitter by
invoking the services provided by Facebook or Twitter; when
editing a file on Google Doc you can call Gmail service to
shard the document with your colleagues by email; when
purchasing commodities on Taobao1, you can call Alipay2

service to pay the money (both Taobao and Alipay are
affiliated entities of Alibaba Group). With the increasing
number of various kinds of cloud-based services, composing
multiple services to fulfill user requests becomes more and
more common. Notice that multiple services are different
from multiple service components in [4] by that a service
provides complete function and can be accessed directly by
a user while a service component does not.

Compared with making optimal deployment for a single
service, making optimal deployment for multiple correlated
services is a much more challenging research problem. The
situation becomes very complicated when there are tens
of services and their deployments affect each other. We
could not simply treat the request from other services as the
same as those from users since the service VMs of other
services are under deployment at the same time and could
be migrated to other places. Therefore it is critical to make
a global decision for deploying multiple services together,
especially for companies (e.g., Google and Alibaba) which
host many services or for companies that would like to

1http://www.taobao.com
2http://www.alipay.com

2012 IEEE Fifth International Conference on Cloud Computing

978-0-7695-4755-8/12 $26.00 © 2012 IEEE

DOI 10.1109/CLOUD.2012.90

630

2012 IEEE Fifth International Conference on Cloud Computing

978-0-7695-4755-8/12 $26.00 © 2012 IEEE

DOI 10.1109/CLOUD.2012.90

630

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 04:49:42 UTC from IEEE Xplore. Restrictions apply.

Virtual Machine

User

Data Center

S1

…

…

S2

u

Service Cloud

v2

C3

C2

v1

C1

1

1

1

1.5

1.5

1.5

1.5

Network Distance

Figure 1. The Framework of Cloud-based Multi-service

cooperate with each other. We call this the co-deployment
problem of cloud-based services.

This paper points out the new research problem of multi-
service co-deployment in cloud computing and provides
comprehensive investigations. For ease of discussion, we
assume the cloud-based services are deployed on VMs. Re-
placing VMs with physical servers does not affect our model.
We model the multi-service co-deployment problem formal-
ly as an integer programming problem which minimizes
the latency of user requests. To evaluate the effectiveness
of our proposed model, large-scale real-world experiments
are conducted, involving 307 distributed computers in about
40 countries, and 1881 real-world Internet-based services
in about 60 countries. The comprehensive experimental
results show that our proposed latency-aware co-deployment
mechanism can provide much better performance than tra-
ditional independent deployment techniques. To make our
experiments reproducible, we publicly release3 our reusable
research dataset, which includes about 577,000 accesses of
Internet-based services and 94,000 pings of computers over
the world.

The rest of this paper is organized as follows. Section
II introduces the framework of cloud-based multi-service
and the data processing procedure. Section III gives the
model of single service deployment. Section IV presents
our multi-service co-deployment model. Section V discusses
experimental results and Section VII concludes the paper.

II. FRAMEWORK CLOUD-BASED MULTI-SERVICE

Figure 1 shows the general framework of cloud-based
multi-service. As shown in the figure, multiple services (e.g.,
𝑆1 and 𝑆2) are to be deployed in different clouds. Suppose
𝑆1 (e.g., Google Doc service) and 𝑆2 (e.g., Gmail service)
are correlated services (i.e., one request of 𝑆1 would involve
𝑆2 and vice versa). There are three data centers. The network
distances between these data centers are shown in the figure
(the unit is second). Among these data centers, 𝐶2 (e.g.,

3http://www.zibinzheng.com/cloud2012

Model 1 Single Cloud-based Service Deployment Model

minimize
∑
𝑖∈𝑈
𝑗∈𝐶

𝑟𝑖𝑑𝑖𝑗𝑥𝑖𝑗

subject to:
∑

𝑗∈𝐶

𝑥𝑖𝑗 = 1, ∀𝑖 ∈ 𝑈, (1)

𝑥𝑖𝑗 ≤ 𝑦𝑗 , ∀𝑖 ∈ 𝑈,∀𝑗 ∈ 𝐶, (2)
∑

𝑗∈𝐶

𝑦𝑗 ≤ 𝑘, (3)

𝑥𝑖𝑗 ∈ {0, 1}, ∀𝑖 ∈ 𝑈, 𝑗 ∈ 𝐶,

𝑦𝑗 ∈ {0, 1}, ∀𝑗 ∈ 𝐶.

Amazon EC2) allows public access while 𝐶1 and 𝐶3 are
private clouds (e.g., provided by Google Doc and Gmail,
respectively). In this example, 𝑆1 can be deployed in 𝐶1

and 𝐶2 while 𝑆2 can be deployed in 𝐶2 and 𝐶3.
Network distances between users and data centers are

marked in the figure. Firstly, we apply the traditional inde-
pendent deployment technologies for each service, where the
requests from end users and these from other service VMs
are not distinguished. It is not hard to see that 𝐶1 and 𝐶3

would be chosen separately for 𝑆1 and 𝑆2. This deployment
makes the average latency of requests from both users and
other services to be 1𝑠. If we deploy 𝑆1 (or 𝑆2) in 𝐶2, the
average network distance of 𝑆1 (or 𝑆2) would increase to
1.5𝑠. The deployment decision seems optimal for both 𝑆1

and 𝑆2 when making independent deployment. However, if
the providers of 𝑆1 and 𝑆2 cooperate with each other to seek
a better deployment solution (e.g., development teams of
Google Doc and Gmail try to making co-deployment of these
two services together, since there are a lot of invocations
between these services and these two teams belong to the
same company), the objective becomes to reduce the overall
request latency for the users of both services instead of
independent services.

For example, a request of 𝑆1 (𝑆2 similarly) is actually a
calling sequence 𝑢𝑠𝑒𝑟 → 𝑆1 → 𝑆2. To finish this sequence,
the latency 2𝑠 consists two parts, namely 1𝑠 from user to
service VM of 𝑆1 in 𝐶1 and 1𝑠 from service VM of 𝑆1 in
𝐶1 to service VM of 𝑆2 in 𝐶3. If the deployment problem
would be considered globally, deploying both services in
𝐶2 would be a better choice. Therefore the overall request
latency of the calling sequence would be reduced to 1.5𝑠.

III. INDEPENDENT DEPLOYMENT OF SINGLE SERVICE

First we consider a simple case of deploying a single
cloud-based service. Suppose a service is to be deployed on
𝑘 VMs with that we have obtained the distances between

631631

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 04:49:42 UTC from IEEE Xplore. Restrictions apply.

Table I
ALPHABET OF THE MULTIPLE CLOUD-BASED SERVICES

CO-DEPLOYMENT MODEL

Notation Descriptions

𝑈 Set of users

𝑚 Number of services

𝐶ℎ Candidate VMs set of service ℎ

𝑘ℎ Number of VMs service ℎ could deploy

𝑟ℎ𝑖 Number of requests for service ℎ from user 𝑖

𝑑ℎ𝑖𝑗 Distance between user 𝑖 and 𝑗-th VM of service ℎ

𝑟𝑖𝑞𝑠
Number of times that service 𝑞 is involved in the

requests for service 𝑠 from user 𝑖

𝑑𝑝𝑞𝑟𝑠
Distance between 𝑝-th VM of service 𝑞 and 𝑟-th

VM of service 𝑠

𝑥ℎ𝑖𝑗
(Indicator) whether user 𝑖 would request 𝑗-th VM

for the service ℎ

𝑦𝑖𝑝𝑞𝑟𝑠

(Indicator) for user 𝑖 whether 𝑟-th VM of service

𝑠 is chosen to respond the requests from 𝑝-th VM

of service 𝑞

𝑧ℎ𝑗 (Indicator) whether 𝑗-th VM of service ℎ is chosen

users and service VMs. We apply the 𝑝-median model [5]
in the integer programming formulation as Model 1.

In Model 1, 𝑈 and 𝐶 are the set of users and potential
service VMs. 𝑟𝑖 is the count of the requests from user 𝑖. 𝑑𝑖𝑗
is the network distance between user 𝑖 and 𝑗-th candidate
service VM. 𝑥𝑖𝑗 and 𝑦𝑗 are decision variables. 𝑦𝑗 indicates
whether 𝑗-th service VM is chosen to deploy the service.
𝑥𝑖𝑗 indicates whether user 𝑖 would request 𝑗-th service
VM. This model aims at selecting a set of service VMs
to deploy service (𝑦𝑗 = 1 if selected). Users 𝑖 could connect
to the closest available service VM. The objective function
minimizes the total distance of all requests. Constraint 1
ensures the user would connect to one service VM to
fulfill the requests. Constraint 2 ensures the requests of the
users would only be processed on the selected service VM.
Constraint 3 ensures at most 𝑘 service VMs are chosen.

The model is in integer programming formulation. We can
apply typical techniques to solve the problem very efficiently
with an acceptable approximate solution.

IV. CO-DEPLOYMENT OF MULTI-SERVICE

After introducing the single cloud-based service deploy-
ment, we move on to the more complicated problem of de-
ploying multiple services. We extend the model of deploying
single service. An integer programming model is proposed
and heuristic approach is provided to solve the problem. The
notations in the model are given in Table I.

A. Multiple Cloud-based Services Co-deployment Model

As we have introduced the motivation of deploying multi-
ple services simultaneously, an all-in-one model is designed.

Model 2 optimizes the latencies of both user requests and
cross-service requests.

Model 2 decides the co-deployment of service VMs in
a candidate set for all services ℎ (𝑧ℎ𝑗=1 if the VM is
selected). Users 𝑖 could connect to the closest available
service VM for service ℎ (𝑥ℎ𝑖𝑗 = 1 if connected). The
objective function aims at minimizing the total distance of
all requests (including requests from all users and other
services). While the set of service users and the frequency of
user accesses may change over time, we could periodically
calculate the model to do some updates. There could be
different execution paths for the combination of multiple
services. We decoupled the execution path by a sequence of
service calls and add it up in 𝑟𝑖𝑞𝑠. Therefore all the paths
are considered in the model.

The Constraints 4 to 6 are similar to those in single cloud-
based service deployment model. The function 𝑠𝑖𝑔𝑛(𝑥) in
Equation 4 returns 1 for 𝑥 > 0 and 0 for 𝑥 = 0. Equation 4
constrains user 𝑖 would connect to one service VM to fulfill
the requests if the user has a request of service ℎ. Inequality
5 ensures the requests of the users would only be processed
on the selected service VM. Constraint 6 ensures at most
𝑘ℎ service VMs are chosen for service ℎ. The Constraints 7
to 9 are introduced for cross-service requests. Inequality 7
means for user 𝑖 the cross-service requests from service ℎ to
𝑠 should be initiated from the 𝑗-th VM of service ℎ, which
is chosen to serve user 𝑖 for requests of service ℎ. Inequality
8 constrains the cross-service requests could only be sent to
selected service VMs. Constraint 9 ensures one link would
be set if and only if there are cross-service requests.

B. Iterative Sequential Co-deployment Algorithm

We have nicely acquired an all-in-one co-deployment
model in Section IV-A, whereas, there are too many decision
variables. It is infeasible to apply general methods to obtain
an approximate solution for the model. Therefore we take
the special properties of this problem and get a heuristic
approach. Algorithm 1 shows the approach.

Algorithm 1 first generates a random deployment (Line
3 to 6) as there is no information about where to deploy.
After deciding a temporary deployment, the algorithm tries
to sequentially improve the deployment of each service one
by one (Line 11 to 14). It treats the requests from other
services the same as these from the users in Line 12. By
iteratively doing the improvement procedure in Line 9 to
20, the deployment of all services would converge. The best
deployment of the iteration is not necessary appeared at
last, so we record the best ever deployment in Line 16 to
19. Since the iterative sub-procedure would fall into a local
minimum, we disturb the solution (usually change one or
two chosen service VMs) and run 𝑛 loops to find a good
enough co-deployment.

It is worth mentioning that this iterative computing algo-
rithm is different from doing unsupervised single service

632632

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 04:49:42 UTC from IEEE Xplore. Restrictions apply.

Model 2 Cloud-based Multi-service Co-deployment Model

minimize
∑
𝑖∈𝑈

1≤ℎ≤𝑚
𝑗∈𝐶ℎ

𝑟ℎ𝑖𝑑ℎ𝑖𝑗𝑥ℎ𝑖𝑗 +
∑
𝑖∈𝑈

1≤𝑞,𝑠≤𝑚,𝑞 ∕=𝑠
𝑝∈𝐶𝑞,𝑟∈𝐶𝑠

𝑟𝑖𝑞𝑠𝑑𝑝𝑞𝑟𝑠𝑦𝑖𝑝𝑞𝑟𝑠

subject to:
∑

𝑗∈𝐶ℎ

𝑥ℎ𝑖𝑗 = 𝑠𝑖𝑔𝑛(𝑟ℎ𝑖), 1 ≤ ℎ ≤ 𝑚,∀𝑖 ∈ 𝑈, (4)

𝑥ℎ𝑖𝑗 ≤ 𝑧ℎ𝑗 , 1 ≤ ℎ ≤ 𝑚,∀𝑗 ∈ 𝐶ℎ, (5)

∀𝑖 ∈ 𝑈,
∑

𝑗∈𝐶𝑘

𝑧ℎ𝑗 ≤ 𝑘ℎ, 1 ≤ ℎ ≤ 𝑚, (6)

∑

1≤𝑠≤𝑚
𝑠 ∕=ℎ
𝑟∈𝐶𝑠

𝑦𝑖𝑗ℎ𝑟𝑠 ≤ 𝑥ℎ𝑖𝑗 , 1 ≤ ℎ ≤ 𝑚, ∀𝑗 ∈ 𝐶ℎ, (7)

∀𝑖 ∈ 𝑈,

𝑦𝑖𝑝𝑞𝑟𝑠 ≤ 𝑧𝑟𝑠, 1 ≤ 𝑞, 𝑠 ≤ 𝑚, 𝑞 ∕= 𝑠, (8)

∀𝑝 ∈ 𝐶𝑞, ∀𝑟 ∈ 𝐶𝑠,

∀𝑖 ∈ 𝑈,
∑

𝑝∈𝐶𝑞

𝑟∈𝐶𝑠

𝑦𝑖𝑝𝑞𝑟𝑠 = 𝑠𝑖𝑔𝑛(𝑟𝑖𝑞𝑠), 1 ≤ 𝑞, 𝑠 ≤ 𝑚, 𝑞 ∕= 𝑠, (9)

∀𝑖 ∈ 𝑈,

𝑥ℎ𝑖𝑗 ∈ {0, 1}, 1 ≤ ℎ ≤ 𝑚, 𝑗 ≤ 𝐶ℎ,

∀𝑖 ∈ 𝑈,

𝑦𝑖𝑝𝑞𝑟𝑠 ∈ {0, 1}, 1 ≤ 𝑞, 𝑠 ≤ 𝑚, 𝑞 ∕= 𝑠,

∀𝑝 ∈ 𝐶𝑞, ∀𝑟 ∈ 𝐶𝑠,

𝑧ℎ𝑗 ∈ {0, 1}, 1 ≤ ℎ ≤ 𝑚, ∀𝑗 ∈ 𝐶ℎ.

deployment. The goal of this algorithm is to acquire a
feasible suboptimal solution for Model 2. It is true that if
we does not participate the deploying schedule of all the
services, after some time these services would also evolve
to an overall balanced suboptimal deployment. We call this
a nature evolution approach. There are several disadvantage
of nature evolution approach compared to our algorithm. We
list three of them.

1) For the nature evolution approach, we have to wait
for quite a long time until the deployment performing
well globally since redeployment of services would
not be done frequently. On contrary, our algorithm can
compute the result in a short time.

2) The nature evolution approach would incur many real
migrations of service VMs which costs a lot. The
migration of one service could cause the migrations of

Algorithm 1 Iterative sequential co-deployment algorithm
1: 𝑡𝑒𝑚𝑝𝑆 ← 𝜙, 𝑆 ← 𝜙
2: 𝑡𝑒𝑚𝑝←𝑀𝐴𝑋, 𝑡𝑒𝑚𝑝𝑚𝑖𝑛←𝑀𝐴𝑋,𝑚𝑖𝑛←𝑀𝐴𝑋
3: for all service ℎ do
4: Select a set 𝑆ℎ of 𝑘ℎ service VMs randomly among the

candidate set 𝐶ℎ

5: 𝑡𝑒𝑚𝑝𝑆 ← 𝑡𝑒𝑚𝑝𝑆 + 𝑆ℎ

6: end for
7: for 𝑖 = 1→ 𝑛 do
8: 𝑡𝑒𝑚𝑝𝑚𝑖𝑛← Evaluate the solution 𝑡𝑒𝑚𝑝𝑆
9: repeat

10: 𝑡𝑒𝑚𝑝← 𝑡𝑒𝑚𝑝𝑚𝑖𝑛
11: for all service ℎ do
12: Select a set 𝑆′

ℎ of 𝑘ℎ service VMs according to Model
1 with decided 𝑡𝑒𝑚𝑝𝑆

13: 𝑡𝑒𝑚𝑝𝑆 ← 𝑡𝑒𝑚𝑝𝑆 − 𝑆ℎ + 𝑆′
ℎ

14: end for
15: 𝑡𝑒𝑚𝑝𝑚𝑖𝑛← Evaluate the solution 𝑡𝑒𝑚𝑝𝑆
16: if 𝑡𝑒𝑚𝑝𝑚𝑖𝑛 < 𝑚𝑖𝑛 then
17: 𝑚𝑖𝑛← 𝑡𝑒𝑚𝑝𝑚𝑖𝑛
18: 𝑆 ← 𝑡𝑒𝑚𝑝𝑆
19: end if
20: until ∣𝑡𝑒𝑚𝑝𝑚𝑖𝑛− 𝑡𝑒𝑚𝑝∣ ≤ 𝜖
21: Disturb the solution set 𝑡𝑒𝑚𝑝𝑆
22: end for
23: return S

some other services and a chain reaction continues, but
the order is random and hard to predict. Our algorithm
exploits the changes in a more systematic way and
does not trigger any real migrations.

3) Last but the most important reason that our algorithm
outperforms the nature evolution approach is we are
not necessary to fall into local optimum. We disturb
the result in Line 21 and repeat our iterative algorithm
to jump out the local minimum, while the nature
evolution approach has no choice but to be stuck in
the local optimum.

V. EXPERIMENT AND DISCUSSION

We have obtained a large real-world latency data set.
Based on the data set we conduct the experiment to eval-
uate methods of deploying multiple cloud-based services.
We compare our algorithm to the independent deployment
method. The independent deployment method deploys the
service VMs randomly at the beginning. After the logs have
been collected, all services redeploy the VMs applying sin-
gle service deployment model without differentiate requests
from users and from other services.

Ilog Cplex 9.0 is applied to give a good enough approxi-
mate solution of the integer programming problems.

A. Latency Data Collection

We use a similar assumption as in [3]. Generally, latency
of a service request (the request either from user or another
service) contains three parts: the Internet delay between the
request sponsor and the gateway of cloud data center, the

633633

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 04:49:42 UTC from IEEE Xplore. Restrictions apply.

Intranet delay inside the cloud, and the computing time on
the service VM. While inside a data center, usually gigabyte
switches are used, the Intranet delay can be ignored. More-
over, assuming two service VMs in the same data center have
the same computational capability. Thus their processing
time of a service can be viewed as the same. Therefore,
the dominant part of the latency is the Internet delay. Under
this assumption there is no difference between two VMs in
the same data center. We use distance between a user 𝑢 and
a data center 𝐶 to denote the latency between 𝑢 and any VM
𝑣 in 𝐶. Similarly, distance between a pair of data centers
𝐶𝑖 and 𝐶𝑗 represents the latency between any pair of VMs
𝑣𝑖 and 𝑣𝑗 in 𝐶𝑖 and 𝐶𝑗 separately.

Since the service VMs are running in the cloud, the
service providers can collect the latency data of fulfilling
every user requests. The calling sequences of services are
recorded as well. One log entry contains the user ID, the
service ID it calls, a sequence of service IDs involved and
a sequence of latencies between every two calling.

For any user 𝑢, if 𝑢 ever requested a service VM 𝑣 in
data center 𝐶, the recorded latency between (𝑢, 𝑣) is used
to represent the distance between 𝑢 and 𝐶. When more than
one VM in 𝐶 is requested by 𝑢, we take the average latency.
Distance between two pair of data centers is retrieved by the
same way. If there exists a latency record from a service VM
𝑣𝑖 in data center 𝐶𝑖 to 𝑣𝑗 in 𝐶𝑗 , this value is taken as the
distance between 𝐶𝑖 and 𝐶𝑗 .

We use again the example in Figure 1 to illustrate this. 𝑢
requests 𝑣1 followed by 𝑣1 requests 𝑣2. The call sequence is
recorded together with the latency between the pair (𝑢, 𝑣1)
and (𝑣1, 𝑣2). These two values are regarded as distances
between pair (𝑢,𝐶1) and (𝐶1, 𝐶2).

After this period of data processing, we obtain two
distance matrices. One matrix records the distances between
every (𝑢𝑠𝑒𝑟, 𝑑𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑒𝑟) pair. Another matrix records the
distances between every pair of data centers.

B. Dataset Description

To obtain real-world response time values of different
users and service VMs, we implement a Crawler using
Java. Employing our Crawler, we got the addresses of
1,881 openly-accessible services. We deploy shell script
codes to 307 distributed computers of PlanetLab, which is
a distributed test-bed with hundreds of computers all over
the world. During the experiment, each PlanetLab computer
pings all the Internet services as well as all the other
PlanetLab computers once and records the round trip time
(RTT). The ping operations are done simultaneously in a
randomized way to avoid overflow on one computer. By this
real-world evaluation, we obtain two matrices and publicly
release them4. One is a 307× 1881 matrix containing RTT
values between PlanetLab computers and web services (P2W

4http://www.zibinzheng.com/cloud2012

Table II
DATASET STATISTICS (UNIT: MS)

Statistics P2W Matrix P2P Matrix

minimum 0.01 0.08

25𝑡ℎ percentile 53.69 58.58

median 118.14 133.76

75𝑡ℎ percentile 176.00 188.53

maximum 1604.02 5704.04

average 129.41 138.38

Table III
PARAMETERS USED IN RANDOMIZED LOG GENERATION

Notation Descriptions Default

𝑛ℎ Number of log entries of service ℎ 1880

𝜌ℎ Ratio of users use service ℎ to total users 0.2

𝑙
Number of services involved in one service

request
5

Matrix). The other one is a 307 × 307 matrix with RTT
values between every pair of PlanetLab computers inside
(P2P Matrix). Some statistic results of these two matrices
are shown in Table II. These two matrices are used as the
two matrices described in previous section. All the service
VMs are represented by the containing data center in the
experiment.

C. Experiment Parameters

The experiment is conducted on the data set we obtained
with randomly generated user logs. The iterative sequential
algorithm for solving Model 2 is evaluated. If it is not
specially explained the parameters of the model in Table I
are set to default values. By the default setting, there are
1881 users, 10 services. Every service would deploy 10
service VMs among a candidate set in 100 data centers.
A user of service 𝑠 would have 5 request logs. One request
of a service would involve on average 5 requests of other
services. The parameters without default value 𝑟𝑖𝑞𝑠 together
with parameter 𝑟ℎ𝑖 depend on user logs. We generate user
logs randomly. Table III states several parameters related to
the randomized log generation.

D. Algorithm Specifics

1) Convergence of Iterative Sequential Procedure: There
is a sequential procedure in Algorithm 1 (Line 11 to 14) that
does the service deployment one by one. As shown in Figure
2, the procedure would soon converge after 5 iterations. So
it is quite safe to limit the iteration number and make the
algorithm run faster.

2) Number of Disturbs: In case falling into local mini-
mum, we disturb the result and run several loops to get a
better result in Algorithm 1. Figure 3 shows the effective
of adding disturbs. The latency value of disturb 0 is the

634634

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 04:49:42 UTC from IEEE Xplore. Restrictions apply.

1 3 5 7 9 11 13 15 17 19
35

40

45

50

55

Iteration

La
te

nc
y

(m
s)

Sequential Procedure

Figure 2. Convergence of Sequential Procedure

0 1 2 3 4 5 6 7 8 9 10
35

40

45

50

55

Disturb Times

La
te

nc
y

(m
s)

Iterative sequential algorithm

Figure 3. Number of Disturbs

average latency of random deployment. We could see as the
figure shows the biggest improvement is made on the first
iteration. The disturbing would let the algorithm jump out
the local minimum. The result of first several iterations is
good enough that less consequent improvements are made.

E. Number of Services

We change the total number of services and conduct the
experiment. The result is shown in Figure 4. We can see our
algorithm has the improvement about 10% to 20%. Since we
set the number of services involved in one request to be the
default value, the average latency of one request does not
vary a lot. The variations of two curves are caused by the
random generation of the candidate set of service VMs of
different services in different service number setting.

An observation is that the improvement of our algorithm
decreases for big service numbers. It is because with the

2 4 6 8 10 12 14 16 18 20
35

40

45

50

55

60

Service Number

La
te

nc
y

(m
s)

Independent deployment
Iterative sequential algorithm

Figure 4. Number of Services

20 50 80 110 140 170 200
30

40

50

60

70

80

Set Size of Candidate VMs

La
te

nc
y

(m
s)

Independent deployment
Iterative sequential algorithm

Figure 5. Set Size of Candidate VMs

2 5 8 11 14 17 20
20

40

60

80

100

Number of VMs to Deploy

La
te

nc
y

(m
s)

Independent deployment
Iterative sequential algorithm

Figure 6. Number of Service VMs to Deploy

growing number of services there are more service VMs
selected. Therefore more information is known when deploy-
ing one service. Every service could choose overall better
service VMs for many users and other service VMs indepen-
dently. Thus the improvement of our algorithm decreases.
While it is more common situation that there are not many
services, our algorithm is effective.

F. Number of Service VMs

1) Size of Candidate Set of Service VMs: We set different
size of candidate service VM set. The result is shown in
Figure 5. There is a decreasing tendency of the curve. Since
there are more potential service VMs to choose from the
result should be better. The abnormal increasing on set size
170 is caused by randomized initial deployment phase. It is
worth mention that our algorithm has greater improvement
with bigger set size. The reason is with more candidates to
choose from our algorithm could do a much better decision
than considering the deployment independently.

2) Number of Service VMs to Deploy: Figure 6 is gen-
erated by modifying the number of total service VMs of
every service. We can see our algorithm outperforms the
independent deployment method by at most 25 percentages.
Especially in smaller number of VMs to deploy, we can
make a much better decision. If we can deploy many service
VMs, independently decision could find several outstanding
VMs that perform well. Therefore in these cases our algo-
rithm does not win too many advantages.

635635

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 04:49:42 UTC from IEEE Xplore. Restrictions apply.

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
30

35

40

45

50

55

Ratio of Users

La
te

nc
y

(m
s)

Independent deployment
Iterative sequential algorithm

Figure 7. Number of Service Users

1 2 3 4 5 6 7 8 9 10
20

30

40

50

60

70

Average Call Length

La
te

nc
y

(m
s)

Independent deployment
Iterative sequential algorithm

Figure 8. Average Call Length

G. Services Logs

We tried different log generation parameters and see the
behavior of our algorithm under different use cases.

1) Number of Service Users: In Figure 7 we change
the number of users. There are totally 1881 sample users
and we change the ratio of users to use one service. For
example 10% means we have logs of 188 users that use a
specific service. The result shows that the performance of
independent deployment varies a lot due to randomization,
while our algorithm is quite stable under all situations.
Moreover, our algorithm reduces the average latency up to
30%.

2) Average Call Length of Service: We define the call
length as the number of service requests involved in one user
task. For example, a call length of 5 means a user request
of a specific service 𝑠 would involve 4 consequent requests
of other services from the VM of service 𝑠. Our algorithm
outperforms the independent deployment method especially
when the service call length is big. It can also be seen that
the increasing curve of our algorithm is more stable.

3) Number of Logs: We modify the number of total logs
on randomized generation. The result is shown in Figure
9. Average usage of a user means the average number of
requests of a user for a specific service. We can expect the
more records of users the more intelligent we can deploy
the service. As we can see in the figure, the average latency
decreases with more user logs. An observation is that the
gap between our algorithm and independent deployment
method becomes narrower with the growing number of the

2 5 8 11 14 17 20
35

40

45

50

55

Average Usage

La
te

nc
y

(m
s)

Independent deployment
Iterative sequential algorithm

Figure 9. Average Usage

user logs. This could be explained by that there are many
user logs providing enough information even for deploying
service independently. We can see the tendency of two
curves. Our algorithm converges when there are more than
10 average usages, while independent deployment method
converges after 14. Therefore our algorithm could do a better
deployment when the number of logs is not sufficient.

VI. RELATED WORK

A. Cloud-Based Service Deployment

Web server placement is widely studied previously.
Web server replicas placement is studied by Qiu et al.

[6]. They use the result of p-median model as super-optimal
result. The work focuses on using different algorithms to
give an approximate solution of the model.

Zhang et al. [7] studied service placement in shared
service hosting infrastructures. They formulated a model
similar to the general capacitated facility location model.
They did not use response time directly but define a new
penalty cost.

However, the previous studies are not specially tailored
for cloud computing. In the work of Kang et al. [3], the
properties of cloud computing are considered. The user
experience is highlighted and a general framework of service
deployment in cloud environment is proposed.

While these works focus on single service deployment, we
proposed the model for multiple services co-deployment.

B. p-Median Model and Multi-commodity Facility Location

A series of facility location problems have been well
studied in supply chain management field. Melo et al. [8]
provide an extensive review. One discrete variation of facility
location problem called p-median attracts many interests in
areas such as web service deployment [6]. Consequently
improvements have been done to approximate the solution
[9], [10], [11]. Arya et al. [11] provide the currently best
known 3 + 𝜀 approximation of the problem.

The original p-median model considered the facility loca-
tion problem for only one commodity. Our model is more
similar to multi-commodity facility location problem.

636636

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 04:49:42 UTC from IEEE Xplore. Restrictions apply.

Pirkul et al. [12] proposed PLANWAR model which is
a long existing formulation to the multi-commodity, multi-
plant, capacitated facility location problem. Shen [13] mod-
ified the cost function and obtain a new model. Cao et
al. [14] proposed a variation of p-median model for the
problem. However, these models do not consider cross-
plant transportation. Instead the commodities are regarded
as rather independent.

Thanh et al. [15] proposed a very complex dynamic model
with about 40 constraints. The model considers a multi-
echelon, multi-commodity production-distribution network
with deterministic demands. They take the assumption that
the production process can be divided into several steps
and can be shared between several plants. The produc-
tion process does not rely on other productions or sub-
routines. The relation of two commodities is that they can
be manufactured/stored in one facility simultaneously. The
multi-echelon is divided according to the life cycle of a
commodity but not cross-commodity. Therefore this model
is quite different from our model also.

VII. CONCLUSION AND FUTURE WORK

In this paper, we investigate the latency-aware cloud-
based multiple services co-deployment problem. Motivating
examples are given to illustrate the problem. We offer the
method to show what and how the user logs could be col-
lected. The co-deployment problem is abstracted in a general
framework. Integer programming formulation is employed to
model the problem and a new heuristic algorithm is given
to obtain an approximate solution. Extensive experiments
are conducted on hundreds of computers over world. The
experiment results show the effectiveness of our model.

In our future work, we would add more constraints to
the model. For example, our model in this paper does not
limit the number of requests to one service VM. We could
add a threshold of requests. The computing time is regarded
as constant in this model. Actually the computational ca-
pability is related to the workload of the service VM, we
would further study the characteristics of VMs and find a
function which fits the computing time of VM over different
workload. This function could be added as an item in the
model to punish users sending requests to heavy load VMs.
Thus a better load balance could be maintained.

ACKNOWLEDGMENT

The work described in this paper was fully supported
by the Research Grants Council of the Hong Kong, China
(Project No. CUHK 415311), the NSFC/RGC Joint Research
Scheme sponsored by the Research Grants Council of Hong
Kong and the National Natural Science Foundation of China
(Project No. N CUHK405/11), the National Natural Science
Foundation of China under Grant No. 61100078, and the
National Basic Research Program of China (973) under
Grant No. 2011CB302603.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz,
A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica,
and M. Zaharia, “A view of cloud computing,” ACM Com-
munication, vol. 53, no. 4, pp. 50–58, 2010.

[2] L. Qian, Z. Luo, Y. Du, and L. Guo, “Cloud computing: An
overview,” in Proc. of the 1st International Conference on
Cloud Computing (CloudCom’09), 2009, pp. 626–631.

[3] Y. Kang, Y. Zhou, Z. Zheng, and M. Lyu, “A user experience-
based cloud service redeployment mechanism,” in Proc.
of the 4th International Conference on Cloud Computing
(CLOUD’11), july 2011, pp. 227 –234.

[4] Z. Zheng, Y. Zhang, and M. R. Lyu, “CloudRank: A QoS-
driven component ranking framework for cloud computing,”
in Proc. of the 29th International Symposium Reliable Dis-
tributed Systems (SRDS’10), 2010, pp. 184–193.

[5] D. M., “Network and discrete location: Models, algorithms
and applications,” Journal of the Operational Research Soci-
ety, vol. 48, no. 7, pp. 763–763, 1997.

[6] L. Qiu, V. Padmanabhan, and G. Voelker, “On the placement
of web server replicas,” in Proc. of the 20th IEEE Inter-
national Conference on Computer Communications (INFO-
COM’01), vol. 3, 2001, pp. 1587–1596.

[7] Q. Zhang, J. Xiao, E. Grses, M. Karsten, and R. Boutaba,
“Dynamic service placement in shared service hosting infras-
tructures,” in Proc. of the 9th International IFIP TC6 Net-
working Conference (NETWORKING’10), vol. 6091, 2010,
pp. 251–264.

[8] M. Melo, S. Nickel, and F. S. da Gama, “Facility location and
supply chain management - a review,” European Journal of
Operational Research, vol. 196, no. 2, pp. 401 – 412, 2009.

[9] M. Charikar and S. Guha, “Improved combinatorial algo-
rithms for the facility location and k-median problems,” in
Proc. of the 40th Annual Symposium on Foundations of
Computer Science (FOCS’99), vol. 0, 1999, p. 378.

[10] K. Jain, M. Mahdian, and A. Saberi, “A new greedy approach
for facility location problems,” in Proc. of the 34th Annual
ACM Symposium on Theory of Computing (STOC’02), 2002,
pp. 731–740.

[11] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala,
and V. Pandit, “Local search heuristic for k-median and
facility location problems,” in Proc. of the 33rd Annual ACM
Symposium on Theory of Computing (SOTC’01), 2001, pp.
21–29.

[12] H. Pirkul and V. Jayaraman, “A multi-commodity, multi-
plant, capacitated facility location problem: formulation and
efficient heuristic solution,” Computers and Operations Re-
search, vol. 25, pp. 869–878, October 1998.

[13] Z.-J. M. Shen, “A multi-commodity supply chain design
problem,” IIE Transactions, vol. 37, no. 8, pp. 753–762, 2005.

[14] B. Cao and G. Uebe, “An algorithm for solving capacitat-
ed multicommodity p-median transportation problems,” The
Journal of the Operational Research Society, vol. 44, no. 3,
pp. 259–269, 1993.

[15] P. N. Thanh, N. Bostel, and O. Péton, “A dynamic model
for facility location in the design of complex supply chains,”
International Journal of Production Economics, vol. 113,
no. 2, pp. 678 – 693, 2008.

637637

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 04:49:42 UTC from IEEE Xplore. Restrictions apply.

