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Abstract—Cloud computing has attracted much interest
recently from both industry and academic. Nowadays, more
and more Internet applications are moving to the cloud
environment. Making optimal deployment of cloud applications
is critical for providing good performance to attract users.
Optimizing user experience is usually required for cloud service
deployment. However, it is a challenging task to know the user
experience of end users, since there is generally no proactive
connection between a user to the machine that will host
the service instance. To attack this challenge, in this paper,
we first propose a framework to model cloud features and
capture user experience. Then based on the collected user
connection information, we formulate the redeployment of
service instances as k-median and max k-cover problems. We
proposed several approximation algorithms to efficiently solve
these problems. Comprehensive experiments are conducted by
employing a real-world QoS dataset of service invocation. The
experimental results show the effectiveness of our proposed
redeployment approaches.

I. INTRODUCTION

In cloud computing systems, computation, software, and
data access can be delivered as services located in data
centers distributed over the world [1], [2]. Typically, these
services are deployed on instances (e.g., virtual machine
instances) in the cloud data centers. Recently, numerous
systems have been implemented with the cloud computing
paradigm (e.g., Amazon Elastic Compute Cloud (EC2)).

In the emerging cloud computing systems, auto scaling
and elastic load balance are key to host the cloud services.
Auto scaling enables a dynamic allocation of computing
resources to a particular application. In other words, the
number of service instances can be dynamically adapted to
the request load. For example, EC2 can automatically launch
or terminate a virtual machine instance for an EC2 applica-
tion based on user-defined policies (e.g., CPU usage) [3].
Elastic load balance distributes and balances the incoming
application traffic (i.e., the user requests) among the service
instances (e.g., the virtual machine instances in EC2 [4]).

Auto scaling and elastic load balance directly influence
the Internet connections between the end users and the
services as they essentially determine the available service
instance for an end user. Hence, they are important to the
user experience of service performance.

Unfortunately, current auto scaling and elastic load bal-
ance techniques are generally not optimized for achieving

best service performance. Specifically, typical auto scaling
approaches (e.g., that adopted in EC2 [3]) cannot start
or terminate a service instance at the data center selected
according to the distributions of the end users. For example,
when the number of users increases dramatically in an area,
a new instance located far away, instead of nearby, may be
activated for serving the users. Furthermore, elastic load bal-
ance generally redirects user requests to the service instances
merely based on loads of the instances. It does not take the
user specifics (e.g., user location) into considerations. As a
result, a user may be directed to a service instance far away
even if there is another available service instance nearby.

In this paper, we model the features of user experience
mainly by latency (other features can be extended in the
framework) in cloud service. After that we address these
issues by proposing a new user experience-based service
hosting mechanism. Our mechanism employs a service re-
deployment method. This method has two advantages:

1) It improves current auto scaling techniques by launch-
ing the best set of service instances according to the
distributions of end users.

2) It extends elastic load balance. Instead of directing
user request to the lightest load service instance, it
directs user request to a nearby one.

The prerequisite of such a service hosting mechanism is
to know the user experience of a potential service instance,
before we decide to activate the instance and deliver the
user requests to it. This is quite a challenging task, as there
is generally no proactive connection between a user to the
machine that will host the service instance. Measuring the
user experience beforehand is hence impossible. We notice
that the user experience of a cloud service depends heavily
on the communication delay between the end user and the
service instance the user accesses, which is mainly caused
by the Internet delay between the user and the data center
hosting the instance. We therefore propose a viable method
to conveniently measure and predict such an Internet delay.

With the predicted user experiences, the service hosting
problem is essentially how to redeploy a set of data centers
for hosting the service instances, while guaranteeing the user
experience for frequent users. We formulate it as a k-median
problem and a max k-cover problem, which can be efficiently
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Figure 1. Framework of cloud-based services

solved by several algorithms we proposed in this paper. We
evaluate our service hosting mechanism based on a large
set of real-world data (roughly 130,000 accesses to Internet-
based services). The results show that our mechanism can
approach rapid and scalable cloud service hosting.

The rest of this paper is organized as follows. Section
II overviews the cloud service hosting mechanism. Section
III discusses the method of obtaining user experience. We
present two different models and objective functions for
modeling instance redeployment problem in Section IV. Sec-
tion V conducts experiments and discusses the experimental
results. Finally, the paper is concluded in Section VII .

II. OVERVIEW OF CLOUD-BASED SERVICES

A. Framework of Cloud-Based Services

Figure 1 shows the framework of cloud-based services.
A cloud contains several data centers (eclipse in Figure 1).
Physical machines are virtualized as instances in the data
center. Service providers would deploy service running on
these instances. An end user normally connects to the cloud
to get data and run applications/services. User requests are
directed to the service instances.

A good example is the Chrome OS developed by Google.
Via such kind of light client, the end user can access data as
well as application logic provided by the cloud as services.

Since the instances are inside the cloud, the connection
information especially Round Trip Time (RTT) between a
user and an instance can be kept by the cloud provider.
The solid lines in Figure 1 represent RTT information being
recorded between a user and some instances. Some links are
not used thus the related RTT information is missing. We
can derive new methods to predict these values. Dash lines
in Figure 1 stands for this situation.

Generally user experience contains three elements: the
Internet delay between user and cloud data center, the delay
inside a data center in the cloud, and the time to process the
service request. As machines in a data center are typically
connected by gigabit links, delay inside a data center can be

ignored. Moreover, the time to process the service requests is
only affected by the computing ability of a service instance.
As a result, the processing time is the same for two service
instances. Hence, the user experience is mainly determined
by the Internet delay.

B. Challenges of Hosting the Cloud Services

In order to attract users by low latency, service providers
are concerning about where to deploy service instances in
the cloud. The challenge of hosting the cloud service in
the cloud stems from the difficulties of foreseeing user
experience before actually running the service. So normally
redeployment is in needed.

After the service running for a period, the Internet delay
between users and every cloud data center can either be mea-
sured or be predicted. We describe this in Section III. This
means in the cloud we can obtain all information regarding
the potential positions for deploying service instances, while
many existing computing infrastructures such as Internet
services do not have such a feature. All the information is
organized as a distance matrix. An element in the matrix is
the distance value between a user and a data center.

Moreover, we notice the fact that the number of data
centers is limited, while there is no bound for the number
of services. So there are multiple services deployed in the
data centers of a cloud. This fact suggests that we can use
this measurement for optimizing any service in the cloud.

Consequently, we employ a distance matrix to formulate
the redeployment problem as a k-median problem in Section
IV-A. However, we have not taken the limiting resource
of a single service instance into consideration. Another
model of max k-cover problem is engaged to deal with this
limitation and to make the model more realistic. We discuss
this formulation in Section IV-B. Through solving these
problems we can redeploy the service instances intelligently.

III. OBTAINING USER EXPERIENCE

A. Measure the Internet delay

A user normally requests service in the cloud. A requests
is responded by an instance inside the cloud thus the cloud
provider is able to record the RTT from the user to the
instance. This RTT value is kept as the distance from the
user to the data center as the delay inside a data center can
be ignored. The user generally calls several services and
the related service instances are distributed in different data
centers throughout the cloud. As a result we can get plenty
of distance values between different users and data centers.

B. Predict the Internet delay

A user may not be able to visit many instances deployed
in every data center. So we cannot get some distance data
directly. We call it a missing value if the distance between
a pair (user 𝑢, data center 𝑑) is not available. The technique
given in [5] can be used to predict the missing values. The
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Table I
ALPHABET OF PROBLEM MODEL

Descriptions Notation

Number of data centers M

Number of frequent users N

Number of instances to deploy k

Distance between user i and data center j 𝑑𝑖𝑗

idea goes as the following. Some users may come from the
same place and use the network infrastructure of the same
provider, thus their network performance is similar. We can
examine the existing values to find these similar users of
user 𝑢. As these similar users may have visited data center
𝑑 already, we combine distance values between similar users
and data center 𝑑 intelligently to predict the missing value
(user 𝑢, data center 𝑑). Technical details are in [5].

IV. REDEPLOYING SERVICE INSTANCES

Suppose a service provider 𝑝 will provide a service 𝑠 in
the cloud, and the service will be distributed on k instances
in the cloud due to budget restriction. At first, the cloud
service hosting mechanism ℎ can only guess where to place
the k instances. But after a period of running service 𝑠, ℎ
knows a bunch of (totally N) users who use 𝑠 frequently.
The k instances can then be redeployed.

The problem is to redeploy k instances such that the result
is optimal for the current N frequent users by considering the
distance matrix we obtained in Section III1. The notations
we used in the following sections are listed in Table I.

A. Minimize Average Cost

Suppose for a specific user 𝑢 who would like to take
the service 𝑠, our mechanism would direct the user to the
closest of the k instances. We define cost of user u as the
distance between 𝑢 and the closest instance. Our objective
is to minimize the average cost of N users. Note that N is
fixed and the target is equivalent to minimize the total cost.

We formulate this problem as the followings:
Given:
𝑍 = the set of data centers
𝐶 = the set of users
𝑑𝑖𝑗 = distance between every pair 𝑖, 𝑗 ∈ 𝐶 × 𝑍
Minimize:

𝑁∑
𝑖=1

min
𝑗∈𝑍′
{𝑑𝑖𝑗}

Subject to:

𝑍 ′ ⊂ 𝑍, ∣𝑍 ′∣ = 𝑘

1The network link may vary in different time. Average value of distance
can be used in the algorithm. While we are not interested in the exact
value of distance, our task is to deploy service instance. As long as the
order of distances between a user and different data centers are preserved,
our choice of data center is fine.

This is exactly the well known k-median problem, which
is NP-hard. So we resort to the following fast approximation
algorithms.

1) Brute Force: In a small scale (e.g., select 3 instances
from M potential data centers), it is possible to list all
combinations. We call this brute force algorithm in our
experiment in Section V. The complexity of this algorithm
is 𝑂(𝑀𝑘 ⋅ 𝑁), where M, N and k follow the definition in
Table I. If k is small, it can be computed in reasonable time.

2) Greedy Algorithm: Greedy algorithm runs as follows.
Suppose we would choose k among M data centers to deploy
the instances. In the first iteration, we evaluate each of M
data centers individually to determine which one to choose
first. We compute average distance from each data center to
all users. The one achieving the smallest average cost will be
chosen. In the second iteration, we search for another data
center. Together with the first data center we have already
chosen, the two data centers yield the smallest average cost.
We do the iteration until we get k centers. This algorithm
runs in 𝑂(𝑘 ⋅𝑀 ⋅𝑁) time.

3) Local Search Algorithm: Local search can provide
the current best known bound for approximating k-median
problem [6].

Algorithm 1 shows the approach. 𝐶𝑜𝑠𝑡(𝑆) in the algo-
rithm means the average cost for all users. 𝑠 ∈ 𝑆, 𝑠′ /∈ 𝑆
are two sets containing the same number of elements.
𝑃 (𝑁,𝑀) is a polynomial in 𝑀 and 𝑁 . The constraint
𝑐𝑜𝑠𝑡(𝑆 − 𝑠+ 𝑠′) ≤ (1− 𝜖

𝑝(𝑁,𝑀) ) ∗ 𝑐𝑜𝑠𝑡(𝑆) is to guarantee
that the algorithm terminates in finite steps.

Algorithm 1 Local search algorithm for k-median problem
1: 𝑆 ← an arbitrary feasible solution.
2: while ∃𝑆 − 𝑠+ 𝑠′ such that,

𝑠 ∈ 𝑆, 𝑠′ /∈ 𝑆,
𝑐𝑜𝑠𝑡(𝑆 − 𝑠+ 𝑠′) ≤ (1− 𝜖

𝑝(𝑁,𝑀)
) ∗ 𝑐𝑜𝑠𝑡(𝑆) do

3: 𝑆 ← 𝑆 − 𝑠+ 𝑠′

4: end while
5: return S

Assume sets 𝑠 and 𝑠′ are of size t. It is easy to verify
that the algorithm runs in 𝑂(𝑙 ⋅ 𝑘𝑡 ⋅𝑀 𝑡 ⋅𝑁) time where 𝑙 is
related to 𝜖, and other notations are given in Table I.

On initializing, we use mainly two methods. The first
one we utilize is the data centers selected by the greedy
algorithm, and the second one is a random vector. As local
search would naturally find the local optimum, output of the
algorithm is always no worse than that of the original one.
So the one initialized by the greedy algorithm would return
a better or at least equivalent solution to the greedy result.

4) Random Algorithm: Random algorithm would ran-
domly choose k out of M data centers from a uniform
distribution. Every data center has the same possibility to be
chosen. This is a simple algorithm. Generally the method
to improve the performance of a random algorithm is to
run it multiple times. The purpose of this algorithm is to
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designate it as a base line of performance. So instead of
running random algorithm at fixed times, we determine the
times of running dynamically. For example, if we would like
to know how good the greedy algorithm is in terms of time
complexity and approximation rate, we would use a dynamic
random algorithm for comparison. We record the run time
of the greedy algorithm 𝑇𝑔𝑟𝑒𝑒𝑑𝑦 and launch the random
algorithm running several times with the total running time
roughly equal to 𝑇𝑔𝑟𝑒𝑒𝑑𝑦. Consequently we could compare
either their relative performance to the optimal choice or
their average distance to all users directly. If the result is
comparable then we argue that the greedy algorithm is not
a good algorithm as its performance is no better than the
random algorithm while the approach is more complicated,
and vice versa.

B. Maximize Close User Amount

In the previous section, we set our target to minimize
average cost of all users. However, in some cases part of
the users may be extremely far away from most of the
data centers. While considering minimizing the average cost,
these users tend to force some service instances deployed in
the data center close to them. This kind of users are called
outliers in [7]. We could directly put the algorithm of k-
median problem with outliers in [7] into practice in our case.

In this paper we employ another model to deal with the
outliers. On considering QoS of a service, we believe it is
unacceptable if some responses take a very long time. In this
model we set a threshold value T for the response time. We
try several values of the proper threshold in our experiment.
If some 𝑑𝑖𝑗 > 𝑇 , we drop this link by considering it
disconnected. Moreover, to simplify the problem, we assume
the user accepts the service as long as the response time
is less than the threshold. Overall our target is to find k
instances that satisfy as many users as possible. This time
our mechanism directs the user to a light load and close
enough but not necessary the closest service instance.

To model this situation, consider following problem:
Given Bipartite graph 𝐵(𝑉1, 𝑉2, 𝐸) where

∣𝑉1∣ = 𝑀 , ∣𝑉2∣ = 𝑁
𝑖 ∈ 𝑉1, 𝑗 ∈ 𝑉2{

(𝑖, 𝑗) ∈ 𝐸, 𝑑𝑖𝑗 ≤ 𝑇 ;
(𝑖, 𝑗) /∈ 𝐸, otherwise.

Maximize:
∣𝑁𝐵(𝑉

′)∣
Subject to:

𝑉 ′ ⊂ 𝑉1, ∣𝑉 ′∣ = 𝑘

∣𝑁𝐵(𝑉
′)∣ is the number of nodes in the neighbor set of

V’, meaning the target is to choose a subset of 𝑉1 to cover as
many vertices in 𝑉2 as possible. Actually it is a max k-cover
problem.

In this problem we construct M sets by setting 𝑖 to be
the 𝑖th vertex in 𝑉1 and the elements in this set is vertices
connected to 𝑖 in 𝑉2. We are trying to find k-sets to cover
as many elements as possible.

Max k-cover problem is a classical problem and is well
studied. This problem is NP hard hence we do not expect
to achieve the exact answer. Again we use approximate
algorithms. Greedy algorithm (Algorithm 2) is proven to be
one of the best polynomial time algorithm for this problem
[8]. It could give a (1 − 1/𝑒) approximation, which means
it could cover at least (1− 1/𝑒) of the maximum elements
k-sets could cover.

In the greedy algorithm, every round we find a data center
𝑠 which, when combined with current selection set 𝑆, could
cover the maximum users. There may be more than one
such data centers. In Algorithm 2 we choose one of them
randomly. It can also be done more precisely as we can use
a stack to record and try all choices one by one. However,
we find that with the growing of k, the amount of branches
increases so fast that the reward quickly diminishes. So we
do not include this implementation in the paper.

Algorithm 2 Greedy algorithm for max k-cover problem
1: 𝑆 ← 𝜙.
2: while Have not covered all users yet & Used less than k

instances do
3: 𝑚𝑎𝑥𝑐𝑜𝑣𝑒𝑟 ← 1
4: clear list 𝑙
5: for all data centers 𝑠 do
6: if use 𝑠 could cover 𝑐 ≥ 𝑚𝑎𝑥𝑐𝑜𝑣𝑒𝑟 more users than use

instances in 𝑆 then
7: clear list 𝑙
8: add s to 𝑙
9: 𝑚𝑎𝑥𝑐𝑜𝑣𝑒𝑟 ← 𝑐

10: else if use 𝑠 could cover exactly 𝑚𝑎𝑥𝑐𝑜𝑣𝑒𝑟 more users
than use instances in 𝑆 then

11: add s to 𝑙
12: end if
13: end for
14: random select s from 𝑙
15: 𝑆 ← 𝑆 + 𝑠
16: end while
17: return S

Moreover this algorithm can be easily modified to restrict
the number of users to whom an instance can be connected.
In line 15 of Algorithm 2, instead of 𝑆 ← 𝑆 + 𝑠 we
consider an integer 𝑙𝑖𝑚𝑖𝑡 if 𝑠 covers ≥ 𝑙𝑖𝑚𝑖𝑡 more users, we
randomly pick up 𝑙𝑖𝑚𝑖𝑡 number of users to cover. Moreover,
we consider 𝑠 cover ≥ 𝑙𝑖𝑚𝑖𝑡 more users as = 𝑙𝑖𝑚𝑖𝑡. By
these changes we can limit the connections and select a data
center to deploy multiple instances if needed. This constraint
can make the model more realistic.

Local search method would find local extreme solution
thus can be used to help improving the greedy algorithm.
Again we use single swap for the original greedy algorithm.
However, for the modified algorithm swap is not that easy,
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Figure 2. Worst case without redeployment

so we launch the algorithm for several times to improve its
performance.

V. EXPERIMENT AND DISCUSSION

In this section we conduct experiments to show the neces-
sity of redeployment and to compare different algorithms.

A. Dataset Description

To obtain real-world response time values of different
service instances, we implement a WSCrawler and a WSE-
valuator using Java. Employing our WSCrawler, addresses
of 4,302 openly-accessible services are obtained from the
Internet. We deploy our WSEvaluator to 303 distributed
computers of PlanetLab, which is a distributed test-bed made
up of computers all over the world. In our experiment, each
PlanetLab computer invokes all the Internet services for one
time and the corresponding response-time value is recorded.
By this real-world evaluation, we obtain a 303×4302 matrix
containing response-time values.

B. Necessity of Redeployment

The first thing we should do is to demonstrate the neces-
sity of redeploying service instances.

We fix the instance number to 3 and scale the user from
100 to 500. We repeat the experiment for 100 times and
find in the worst case the performance is really bad. This is
shown in Figure 2. If we deploy the optimal service instances
for 100 users, then without redeployment the performance
may decrease below 70% of the optimal. The same situation
occurs when deploying optimal instances for 200 or 300
users. In worse cases, far away users would cost the main
part of the average cost. So the performance of three worse
cases tend to be closer. Without redeployment the network
performance may discourse the new users. To avoid the
worst case from happening, redeployment or at least a
performance checking is required.

C. Weakness of Auto Scaling

As discussed before, current cloud service would apply
auto scaling in responding to the change of user scale. So it
is natural to ask whether it is good enough to simply apply
this service without redeployment. We indicate there are two
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Figure 3. Deploy in limited data centers
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Figure 4. Auto scaling algorithms

main drawbacks of current auto scaling approaches which
can be shown in Figure 3 and Figure 4.

Current auto scaling is limited within one region. We
simulate this by selecting out only a part of data centers as
the potential data centers to deploy instances. Using the same
algorithm to deploy instances, we can see that the average
user cost is higher to choose instances from partial data
centers than that of choosing from all data centers. Figure 3
shows the result. We pick out 50, 100, 150 data centers from
totally 303 data centers and deploy 10 instances in these
data centers. We apply the greedy + single swap algorithm
and the result of using total 303 potential data centers is
employed as the baseline. The performance decreases greatly
if we choose only 50 potential data centers, where the
performance is not quite related to the number of users.
Note the distance between users and data centers is better
preserved if we choose 100 (33%) or more from the total
data centers, and the performance is greatly improved. It is
due to the fact that we have some data centers which are
close to many users. The average distance would decrease
greatly if we could pick up these data centers.

Another disadvantage of current auto scaling approach is
that it launches new instances in the data center containing
least instances. It is like randomly picking up a new data
center to grow. We simulate randomized scaling and the
result is in Figure 4. On a small scale (e.g., select no more
than 4 instances), we consider all possible combination and
find the optimal choice. On a larger case, we use again the
greedy + single swap algorithm as our best choice. We start
from one optimal instance and 200 users. Then we randomly
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Figure 5. Selecting 3 data centers by redeployment algorithm

add 200 users at each step and select one more instance. We
see the performance is bad in this situation. If we defer the
random selecting after we find 3 optimal service instances
for 600 users, we would obtain a better choice than doing it
in the beginning. As we see in this case, if we could do the
scaling a little more intelligently by using a simple greedy
algorithm, we can get a very good result. However, there
is still some problem by using greedy algorithm, such as
some instances would get extremely heavy load. We would
discuss this issue later.

D. Comparing the Redeployment Algorithms for k-Median

The previous experiment confirms the need for rede-
ployment. As we discussed in Section IV-A, we formulate
the redeployment as k-median problem and compare the
algorithms we proposed. First we set k to be 3 and M to
be 303. We compare the algorithm output with the optimal
output generated by the brute force algorithm.

We use the optimal average cost as the baseline and
compare the greedy algorithm output. On applying local
search (single swap) algorithm we use the output obtained by
the greedy algorithm and a random vector as initialization.
Notice in Figure 5, the outputs generated by the random
algorithm with the time equivalent to the greedy and the
local search algorithms are the same. It is because they run
in so short a time that the pseudo-random outcomes remain
the same if the system time is used as the seed to generate
pseudo-random values. From Figure 5 we know in such a
small scale, the greedy algorithm is good enough. The local
search algorithm would be even better. Moreover, they are
better choice in terms of time complexity as they perform
better than the random algorithm.

When selecting more than 10 instances the brute force
algorithm would run in unacceptably long time, and we
use the greedy + single swap algorithm as the baseline
to observe the relative performance of the greedy and the
random + single swap algorithms. Once more we compare
them with the random algorithm. We select 10 to 20 data
centers to deploy instances so as to satisfy 4000 users. The
result is shown in Figure 6. The random + single swap
algorithm is slightly better than the greedy algorithm, but
it takes more time to compute. Again, the random algorithm
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Figure 6. Selecting 10 - 20 data centers for 4000 users

Table II
TIME COMPLEXITY OF THE ALGORITHMS (UNIT:CPU CLOCK)

Brute Force Greedy Greedy +
single swap

Random +
single swap

(2,200) 203 0 0 16

(2,400) 375 0 16 31

(2,600) 547 15 15 47

(2,800) 735 0 31 31

(3,600) 78969 0 31 63

(10,4000) - 94 328 2641

(15,4000) - 172 500 13109

(20,4000) - 203 1906 25469

fails to give a satisfiable answer, which means both the
greedy and the local search algorithms are well suited.

Table II lists some typical computing times for running
these algorithms. The pair (𝑎, 𝑏) in the table (e.g, (2, 400))
stand for selecting 𝑎 service instances to satisfy 𝑏 users.
Values in the table are the counts of the cpu clock. We are
interested in their comparative relation. We can see that the
brute force algorithm does cost with an exponential time
growth. The greedy as well as the greedy + single swap
algorithms run quite fast comparing to the random + single
swap algorithm because normally we expect more swaps to
find a local optimizer by a random initial vector.

E. Redeployment Algorithms for Max k-Cover

Through experiments we confirm the greedy + single
swap algorithm is good enough in both result and time
complexity to solve k-median problem. This makes the rede-
ployment simple; however, there is a limitation of k-median
model. Recall on formulating redeployment in k-median
problem we have assumed users are evenly distributed and
all users can connect to their nearest service instance. In
practice this condition does not always hold.

As an illustration, Figure 7 shows a typical distribution
of user connections on the service instances. 20 instances
are selected to provide service for 4000 users. We expect all
instances to connect to about 200 users each, while the real
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Figure 7. Histogram on number of connected users for each server
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Figure 8. Max k-cover using greedy approach

case is that some instances connect to up to 400 or more
users. Therefore these instances get very heavy load and the
performance would become unsatisfiable.

The cloud has virtually infinite resource while we have
only limited budget. We can only launch limited number of
(k) instances in the cloud. If we would like to ease the burden
of some instances we are required to put some extra instance
nearby and to distribute service instances in 𝑘′ (where 𝑘′ <
𝑘) data centers.

To attack this, we use another model to formulate the
problem which is max k-cover problem. As discussed in
Section IV-B, the threshold to cut edges is a key parameter
we should pick up carefully. We employ the entire 303 ×
4302 matrix in our experiment and test the value of the
threshold ranging from 0.05 to 1. We select data centers to
deploy 20 service instances. Two typical values of limitation
are applied. The first one is 215, with 20 ∗ 215 = 4300,
which means we can cover at most 4300 users. The second
one is 300 which is a loose limitation. The result is shown in
Figure 8. The local search (with single swap) has not much
improvement over the greedy algorithm in this problem. A
tight limitation (e.g., 200) will affect the performance of
coverage; on the other hand loosen the limitation a little,
the performance will be close to that of no limitation.

Since we cut the edges with weight less than the threshold,
the average cost of the covered users is less than that of the
threshold. So the threshold to some extent is related to the
average cost of the users. To this end, we compared the
average cost of users by the instances we selected using
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Figure 9. Average cost by max k-cover model

the greedy algorithm for max k-cover problem to the cost
by instances we selected using the algorithms for k-median
problem. We use the result generated by the greedy + single
swap algorithm of k-median model as baseline. The result
is shown in Figure 9. During the experiment we changed
k, the number of instances to choose, and accordingly we
set the total number of users to 200 ∗ 𝑘. We pick up two
typical values of limitation and threshold. On setting the
limitation we use a tight limitation of 200 and a loose one of
300 as done previously. As for the threshold, from previous
experiment we get the average cost of above 0.1 using greedy
+ single swap algorithm. So we use 0.15 as the threshold
to ensure the cost of the covered users is below 0.15. We
note using the threshold of 0.5 can cover most users in
max k-cover model. So we employ these two values in the
experiment. The result shows a lower threshold would do
better than a higher one. Although this limitation decreases
the performance, the resulting model is more realistic.

VI. RELATED WORK

A. k-Median Problem

Jain and Vazirani [9] provided a 6-approximation for k-
median problem. Their algorithm used the lagrangian relax-
ation technique. Their main contribution is that they used
the algorithm for facility location problem as a subroutine
to solve k-median problem. They proved that an lagrangian
multiplier preserving 𝛼-approximation algorithm for the
facility location problem gives rise to a 2𝛼-approximation
algorithm for the k-median problem. Based on this approach
many improvements have been done. Charikar and Guha
[10] used a similar idea and achieved a 4-approximation
algorithm for k-median problem. Jain et al. [11] obtained a
new greedy approach for facility location problems. Through
improving the subroutine they also got a 4-approximation by
the same procedure of the previous algorithm.

Arya et al. [6] first analyzed the local search algorithm for
k-median and provided a bounded performance guarantee.
The algorithm is not complex as we used in Section IV-A.
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This algorithm can approximate the optimal solution to the
ratio 3 + 𝜀 and this is the best result known yet.

B. Max k-Cover Problem

Max k-cover problem is related to set cover problem.
Many algorithms have been purposed (e.g., [12], [13], [8]).
Greedy algorithm [8] is proven to be one of the best poly-
nomial time algorithm for this problem. It gives a (1− 1/𝑒)
approximation.

C. Web Server Placement

Qiu et al. [14] studied placement of web server replicas
by using serval placement algorithms. They provided a good
insight to evaluate the algorithm by comparing the output to
the result of super-optimal algorithm.

Recently Zhang et al. [15] studied the placement problem
in shared service hosting infrastructures. Instead of modeling
placement problem as k-median, they formulated it as similar
to capacitated facility location problem. They defined their
own penalty cost instead of using response time directly.
However, the previous studies are not specially tailored for
cloud computing.

VII. CONCLUSION AND FUTURE WORK

In this paper, we highlight the problem of hosting the
cloud services. Our work consists two parts. First we propose
a framework to address the new features of cloud. In the
cloud we can get all possible connection information on po-
tential locations that the service instances could be deployed.
The second work is that we formulate the redeployment of
service instances as k-median and max k-cover problems. By
doing so, they can be solved by fast approximate algorithms.

We employ a large data set collected via real-world
measurement to evaluate the algorithms. The result shows
our algorithms work well on the this problem.

In this work, we mainly focus on putting forth the service
redeployment problem. Thus we only consider relatively
simple cases. The most critical issue we could take into
consideration in the future work is to set the cost more
consciously on over-connected instances. We only set a
limitation of connection in our current work. If an instance
is overloaded the response time would not be the same as
another instance of that data center. Thus we need to for-
mulate the network capability of service instance carefully
with the amount of users.

We believe there exist some patterns of using services. It
is possible to figure out potential users. Thus another future
work is to optimize initial service instances deployment.
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