
ARCLIN: Automated API Mention Resolution for Unformatted

Texts

Yintong Huo
The Chinese University of Hong Kong

Hong Kong, China

ythuo@cse.cuhk.edu.hk

Yuxin Su∗

School of Software Engineering

Sun Yat-sen University

Zhuhai, China

suyx35@mail.sysu.edu.cn

Hongming Zhang
The Hong Kong University of Science and Technology

Hong Kong, China

hzhangal@cse.ust.hk

Michael R. Lyu
The Chinese University of Hong Kong

Hong Kong, China

lyu@cse.cuhk.edu.hk

ABSTRACT

Online technical forums (e.g., StackOverflow) are popular platforms

for developers to discuss technical problems such as how to use

a specific Application Programming Interface (API), how to solve

the programming tasks, or how to fix bugs in their code. These

discussions can often provide auxiliary knowledge of how to use

the software that is not covered by the official documents. The

automatic extraction of such knowledge may support a set of down-

stream tasks like API searching or indexing. However, unlike official

documentation written by experts, discussions in open forums are

made by regular developers who write in short and informal texts,

including spelling errors or abbreviations. There are three major

challenges for the accurate APIs recognition and linking mentioned

APIs from unstructured natural language documents to an entry in

the API repository: (1) distinguishing API mentions from common

words; (2) identifying API mentions without a fully qualified name;

and (3) disambiguating API mentions with similar method names

but in a different library. In this paper, to tackle these challenges,

we propose an ARCLIN tool, which can effectively distinguish and

link APIs without using human annotations. Specifically, we first

design an API recognizer to automatically extract API mentions

from natural language sentences by a Conditional Random Field

(CRF) on the top of a Bi-directional Long Short-Term Memory (Bi-

LSTM) module, then we apply a context-aware scoring mechanism

to compute the mention-entry similarity for each entry in an API

repository. Compared to previous approaches with heuristic rules,

our proposed tool without manual inspection outperforms by 8%

in a high-quality dataset Py-mention, which contains 558 mentions

and 2,830 sentences from five popular Python libraries. To our best

knowledge, ARCLIN is the first approach to achieve full automation

∗Corresponding author (suyx35@mail.sysu.edu.cn).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9221-1/22/05. . . $15.00
https://doi.org/10.1145/3510003.3510158

of API mention resolution from unformatted text without manually

collected labels.

KEYWORDS

API, API disambiguation, text mining

ACM Reference Format:

Yintong Huo, Yuxin Su, Hongming Zhang, and Michael R. Lyu. 2022. AR-

CLIN: Automated API Mention Resolution for Unformatted Texts. In 44th

International Conference on Software Engineering (ICSE ’22), May 21–29,

2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 12 pages. https:

//doi.org/10.1145/3510003.3510158

1 INTRODUCTION

Application Programming Interface (API) is an essential component

for programming. Developers use APIs to interact with a program-

ming language or a software library. However, as a library contains

thousands of APIs (e.g., PyTorch v1.8 has over 2,400 APIs) and there

are hundreds of popular libraries in a language, it is impossible for

developers to be familiar with all APIs. Therefore, developers are

used to discussing programming-related questions in the online

technical forum when they face troubles in programming tasks.

One of the most popular forums, StackOverflow, contains over 20

million questions and 14 million users1. It motivates researchers

to explore how to identify knowledge in open forums to assist de-

velopers in many aspects, such as API recommendation [37], API

misuse detection [29, 30], and document augmentation [35].

The foundation of the above tasks is recognizing and identifying

API mentions from an unstructured natural language. Convention-

ally, researchers tried to use rule-based methods to solve the task.

For example, Bacchelli et al. [2], Treude and Robillard [35] identified

API elements in texts by a set of regular expressions. Huang et al.

[18] chose a hyperlink in each StackOverflow post and used regular

expressions to detect API entities. They also analyzed whether the

text in HTML <code> tag can match the API names in the API

repositories. Li et al. [21] detected APIs by checking whether the

token of a sentence can match or partially match the name of an

API by conducting minor modifications. Ren et al. [30] kept API

mentions only in HTML <code> elements.

However, these rule-basedmethods do not consider the short and

informal nature of forum discussions, falling short in mining APIs

1The data dump is retrieved in September 1𝑠𝑡 , 2021.

138

2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 01,2022 at 05:52:11 UTC from IEEE Xplore. Restrictions apply.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Yintong Huo, Yuxin Su, Hongming Zhang, and Michael R. Lyu

in certain scenario. Typically, a forum may contain a large number

of unprofessional developers with different technical backgrounds,

who share the knowledge and information in their own writing

styles. As a result, the API mentions could be in different formats.

For example, previous study [33] concluded from StackOverflow

posts that 47% of the API elements are not included with the HTML

<code> tag. Such inconsistency causes different kinds of ambiguity

when we recognize and identify APIs. In this paper, we categorize

these ambiguities into the following three types.

The first one is common-word ambiguity, referring to the ambigu-

ity between common words and API mentions [40]. Traditionally,

API name is composed of punctuations, brackets, and upper case

letters; however, sometimes developers only write the API’s method

name in their answers, causing the difficulty of distinguishing it

from common words. The first group in the Table 1 illustrates exam-

ples of this problem. Even if two sentences are all mentioning the

word view, the first sentence use view to refer to the API torch.view()

whereas the second one use view as a common verb. Regular ex-

pressions fail in discriminating such API mentions with common

words. Previous work [40] revealed that 35.1% of the token 𝑎𝑝𝑝𝑙𝑦
in StackOverflow posts tagged with Pandas actually referred to an

API mention.

The second one is morphological ambiguity, which is because de-

velopers rarely write down the full API name that can be perfectly

matched with an API name in the library. Research on StackOver-

flow [5] concludes that morphological mentions, which include ab-

breviations, synonyms, and misspellings, are quite often in informal

discussions. Four examples in the second group of Table 1 demon-

strate the morphological variations. In the first three sentences, the

API numpy.reshape() was mentioned by replacing numpy with its

abbreviation np, omitting library name, and using the customized

variable name, respectively. The fourth sentence talks about the

torch.nn.Conv2d and torch.nn.Conv3d APIs, but includes neither the

library/module/class name nor the correct case (i.e., use conv2d

instead of Conv2d).

The third type is reference ambiguity, which happens if the API

lists contain various third-party libraries. The third group in Ta-

ble 1 provides two instances of this problem. Even if both PyTorch

library and Tensorflow library contain the API method flatten(),

we could characterize what the mentions refer to based on their

sentence contexts (i.e., the first sentence mentions “keras” module

whereas the second one mentions “PyTorch”). It is often the case

that developers do not explicitly point out the specific library in

their mentions, but such information can be derived from other

words in the context.

Due to the above ambiguities, traditional information retrieval

techniques cannot be effectively employed. Dagenais and Robillard

[7] applied a set of filtering heuristics to tackle the second challenge,

but they failed in resolving common words ambiguity due to the

shortcoming of regular expressions. The above challenges become

more difficult if we apply the API mining task into unformatted

sentences. Such free text does not contain any <code> tags, so

detecting API in this scenario is even harder. However, it is a non-

negligible problem, since, in other scenarios (e.g., emails), we cannot

use HTML tags. To make our research applicable for a broader

application, we focus on mining APIs from free text. Although

the most recent work [40] claimed to distinguish API mentions

from common words, they stored <code> tags and code snippets in

<pre> <code> tags from StackOverflow posts, instead of mining

from free texts. Thus, their approach cannot be extended to general

scenarios.

In this paper, to overcome the aforementioned ambiguity chal-

lenges, we propose a new API mining approach named ARCLIN

(API Recognition and Contextual LINking), which recognizes and

identifies API mentions from natural language descriptions to a set

of APIs without any human-annotated labels or handcrafted rules.

Our model is made up of an API recognizer that finds API mentions

in free texts, and a contextual API linker that links API mentions to

the correct API they refer to. Specifically, our API recognizer exten-

sively deals with the first common word ambiguity by considering

the context information in sentence-level around an API mention.

For the words that are predicted to be an API mention, a library

predictor inside the API linker predicts the related library to the

sentence, restricting ARCLIN to link APIs in the predicted library,

which resolves the reference ambiguity. The similarity function in

the API linker compares API mention with every entry in the API

repository, considering both spelling similarity and lexical simi-

larity, so minor morphological changes will not affect the linking

result. To the best of our knowledge, ARCLIN is the first approach

that can automatically cope with these challenges above.

Considering the numerous number of APIs in the real world, it

is impractical to ask annotators to label such a large scale of data.

To avoid this labor-intensive process, we design ARCLIN to be free

from any human annotation in the training process by exploiting

natural labels in the training set. Unlike human-labeled data, the

automated labels may contain errors, but our API linker in the next

step provides a strict selection to address this problem. To evaluate

the effectiveness of ARCLIN, we annotate a test set, which contains

2,948 sentences with 563 mentions under five popular third-party

libraries. On average, ARCLIN achieves 78.26%, 73.53% and 75.82%

in precision, recall and F1 score, respectively. The promising results

indicate that, even though our approach does not need any human-

annotated labels, it outperforms the current state-of-the-art baseline

trained with labeled data.

To sum up, the main contributions of this paper are threefold:

• To our best knowledge, we are the first to design an unla-

beled approach focusing on API recognizing and linking in

unformatted text corpora.

• We build an API contextual linker, making the model auto-

matically link API mentions to an API repository, taking the

sentence context into account.

• The experiment results show ARCLIN can discover traceabil-

ity links between APIs and the repository more accurately,

comparing with state-of-the-art baseline models. The code

and dataset are released2.

2 PROBLEM STATEMENT

In this section, we first introduce the main concepts used in this

paper in Section 2.1 and then provide a formal definition of the task

in Section 2.2.

2Please find the resources in https://github.com/YintongHuo/ARCLIN.

139

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 01,2022 at 05:52:11 UTC from IEEE Xplore. Restrictions apply.

ARCLIN: Automated API Mention Resolution for Unformatted Texts ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 1: Three main challenges for API mining in unformatted texts, Blue words refers to API mentions and Red words refers

to common words.

Question ID Sentence API

#66952125 So far I managed to use view once in my first very simple project... torch.view()

#59905234 You can use .numpy() to view the internal data... None

#42233297 Simply reshaping the by np.reshape(data,(5000,3,32,32)) would not work. numpy.reshape()

#41518351 The .reshape() method (of ndarray) returns the reshaped array. numpy.reshape()

#47477945 I have tried a.reshape(3,4) in for the numpy array but nothing is producing what I want. numpy.reshape()

#65103822 I would like to understand the difference between conv2d and conv3d in PyTorch. torch.nn.Conv2d, torch.nn.Conv3d

#47532162 I want to use the keras layer Flatten() or Reshape((-1,)) at the end of my model... tensorflow.keras.layers.Flatten()

#60115633 But in PyTorch, flatten() is an operation on the tensor. torch.Tensor.flatten()

Figure 1: A screenshot of one StackOverflow post.

2.1 Terminology

API mining is the task of recognizing API mentions from free texts

and linking the recognized API mentions to the corresponding API

repositories. Figure 1 is a screenshot of a StackOverflow post3, we

use this screenshot to illustrate the concepts used in this paper.

Here, an API could be a class name, a method name, or an attribute

of a class. The term free text (also called unformatted text) refers to

the text without any HTML tags (e.g., <code>). Orange dash box
in Figure 1 shows an example of <code> usage. An API mention in

texts is a token appearing in the free text that refers to a specific API

in the repository. Blue box in the figure shows two API mentions

(i.e., nn.Linear() and nn.Module)4. An API repository is a collection

3The entire page is in https://stackoverflow.com/questions/50463975/pytorch-how-to-
properly-create-a-list-of-nn-linear.
4nn.ModuleList in Orange box is also an API mention after removing the <code> tag.

of all entire qualified API names. Entire qualified name is the ex-

act API’s name shown in its official website (e.g., torch.nn.Linear,

torch.nn.Module). Each API’s name in this repository is called an

entry. An entry is composed of sub-fields, splitted by “.”, which are

called entities, the entities of nn.Linear() and torch.nn.Linear are

shown in nearby red circles.

2.2 Task Description

Given a natural language sentence 𝑆 in free text and an API reposi-
tory 𝐷 = {𝐷1, 𝐷2, ..., 𝐷𝑛}, where 𝐷𝑖 refers to an entry in the reposi-

tory, the API mining task is to link API mentions to an entry in the

API repository. The task involves two phases: (1) recognizing API

mentions in the sentence; (2) linking API mentions to the corre-

sponding entries in the API repository. In practice, we first tokenize

𝑆 into a token list [𝑡𝑜𝑘𝑒𝑛0, 𝑡𝑜𝑘𝑒𝑛1, ..., 𝑡𝑜𝑘𝑒𝑛𝑛], then ∀0 ≤ 𝑖 ≤ 𝑛, we
determine whether 𝑡𝑜𝑘𝑒𝑛𝑖 refers to the element 𝐷 𝑗 ∈ 𝐷 .

3 APPROACH

In this section, we introduce our approach, including data prepara-

tion, an API recognizer, and a contextual API linker. Figure 2 shows

the overall framework of ARCLIN. To begin with, sentences are fed

into the API recognizer to uncover API mentions. Specifically, a con-

text encoder is applied to acquire contextual embeddings of tokens

by a bidirectional Long-Short Term Memory (LSTM) network, then

these representations are decoded via a Conditional Random Field

(CRF). The tokens which decoded as API mentions are sent to the

API linker. Next, an API linker is designed for discovering the most

possible matched entry in the repository. To do so, we first generate

a series of candidates by heuristic rules, then a library predictor

narrows down the candidates by specifying a library. After that,

we use an integrated scoring function to rank <mention, entry>
pairs. Finally, the candidate with the highest similarity above the

threshold will be chosen as a link.

3.1 Data Preparation

3.1.1 Text Corpus. Given some libraries, we crawl all questions

tagged with at least one of the given libraries from an online techni-

cal forum. Besides questions and answers, Zhang et al. [43] revealed

that the majority of comments were also informative as they pro-

vided a supplementary view to the answer. Therefore, for each

question-answering thread, we crawl the question, all answers, and

their comments. We discard code snippets in <pre> <code> but

140

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 01,2022 at 05:52:11 UTC from IEEE Xplore. Restrictions apply.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Yintong Huo, Yuxin Su, Hongming Zhang, and Michael R. Lyu

Figure 2: The framework of ARCLIN.

keep contents in <code> when it appears in a natural language

sentence.

StackOverflow users highlight API mentions in a natural lan-

guage sentence by <code> tags. However, Tabassum et al. [33]

shows that 47% of the code mentions are not indicated with this

tag. If we only rely on the tags to do the mention detection, we

will miss a large number of mentions. Moreover, it is observed that

contents in code tags can be noisy, many non-code elements (e.g.,

variables name, key points, or user name) are also highlighted by

code tags [33]. To address this noisiness issue, as well as to general-

ize to other scenarios that cannot use <code> tags (e.g., emails), we

remove all <code> tags in sentences and the markdown markers to

make this task more similar to the real application. After collecting

the data, we tokenize all sentences with the NLTK [3] sentence

parser. As a result, we obtain a set of parsed sentences in free text.

3.1.2 Repository Construction. For each given library, we crawl all

APIs with their entire qualified names from official documentations.

For instance, the APIs in the PyTorch library include methods (e.g.,

torch.Tensor.dim()), functions (e.g., torch.nn.functional.avg_pool1d()),

classes (e.g., torch.nn.AdaptiveAvgPool1d), and attributes such as

torch.backends.cudnn.enabled. The API repository is made up of all

crawled APIs’ names.

3.1.3 Tokenizer. We adapt a software-specific tokenizer used in Ye

et al. [41] and Ye et al. [42], which preserves the integrity of an

API mention. Current popular tokenizers such as SpaCy [17], Stan-

ford Parser [8], and NLTK all parse numpy.shape() into a token

list of [“numpy.shape”, “(”, “)”], but the deployed software-specific

tokenizer will treat numpy.shape() as a single token.

3.1.4 Inverse Document Frequency (IDF). IDF is a way to measure

the importance of a word in a corpus. A word’s IDF is dispropor-

tionate to the word’s frequency. Given the assumption that if a

word frequently occurs in a document, it may contain relatively

less information, the formula for computing IDF for a word 𝑤 is

shown in Equation 1:

𝐼𝐷𝐹 (𝑤) = 𝑙𝑜𝑔(
#Documents_Number

#Document_with_w + 1
) (1)

In this paper, we compute two types of IDF, 𝐼𝐷𝐹𝑡𝑜𝑘𝑒𝑛 and 𝐼𝐷𝐹𝑒𝑛𝑡𝑖𝑡𝑦 .
We use 𝐼𝐷𝐹𝑡𝑜𝑘𝑒𝑛 to measure the token’s importance in a corpus,

where we regard each sentence as a document. For 𝐼𝐷𝐹𝑒𝑛𝑡𝑖𝑡𝑦 , we
compute the entity’s importance in the repository.We consider each

entry is a document and its entities are words. For example, the

document numpy.reshape() has two words: “numpy” and “reshape()”.

Intuitively, since all Numpy APIs contain the entity “numpy”, its

IDF value is relatively low.

3.2 Recognizer

The first step of mining APIs from the sentences is extracting API

mentions without specifying which APIs they refer to. At this step,

we propose an automatic API mention recognizer that prefers recall

over precision to cover as many API mentions as possible. We first

introduce an automatic approach to mine natural (but noisy) labels,

then elaborate on architectures of the recognizer in the following

subsections.

3.2.1 Automatic labeling. Traditionalmachine learning approaches

label a large-scale training set to train classification models for the

task. However, considering that there are enormous APIs even

in one programming language, it is infeasible to obtain sufficient

human-labeled data for all of them. There is a need to devise an

algorithm that escapes from any human annotation.

Previous studies [27, 34] show that prior external knowledge (i.e.,

API repository) was critical for good performance in identifying

named entity in a sentence. Motivated by this, we use the following

criteria (i.e., domain knowledge) to automatically annotate potential

API mentions:

141

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 01,2022 at 05:52:11 UTC from IEEE Xplore. Restrictions apply.

ARCLIN: Automated API Mention Resolution for Unformatted Texts ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

• If a token is exactly the entire qualified name (i.e., same as

an entry in API repository), we regard the token as an API

mention.

• Inspired from that users usually use “()” at the end of a token

to represent an API method name or function name, we treat

the token as an API mention if the token contains “()”.

• Users also use “.” (e.g., numpy.shape(), or x.shape()) when

they mention an API; thus, we consider the token is an API

mention if it contains “.”. To distinguish such mentions from

emoticon or punctuation, we require the token to consist of

more than three characters.

Moreover, to address the common-word polysemy problem in-

troduced in Section 1, we employ a data augmentation technique

for each sentence with at least one API mention being detected.

Specifically, we randomly replace the originally detected API men-

tion with a new one only containing the last part of the name (e.g.,

x.view will be replaced with view). This data augmentation process

forces the recognizer to learn contextual information of an API

mention.

The self-labeling process inevitably introduces some noisy la-

bels. For instance, even if the token “python2.7” consists “.”, it is

not an API mention; Besides that, a missing space between two

sentences (e.g., ... plot 500 ellipses on a single graph.If you do ...)

will generate the wrong label for the token “graph.If”. However,

the proposed contextual linker is able to mitigate these noisy labels.

After automatic labeling, we feed the self-labeled data as well as

the augmented ones into our context encoder.

3.2.2 Context Encoder. Context encoder is responsible for acquir-

ing contextual word embeddings in a sentence. The long short-term

memory (LSTM) network has shown promising results in sequen-

tial labeling tasks [32], due to its strong ability to capture long-

distance context information. The memory unit in LSTM enables

it to generate the representation based on both the short-distance

and long-distance context. In this work, we design an LSTM net-

work to achieve the goal. A bi-directional LSTM (Bi-LSTM)[16] is

specifically used for preserving both past and future information

within a sentence.

The architecture of the constructed encoder is shown in Figure 2,

where two granular-level features are considered. By doing so,

the Bi-LSTM encoder simultaneously grasps word-level semantics

and character-level details. Firstly, word embedding techniques are

used to extract word-level semantics. Word embedding represents

words as distributed vectors in a low-dimensional space so that

words with similar semantic or syntactic meaning tend to be close

in their vector space. Assuming that words present in a similar

context have similar meanings, the common approach Skip-gram

(Word2Vec) [25] learnsword embeddings by predicting surrounding

words given the central word. Similar to previous research [15, 18,

38], we train domain-specific word embeddings by Skip-gram on a

domain corpus.

Secondly, as previous study [22] has shown that character-level

representation is crucial to extract morphological evidence, we use

this feature to alleviate the second morphological problem men-

tioned in Section 1. Besides, since developers write API mentions

with customized variable names under different scenarios, deploy-

ing character-level embedding allows us to cope with unseen words,

named the out-of-vocabulary (OOV) problem. In particular, we elicit

character-level features from the architecture shown in blue-dotted

rectangles in Figure 2, which incorporates one max pooling layer

after a Convolutional Neural Network (CNN) is applied.

3.2.3 Tag Decoder. Given contextual word representations in a

sentence, the tag decoder is used to determine whether the word

is an API mention or just a common word. Inspired by previous

sequence labeling works [20] in the natural language processing

domain, we adopt a Conditional Random Field (CRF) to conduct

the tag decoder on top of the text encoder (i.e., Bi-LSTM layer).

By accurately obtaining structural dependencies among adjacent

words in a sentence, the CRF module jointly predicts the tag of

each word sequentially instead of predicting tags independently.

In order to balance between API mention coverage and precision

in predictions, we select 𝑇𝑜𝑝_𝑃 paths with the highest confidence

score as the result of the CRF layer. If the token in 𝐾 (0 ≤ 𝐾 ≤ 𝑃)
paths is predicted as an API mention, we treat the token as an API

mention and feed it to the contextual linker.

3.3 Contextual Linker

Once we obtain the API mentions in the text, ARCLIN links the

correct API mentions to an entry in the repository. The core idea

behind this linker is a series of disambiguationmethods. Specifically,

we firstly select entries as candidates in the repository, then rank

the similarity score of every <mention,entry> pair with the help

of the mention’s context information. Although the predicted API

mentions may contain errors, the wrong mention will be hard to

find an entry with a high similarity score. From this aspect, the

noise introduced by the last step will not affect the final results.

3.3.1 Candidate Selection. To reduce the time complexity of com-

paring all entries in the repository with the API mention, we narrow

the scope by listing a set of candidates. Inspired by the fact that,

even though humans can make errors in spelling words, such mis-

spelling is hardly seen at the beginning of the word. So do the

developers. Given a mention, we directly compare its last part (i.e.,

last entity) and the last part of the entries in the repository. If the

first two characters of the last entities are case-insensitive matching,

we add the entry to a candidate list.

3.3.2 Library Predictor. As the third challenge aforementioned,

similar API entries in different libraries bring difficulties to disam-

biguate the mention. An intuitive way is to take sentence-level

semantics into consideration. To capture rich contextual informa-

tion from sentences, we first train the most popular language model

BERT [9] with all training sentences for each library. Then, one fully

connected layer followed by a soft-max output layer is fine-tuned

to predict the library of input sentences based on the semantic

embedding produced by BERT.

3.3.3 Similarity Computation. Given an API mention 𝑚 and its

candidates 𝑒 , we calculate the similarity score between the API

mention and each candidate. Finally, we rank all candidates based

on their similarity and select the most relevant candidate above the

threshold. Basically, we compute similarity based on bag similarity.

Given two bags of entities, 𝑀 , 𝐸𝑖 being split by “.” from the API

142

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 01,2022 at 05:52:11 UTC from IEEE Xplore. Restrictions apply.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Yintong Huo, Yuxin Su, Hongming Zhang, and Michael R. Lyu

mention𝑚 and a candidate 𝑒𝑖 ∈ 𝑒 , respectively, we compute the
similarity from two aspects, lexical-similarity and entity-similarity.

Lexical Similarity. This step is motivated by the fact that some-

times developers make spelling errors in sentences, especially when

the mentioned API name is long. However, even if we make a typo

in some words, its lexical meaning (i.e., word representation learned

from corpus) will not change.

Inspired by Huang et al. [18], we use the Equation 2 to calculate

lexical-based similarity between mention entities 𝑀 and entities of

one candidate 𝐸𝑖 .

𝑆𝑖𝑚𝐿 (𝑀 → 𝐸𝑖) =
∑

𝑤∈𝑀 𝑠𝑖𝑚(𝑤, 𝐸𝑖) ∗ 𝐼𝐷𝐹𝑡𝑜𝑘𝑒𝑛 (𝑤)
∑

𝑤∈𝑀 𝐼𝐷𝐹𝑡𝑜𝑘𝑒𝑛 (𝑤)
, (2)

where 𝐼𝐷𝐹𝑡𝑜𝑘𝑒𝑛 (𝑤) represents the IDF value of token 𝑤 in the

training data. 𝑠𝑖𝑚(𝑤, 𝐸𝑖) refers to the maximum lexical similarity

score between the element 𝑤 ∈ 𝑀 and elements in set 𝐸𝑖 . We

calculate lexical similarity for pairs of entities by another word

embedding model FastText [4]. Unlike Word2Vec, FastText is the

embedding model that incorporates n-gram features of a token, so it

solves the OOV problem. Inversely, we also compute the similarity

𝑆𝑖𝑚𝐿 (𝐸𝑖 → 𝑀) by exchanging𝑀 and 𝐸𝑖 in Equation 3. In the end,
the overall lexical similarity is formulated through an arithmetic

mean operation:

𝑆𝑖𝑚𝐿 (𝑀, 𝐸𝑖) =
𝑆𝑖𝑚𝐿 (𝑀 → 𝐸𝑖) + 𝑆𝑖𝑚𝐿 (𝐸𝑖 → 𝑀)

2
. (3)

Entity Similarity. Jaccard similarity coefficient [19] is widely

used in gauging how similar the two sets are. Given two bags of

entities 𝑀 , 𝐸𝑖 , we formulate our weighted Jaccard similarity as

Equation 4:

𝑆𝑖𝑚 𝐽 (𝑀, 𝐸𝑖) =

∑
𝑤∈(𝑀∩𝐸𝑖) 𝐼𝐷𝐹𝑒𝑛𝑡𝑖𝑡𝑦 (𝑤)
∑

𝑤∈𝐸𝑖 𝐼𝐷𝐹𝑒𝑛𝑡𝑖𝑡𝑦 (𝑤)
, (4)

where 𝐼𝐷𝐹𝑒𝑛𝑡𝑖𝑡𝑦 (𝑤) represents the IDF value of entity 𝑤 in the

API repository. IDF provides a standard to measure the salience

of a token. a higher IDF value represents that it appears more fre-

quently, carrying lower information entropy. For instance, in our

repository, tokens such as nn, torch, numpy contain a low IDF value

since it is almost present in every entry, but tokens such as Adap-

tiveMaxPool1d and binary_cross_entropy deserve more attention,

thus a high IDF value. Intuitively, instead of class or module names,

we always use method names to clarify the mentioned API, which

contains a higher IDF value. Such discriminative tokens contribute

significantly to this 𝑆𝑖𝑚 𝐽 function, while missing a match in nn just

makes a minor effect on the entity similarity score.

Overall Similarity. To sum up, the scoring function for calcu-

lating similarity is composed of a lexical similarity function and an

entity similarity function. Given an API mention𝑚 and an entry

𝑒𝑖 , the overall similarity is calculated by Equation 5:

𝑆𝑖𝑚(𝑚, 𝑒𝑖) = 𝑆𝑖𝑚𝐿 (𝑚, 𝐸𝑖) + 𝑆𝑖𝑚 𝐽 (𝑚, 𝐸𝑖), (5)

where 𝑆𝑖𝑚𝐿 (𝑚, 𝐸𝑖) and 𝑆𝑖𝑚 𝐽 (𝑚, 𝐸𝑖) are defined above. To exclude
the API mentions that are wrong predictions introduced from the

recognizer, and the API mentions that refer to an API out of our

repository, we eliminate the candidates 𝑒𝑖 ∈ 𝑒 with lower 𝑆𝑖𝑚(𝑚, 𝑒𝑖)
value than the similarity threshold 𝑆 . Finally, we rank all remaining
candidates and choose the 𝑒 𝑗 ∈ 𝑒 with the highest 𝑆𝑖𝑚(𝑚, 𝑒 𝑗) as
output.

Table 2: Statistics of API repository and Py-mention set.

Library Version #API #Mention #Sentence

PyTorch [12] 1.8.0 2,472 133 562

Tensorflow [14] 2.4.1 10,361 87 532

Pandas [13] 1.2.4 2,174 117 573

Numpy [11] 1.20 1,913 116 580

Matplotlib [10] 3.4.1 6,937 105 583

Sum - 23,857 558 2,830

Table 3: Statistics of training set.

Library #Sentence #Autolabel #Augmentation

PyTorch 150,000 11,057 27,077

Tensorflow 150,000 8,925 21,899

Pandas 150,000 10,537 25450

Numpy 150,000 11,501 27,941

Matplotlib 150,000 9,769 23,564

Sum 750,000 51,789 125,931

4 EXPERIMENTAL SETUP

In this section, we introduce the experimental setup details, includ-

ing data collection, implementation details, and evaluation metrics.

4.1 Data Collection

4.1.1 Text Preparation. In this paper, we focus on five widely-used

third-party libraries in Python: Pytorch, Pandas, Tensorflow, Numpy,

Matplotlib. We crawl all questions tagged with at least one of the

above libraries using Scrapy in StackOverflow. For each question-

answer thread, we collect questions, all answers and their com-

ments. Details of the data preprocessing method are described in

Section 3.1.1.

4.1.2 API Repository. We construct an API repository containing

all API in five chosen third-party libraries with their entire qualified

names. We use Scrapy to crawl all APIs from their official websites.

Information such as the version of each library, the number of APIs

in each library is listed in Table 2. Considering that parentheses “()”

are not the sign to differ APIs from each other, we remove all “()” at

the end of the API entire qualified names (e.g., store numpy.einsum

instead of numpy.einsum()).

4.1.3 Dataset. Considering all texts crawled from text preparation

are too large to cope with, we randomly sample 150,000 sentences

for each of the libraries and treat them as unlabeled training data. Af-

ter applying self-labeling and data augmentation, we obtain 125,931

sentences for training the recognizer. The distributions of training

data, automatically API labels, and augmentation results are shown

in Table 3.

For the testing data, we randomly select 600 sentences from

each library (without overlapping with the training data) and ask

experts to annotate them. To ensure annotation quality, two invited

experts both have more than four years of experience in Python

development and are all familiar with five libraries. Considering

that a long sentence is more likely to contain API mentions, we

select the testing data sentences longer than ten tokens. During

143

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 01,2022 at 05:52:11 UTC from IEEE Xplore. Restrictions apply.

ARCLIN: Automated API Mention Resolution for Unformatted Texts ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

the annotation, given the whole API repository, experts are asked

to annotate whether each token in a sentence is referring to an

API in the repository or not. If yes, they need to write down the

entire qualified name of an API mention. We also ask annotators to

throw away the sentence if they are not confident at what it refers

to. In this way, we collect 2,830 sentences with 558 API mentions

from five libraries in total, where their distributions along with the

repository’s distribution are shown in Table 2. Typical examples

are below:

• If you don’t want to export, please uncomment plt.show()

[matplotlib.pyplot.show()] and remove ...

• I’ve usually gotten good performance out of numpy’s einsum

[numpy.einsum()] function and I like ...

• Here is a way to do it using stack [torch.stack()] or unbind

[torch.unbind()].

Here, black italic fonts indicates API mentions and blue italic

fonts in brackets are the linked APIs in the repository (with entire

qualified names).

4.2 Implementation Details

In the data preprocessing period, we train a skip-gram Word2Vec

model based on our corpus with gensim [28]. We also train a

FastText word embedding model with gensim [28] for comput-

ing <mention, entry> pair lexical-based similarity. The embedding

size for Word2Vec and FastText models are set to 300. Two models

are trained for ten epochs5. 𝐼𝐷𝐹𝑡𝑜𝑘𝑒𝑛 and 𝐼𝐷𝐹𝑒𝑛𝑡𝑖𝑡𝑦 are trained on

the training data.

For the API recognition part, we use an open-source natural

sequence labeling tool from [39] as the implementation and train

the recognizer on the augmented data. The character embedding

size is set to 30, and the layer number of Bi-LSTM is set to one. We

train the recognizer with the learning rate as 0.001 for five iterations.

We choose five paths with the highest confidence score in the CRF

layer, and treat a token as anAPImention if and only if it is predicted

so in at least two out of five paths (𝑇𝑜𝑝_𝑃 = 5, 𝐾 = 2). For the API

linker, we train our library predictor with Transformer [36] for ten

iterations with the learning rate of 0.001. The default threshold 𝑆
for the scoring function is 1.1 unless we specify them with other

values.

4.3 Baselines

To the best of our knowledge, there is no existing work focusing

on extracting API links from unformatted texts. We compare our

method with the following baselines: APIReal is the most relevant

work to ours but they mine APIs from StackOverflow posts, and

the other two baselines are rule-based.

4.3.1 APIReal. Ye et al. [40] proposed the model named APIReal,

which predicted API recognition and linking in a StackOverflow

post. APIReal contains two stages similar to ours: a recognizer to

extract API mentions and a linker to link API to the repository. In

the recognizer, they manually labeled the training data to learn API

mentions by feeding human-crafted features into a CRF model. In

the linker, they utilized external information, such as the question

5Word2Vec and FastText models converge before ten epochs.

title, contents in the code block, <code> tags, and URLs in a post

to predict what an API mention links to.

When implementing this baseline, we “counterfeit” a file crawled

from StackOverflow in the same input format, where each line is a

sentence from our test set. In this way, APIReal will treat our file

as a post from StackOverflow and continuously processes them.

Moreover, as the database of APIReal includes three of five libraries

comparing to ours (i.e., Pandas, Numpy, Matplotlib), we compute

Precision, Recall, and F1 scores on the three libraries.

4.3.2 RuleBase-Pure. We also include a pure Rule-based approach

as the baseline. Specifically, we check whether each token in the

sentence is the same as an entry in the API repository. This baseline

provides us with insights into the quality of written API mentions

in StackOverflow.

4.3.3 RuleBase-Knowl. We also include a Rule-based approach

with prior knowledge as a baseline. Here, prior knowledge refers to

the common writing behaviors for API mentions in StackOverflow.

Specifically, we replace “np” with “numpy”, “pd” with “pandas”, “tf”

with “tensorflow” for each token, respectively.

4.4 Evaluation Metrics

For fair comparison, we use Precision, Recall, and F1 scores to eval-

uate ARCLIN’s performance in our test set, which is also used by

all previous works [2, 7, 40]. Specifically, precision means what

percentage of API linking predictions are correct, recall means

what percentage of the real API mentions are covered, and F1 is

the harmonic mean of precision and recall.

5 EXPERIMENTAL RESULTS

In this section, we discuss the performance of ARCLIN model by

diving into three research questions from Section 5.1 to Section 5.3:

(1) How effective is ARCLIN? We compare ARCLIN to three

baselines in the proposed test set. The result shows that ARCLIN

outperforms baselines by large margins, even though it is free from

any labor-intensive annotations and handcrafted rules.

(2) How effective are the components of ARCLIN? The

devised framework is made up of an API recognizer and an API

linker. The latter one includes a library predictor and a scoring

function balance between the lexical similarity and entity similarity.

To evaluate the contribution of each component, we discard each

element at one time and implement the remaining part in our test

set. Details of analysis are provided along with the experiment

results.

(3) What is the generalization ability of ARCLIN? Con-

sidering the large number of libraries in the real world, we are

interested in how ARCLIN performs in mining APIs inside an un-

seen library. To explore its generalization ability, we train the model

in one library and test it in another library.

5.1 RQ1: How effective is ARCLIN?

ARCLIN aims to automatically extract API mentions from free text

sentences and link them to an entry in the repository. Thus, to

prove its effectiveness, we evaluate ARCLIN in sentences selected

from StackOverflow posts. We feed test sentences into the ARCLIN

model and examine whether it could mine correct APIs.

144

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 01,2022 at 05:52:11 UTC from IEEE Xplore. Restrictions apply.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Yintong Huo, Yuxin Su, Hongming Zhang, and Michael R. Lyu

Table 4: Experimental Results.

Approach Precision Recall F1

RuleBase-Pure 1.00 0.070 0.131

RuleBase-Knowl 1.00 0.314 0.478

APIReal 0.787 0.604 0.683

- w/o rules 0.823 0.477 0.599

ARCLIN Ensemble 0.784 0.742 0.762

- PyTorch 0.861 0.801 0.830

- Tensorflow 0.576 0.840 0.683

- Pandas 0.717 0.778 0.746

- Numpy 0.865 0.741 0.798

- Matplotlib 0.825 0.762 0.792

To answer this question, we compare ARCLIN with a current

state-of-the-art baseline named APIReal [40], a purely rule-based

approach RuleBased-Pure, and a rule-based approach incorporating

prior knowledge named RuleBased-Knowl. Experimental results are

shown in Table 4. Apart from the overall performance of ARCLIN

in our whole test set (in ARCLIN Ensemble), we also examine the

performance in every single library, shown in the following five

rows. The results indicate our ARCLIN significantly outperforms

all other baselines. From the results, we see that our ARCLIN model

can achieve 78.41%, 74.19%, and 76.24% in precision, recall, and F1

score, respectively.

It is worthy to notice that RuleBase-Pure only retrieves 6.99% of

all API mentions, reflecting that developers rarely write the entire

qualified name when they mention some APIs. This is also one of

the motivations of this work. The RuleBase-Knowl model provides

better performance with the help of prior knowledge. However,

if we want to extend the model to a large number of libraries, it

is implausible for researchers to enumerate all possible abbrevi-

ations for each library. Although the model gives an acceptable

performance, it can hardly be used extensively. Another baseline

APIReal reaches the F1 score of 0.683, which is lower than the perfor-

mance in their dataset. We attribute the unfavorable performance

to several reasons: (1) The constraints of handcrafted patterns in

resolving customized variables. As illustrating in the second mor-

phological challenge, the unprofessional developers usually write

down API mentions with customized variables (a.reshape) or aliases

(np.reshape). Since APIReal leverages a collection of pre-defined

rules to solve the problem (e.g., np for numpy), the customized

variables or uncommon aliases outside the scope lead to mistakes.

The impact of such handcrafted rules is quantitated in the w/o rule

line in Table 4. (2) Difficulty in mining APIs in free texts. APIReal

leverages <code> tags in its recognizer; thus, once someone writes

down API mentions in such tags, APIReals can easily extract them.

But our dataset does not contain such signs to help the recognizer

find out API mentions. (3) Insufficient information. APIReal uti-

lizes information from source StackOverflow posts, such as URLs,

question titles, and code snippets. However, mining APIs from sen-

tences in our task requires the model to capture a richer semantic

meaning.

ARCLIN reaches the highest performance among the three base-

lines. We conclude the reasons as follows: (1) ARCLIN owns the

Figure 3: P-R curve of different hyper-parameters 𝐾 and 𝑆 .

Table 5: Effectiveness of components in ARCLIN.

Precision Recall F1

ARCLIN (ensemble) 0.784 0.742 0.762

- w/o recognizer 0.112 0.783 0.195

- w/o lib_pred 0.649 0.715 0.680

- w/o lexical_sim 0.814 0.439 0.570

- w/o entity_sim 0.645 0.719 0.680

recognizer that keeps all possible API mentions by selecting the top

five paths in CRF and conduct voting. In this way, ARCLIN will not

miss too many API mentions; (2) ARCLIN’s library indicator pro-

vides scope for library selection, preventing it from linking to the

entry from wrong libraries; (3) ARCLIN’s scoring function balances

the lexical similarity and spelling similarity, so small variations of

an API’s name will not affect its final prediction.

In addition to the good performance, another advantage of AR-

CLIN is its flexibility. Figure 3 provides a precision-recall curve to

show how the performance is affected by the hyperparameters 𝐾
and 𝑆 . Each curve CRF-K in the figure represents a token will be

considered as an API mention if 𝐾 (0 ≤ 𝐾 ≤ 5) out of five paths

predict it so. Each point in a curve is ARCLIN’s performance under

a similarity threshold 𝑆 (0 ≤ 𝑆 ≤ 2). A higher-scoring threshold

means a matched <mention, entry> requires a higher similarity.

Generally, a higher precision occurs simultaneously with a lower

recall rate. ARCLIN is able to achieve 100% precision under a low

recall rate. Therefore, we can customize the threshold under differ-

ent scenarios. The figure also shows that we cannot achieve 100%

recall even the precision gets down to zero. We ascribe the situation

into the following reason: Compared with character-disorder, word-

disorder is too complex for ARCLIN to deal with. For example, when

torch.nn.BCEWithLogitsLoss is written as BCELosswithlogits, even if

ARCLIN narrows down candidates into the correct library, it is hard

for ARCLIN to conduct API linking with each other. To conclude,

after evaluating ARCLIN in our test set the experiment result shows

that it outperforms baselines by large margins, even though it is

free from any labor-intensive annotations and handcrafted rules.

145

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 01,2022 at 05:52:11 UTC from IEEE Xplore. Restrictions apply.

ARCLIN: Automated API Mention Resolution for Unformatted Texts ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 6: The generalization ability of ARCLIN. P, R and F1 refers to precision, recall and F1 score respectively.

Training

Testing

PyTorch Tensorflow Pandas Numpy Matplotlib

P R F1 P R F1 P R F1 P R F1 P R F1

PyTorch - - - 0.289 0.753 0.418 0.455 0.650 0.535 0.472 0.741 0.576 0.852 0.657 0.742

Tensorflow 0.427 0.710 0.533 - - - 0.420 0.701 0.526 0.422 0.768 0.544 0.738 0.752 0.745

Pandas 0.472 0.634 0.541 0.284 0.753 0.412 - - - 0.469 0.741 0.574 0.833 0.667 0.741

Numpy 0.422 0.664 0.516 0.222 0.803 0.348 0.365 0.727 0.486 - - - 0.817 0.724 0.768

Matplotlib 0.449 0.641 0.528 0.268 0.765 0.397 0.415 0.684 0.516 0.454 0.741 0.563 - - -

5.2 RQ2: How effective are the components of
ARCLIN?

ARCLIN is comprised of an API recognizer and an API linker with a

library predictor and a scoring function balance between the lexical

similarity and entity similarity. To investigate the contribution of

each module, we discard each component at a time, implement the

model in our test set, and analyze its performance. Experimental

results of this ablation study are shown in Table 5, where each

row below ARCLIN (ensemble) represents the result of a missing

component. In the w/o lexical_sim and w/o entity_sim setting, we

set the scoring threshold to 0.6. Generally, the missing module

negatively affects the model’s performance more or less. We will

discuss the effects in the following paragraphs respectively.

5.2.1 NO Recognizer. In this setting, the model tries to link an

entry in the API repository for each token. The precision perfor-

mance is dramatically decreasing because the majority of tokens

in a sentence are not API mentions, but they can still be linked

to an API in the repository because of their high similarity. For

instance, the common word where has a high similarity with the

API numpy.where() because both of them contain “where” within

the token, but it is not an API mention. ARCLIN made lots of such

mistakes, causing low precision.

5.2.2 NO Library Predictor. In this setting, the model tries to gen-

erate candidates from all five libraries, neglecting the sentence con-

text information. The failure occurs when different libraries have a

method with similar names. For instance, PyTorch has the method

torch.stack() while Numpy also contains the method numpy.stack(),

if a developer only writes “stack” as the API mention, the model

cannot disambiguate the token.

5.2.3 NO Lexical Similarity. Without the lexical similarity, the scor-

ing function fully relies on the entity similarity. A <mention, entry>
pair will be linked if and only if some entities within them are ex-

actly the same. This approach provides a high precision rate, since

it is similar to an advanced rule-based algorithm. However, it can-

not deal with spelling errors. For example, np.zeros() will be linked

with numpy.zeros() because both of them has the entity “zeros”,

but numpy.zeros() cannot matched with np.zero(), even if the API

mention contains only one missing character.

5.2.4 NO Entity Similarity. In this case, the lexical similarity is de-

terminative to the scoring function. This functionworks fine inmost

cases, but falling short when an API mention refers to a long API

name. For instance, the API mention tf.layers.batch_normalization

has a higher similarity scorewith tf.keras.layers.BatchNormalization()

rather than tf.compat.v1.layers.batch_normalization(). From a lexical

perspective, batch_normalization is not far away from BatchNor-

malization, so the final scoring function will easily be affected by

other factors (i.e., missing module name in this example).

5.3 RQ3: What is the generalization ability of
ARCLIN?

Considering the large number of libraries even for one program-

ming language, we are interested in the generalization ability of

ARCLIN. A promising API mining model should have the ability to

mine APIs without training on the library-specific corpus.

To answer the question, we train the recognizer and linker in one

library corpus, then the model attempts to recognize and identify

APIs of another library in our test set. In this setting, the model

never sees the new library before, so the library predictor is removed

from ARCLIN.

Table 6 shows the generalization ability of each pair of libraries.

The experimental results show ARCLIN gains the generalization

ability to some extent. The experiments further indicates that the

transferred model evaluated with Matplotlib achieves a higher

performance. For instance, the model that has been trained from

Numpy, is able to correctly recognize 81.7% Matplotlib APIs, accord-

ing to the Table 6. We ascribe the reason to the distinctiveness of

API’s name in Matplotlib. Specifically, API names in Matplotlib (e.g.,

matplotlib.pyplot.pcolormesh() are rather different from APIs in sci-

entific computing libraries (e.g., numpy.zeros() or torch.zeros()), so

the model is free from mistakenly linking to APIs in other libraries.

Generally, the transferred models contain a better recall rate

rather than precision, and we discuss the reason as follows. Without

library predictor, ARCLIN may link API mentions to the wrong

library if they contain similar method names. For example, given a

sentence “I have trouble with concatenating a list of tensors using

PyTorch’s stack.” where “stack” here is labeled as torch.stack() in

ground truth during the testing phase. If we train the model in

Pandas and evaluate its generalization ability in Numpy library,

ARCLIN will link “stack” to the API numpy.stack(). In summary, the

experiment results demonstrate the effectiveness and robustness of

generalization ability. Such library-transferred experiment mimics

the real-world scenario of applying ARCLIN to mine APIs from

unseen libraries.

146

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 01,2022 at 05:52:11 UTC from IEEE Xplore. Restrictions apply.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Yintong Huo, Yuxin Su, Hongming Zhang, and Michael R. Lyu

Table 7: Case study.

Approach Rule-K APIReal ARCLIN

API Mention - Recog Link Recog Link

figure.add_suplot � � � � �

ax.set_major_locator � � � � �

ticker.MultipleLocator � � � � �

plt.show() � � � � �

6 CASE STUDY

In this section, we dive into three cases to specify why ARCLIN

outperforms APIReal and Rule-K (i.e., RuleBase-Knowl), where

ground-truth is shown in blue italic font. The experimental results

of four API mentions (in blue) are presented in Table 7 with respect

to the two phases (i.e., API Recognizer and API Linker6). One API

mention is successfully identified and resolved if and only if the

“Link” phase gives the correct answer (�).

• Is there a more convenient alternative to figure.add_suplot

[matplotlib.figure.Figure.add_subplot()] if I have multiple fig-

ures ...

• Youmay try ticking themajor axis using ax.set_major_locator

[matplotlib.axis.Axis.set_major_locator()] called with ticker.

MultipleLocator() [matplotlib.ticker.MultipleLocator].

• If you don’t want to export, please uncomment plt.show()

[matplotlib.pyplot.show()] and remove . . .

Compared ARCLIN with Rule-K and APIReal, we categorize the

characteristics for three approaches. Firstly, Rule-K can only resolve

the API mention with the qualified name or a collection of specific

abbreviations, depending on the handcrafted rules. For instance,

if we add the common writing behavior that a developer usually

calls matplotlib.pyplot by its alias plt, Rule-K will try to replace

the alias with its original name for each token, then find if the

new token matches a fully qualified API name in the repository.

Secondly, we observe that APIReal is more flexible than rule-based

matching algorithm, by uncovering some API mentions by the

recognizer (e.g., ax.set_major_locator and ticker.MultipleLocator),

allowing it to address the first common-word ambiguity challenge.

Nevertheless, its API Linker is not perfect to resolve the ambiguity

introduced by morphological mentions, mainly comes from the

customized name, such as ax or ticker. APIReal detects aliases by

handcrafted patterns (e.g., pd for pandas), thus the alias that is

not covered by rules will be inappropriately coped with. Last but

not least, the cases demonstrate the effectiveness of ARCLIN. The

carefully devised API recognizer enables it to detect API mentions

in unformatted text. Besides, the API Linker with entity similarity

forces the model to pay attention to the informative entities (e.g.,

set_major_locator), and the lexical similarity allows it to address the

misspelling in API mentions. Therefore, ARCLIN can even resolve

the figure.add_suplot to matplotlib.figure.Figure.add_subplot() even

if the mention leaves out the letter “b”.

6API Recognizer is denoted as Recog and API Linker is denoted as Link for space
limitation.

7 THREAT TO VALIDITY

In this section, we discuss three potential threats to the validity of

ARCLIN and provide our solutions to alleviate these threats. The

first one is the potential bias brought by manual annotation of the

data. We evaluate ARCLIN the Py-mention dataset, which is anno-

tated by two different annotators. To overcome the human bias and

ensure the data quality, we not only employ domain experts instead

of crowd-sourcing workers, but also throw away the sentences with

uncertainty. Annotation examples and guidelines are provided at

first. As a result, the annotators fully understand what they need

to do and keep confidence in their annotation.

The second one is the limited recall rate. As shown in Figure 3,

the recall cannot achieve 100% regardless of the threshold. In other

words, ARCLIN cannot cover all ground-truth labels. We owe this

recall limitation to the reasons of observed word disorder in men-

tions. ARCLIN computes similarity based on lexical-level and entity-

level, but it fails in comparing <mention, entry> pairs in word

disorder. For example, if we use BCELosswithlogits to represent

torch.nn.BCEWithLogitsLoss, the similarity score from ARCLIN is

close to torch.nn.BCELoss, therefore, the final output gets pertur-

bation by other factors. To alleviate the issue, an n-gram based

similarity can be used to extend our ARCLIN model.

The third threat is style constraint. Currently, we evaluate AR-

CLINwith five Python libraries and achieve promising performance,

but if we migrate the model to other programming languages, the

inconsistency of function calling format will introduce this threat.

For instance, in C++ language, we use double colon “::” to call a

static function or declare the namespace identification. Besides, to

call a function in a class, one may use “->” from a pointer or use

the node “.” from a C++ entity. ARCLIN uses “.” to split the API’s

entire qualified name into a bag of package entities for similarity

computation. If we implement ARCLIN in another language (e.g.,

C++), it is necessary to implement new split marks.

8 RELATEDWORKS

API Recognition. If we want to link an API to some other source,

the first step is to recognize APIs. In this paper, we use a recognizer

to recognize APIs in free text sentences. Dagenais and Robillard [7]

adopted partial program analysis (PPA) to parse Java snippets and

then extracts code-like terms in informal discussions.The difference

between theirs and ours is, our paper targets extracting APIs from

natural language sentences, but the above studies were about ex-

tracting APIs from code blocks (written in free texts). Bacchelli et al.

[2] employed a rule-based approach to extract API mentions from

e-mails by designing different regular expressions applicable to

different languages. Treude and Robillard [35] suggested different

regular expressions for question and body to extract API mentions

from StackOverflow posts. Rigby and Robillard [31] used island

grammars to identify code elements from free text with the help of

compound camel cased terms while ignoring the common-word am-

biguity. The most relevant research to us is APIReal [40], but their

approach was applicable to recognizing APIs from StackOverflow

posts with <code> tags, which was much easier than our setting.

Besides, instead of linking such fine granularity APIs, researchers

also explored linking between textual documents and code artifacts

for maintenance. Some works Antoniol et al. [1], Chen [6], Marcus

147

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 01,2022 at 05:52:11 UTC from IEEE Xplore. Restrictions apply.

ARCLIN: Automated API Mention Resolution for Unformatted Texts ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

and Maletic [23], Marcus et al. [24] used information retrieval (IR)

techniques or leverage Latent Semantic Indexing (LSI) to recover

traceability links between elements in natural language documen-

tation and source code in software systems. These studies were

different from this paper since they performed a coarse granularity

linking.

API linking. “Linking” can refer to linking code artifacts to

documents, or linking APIs from free-texts to its entire qualified

name in the repository. Regarding to linking code artifacts to doc-

uments, Bacchelli et al. [2] used two string-match information re-

trieval techniques (i.e., vector space model and LSI) to link detected

APIs from e-mails to source code artifacts. The latter category is

what we have done in this paper, the main idea of matching APIs

with their entire qualified name is how to conduct the disambigua-

tion. Dagenais and Robillard [7] suggested a set of filtering heuris-

tics to disambiguate the API mentions. Ye et al. [40] disambiguated

API mentions in a StackOverflow post by utilizing information in

code blocks, question titles, and the location where URLs points

to. The first paper did not address the common word polysemy,

while the second research mitigated the morphological challenge

by labor-intensive rules, which was different from ours.

Mining Technical Forums. Nowadays, many researchers de-

vote themselves to mining knowledge from technical forums (e.g.,

StackOverflow) to facilitate developers in their programming issues.

For example, a popular scenario is API recommendation [18, 26, 37],

these papers suggested a list of API classes for a natural language

query by mining StackOverflow posts. Specifically, given a natural

language query, Huang et al. [18] firstly searched the most relevant

50 questions and extracting APIs from posts. Then, it ranked all can-

didate APIs by considering the query-title similarity and title-APIs

similarity. Li et al. [21] proposed another application that explores

API caveat in such a technical forum and presented a system to

help developers to tackle the problem of negative usage of APIs. It

is noticed that many works studied in StackOverflow talks about

APIs, our work serves as a foundation of this work for facilitating

them to recognize and identify the APIs without the entire qualified

name.

9 CONCLUSION

In this paper, we propose a novel framework ARCLIN for recogniz-

ing API mentions from free text and linking to an API repository.

ARCLIN is composed of two components, an API recognizer and

an API linker. The API recognizer extracts API mentions from free

texts and the API linker disambiguates the APImentions by a library

predictor to address reference ambiguity, and a scoring function

incorporating lexical similarity and entity similarity. After training

the model in an unlabeled StackOverflow corpus, we implement

ARCLIN in a human-annotated dataset named Py-mention, the

experimental results demonstrate that it significantly outperforms

all baselines. Moreover, the experiment about generalization ability

demonstrates that ARCLIN can extract APIs from a new library

even though ARCLIN is trained from another libraries.

10 ACKNOWLEDGEMENT

The work was supported by the Guangdong Key Research Program

(No. 2020B010165002) and the Research Grants Council of the Hong

Kong Special Administrative Region, China (CUHK 14210920).

REFERENCES
[1] Giuliano Antoniol, Gerardo Canfora, Gerardo Casazza, Andrea De Lucia, and Et-

tore Merlo. 2002. Recovering traceability links between code and documentation.
IEEE transactions on software engineering (TSE) 28, 10 (2002), 970–983.

[2] Alberto Bacchelli, Michele Lanza, and Romain Robbes. 2010. Linking e-mails
and source code artifacts. In Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering-Volume 1 (ICSE). 375–384.

[3] Steven Bird, Ewan Klein, and Edward Loper. 2009. Natural language processing
with Python: analyzing text with the natural language toolkit. " O’Reilly Media,
Inc.".

[4] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017.
Enriching word vectors with subword information. Transactions of the Association
for Computational Linguistics (TACL) 5 (2017), 135–146.

[5] Chunyang Chen, Zhenchang Xing, and Ximing Wang. 2017. Unsupervised
software-specific morphological forms inference from informal discussions. In
Proceedings of the 39th IEEE/ACM International Conference on Software Engineering
(ICSE). IEEE, 450–461.

[6] Xiaofan Chen. 2010. Extraction and visualization of traceability relationships
between documents and source code. In Proceedings of the IEEE/ACM international
conference on Automated software engineering (ASE). 505–510.

[7] Barthélémy Dagenais and Martin P Robillard. 2012. Recovering traceability links
between an API and its learning resources. In Proceedings of the 34th International
Conference on Software Engineering (ICSE). IEEE, 47–57.

[8] Marie-Catherine De Marneffe, Bill MacCartney, Christopher D Manning, et al.
2006. Generating typed dependency parses from phrase structure parses.. In
Proceedings of the Eleventh International Conference on Language Resources and
Evaluation (LREC), Vol. 6. 449–454.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, (NAACL-HLT).
Association for Computational Linguistics, 4171–4186.

[10] Matplotlib Documentation. Retrieved in 2021. https://matplotlib.org/stable/
contents.html

[11] NumpyDocumentation. Retrieved in 2021. https://numpy.org/devdocs/reference/
index.html

[12] PyTorch Documentation. Retrieved in 2021. https://pytorch.org/docs/stable/
index.html

[13] Pandas Documentation. Retrieved in 2021. https://pandas.pydata.org/docs/
reference/index.html#api

[14] Tensorflow Documentation. Retrieved in 2021. https://www.tensorflow.org/api_
docs/python/tf

[15] Wei Fu and Tim Menzies. 2017. Easy over hard: A case study on deep learning. In
Proceedings of the 11th the ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE). 49–60.

[16] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. 2013. Speech
recognition with deep recurrent neural networks. In International Conference on
Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, May 26-31, 2013.
IEEE, 6645–6649. https://doi.org/10.1109/ICASSP.2013.6638947

[17] Matthew Honnibal, Ines Montani, Sofie Van Landeghem, and Adriane Boyd. 2020.
spaCy: Industrial-strength Natural Language Processing in Python.

[18] Qiao Huang, Xin Xia, Zhenchang Xing, David Lo, and Xinyu Wang. 2018. API
method recommendation without worrying about the task-API knowledge gap. In
Proceedings of the 33rd IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 293–304.

[19] Paul Jaccard. 1912. The distribution of the flora in the alpine zone. 1. New
phytologist 11, 2 (1912), 37–50.

[20] John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. 2001. Condi-
tional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence
Data. In Proceedings of the Eighteenth International Conference on Machine Learn-
ing (ICML). Morgan Kaufmann, 282–289.

[21] Jing Li, Aixin Sun, Zhenchang Xing, and Lei Han. 2018. API Caveat Explorer–
Surfacing Negative Usages from Practice: An API-oriented Interactive Ex-
ploratory Search System for Programmers. In Proceedings of the 41st International
ACM SIGIR Conference on Research & Development in Information Retrieval (SIGIR).
1293–1296.

[22] Xuezhe Ma and Eduard Hovy. 2016. End-to-end Sequence Labeling via Bi-
directional LSTM-CNNs-CRF. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (ACL). Association for Computational
Linguistics, 1064–1074.

[23] Andrian Marcus and Jonathan I Maletic. 2003. Recovering documentation-to-
source-code traceability links using latent semantic indexing. In Proceedings of
the 25th International Conference on Software Engineering (ICSE). IEEE, 125–135.

[24] Andrian Marcus, Jonathan I Maletic, and Andrey Sergeyev. 2005. Recovery of
traceability links between software documentation and source code. International
Journal of Software Engineering and Knowledge Engineering 15, 05 (2005), 811–836.

148

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 01,2022 at 05:52:11 UTC from IEEE Xplore. Restrictions apply.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Yintong Huo, Yuxin Su, Hongming Zhang, and Michael R. Lyu

[25] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013.
Distributed representations of words and phrases and their compositionality.
arXiv preprint arXiv:1310.4546 (2013).

[26] Mohammad Masudur Rahman, Chanchal K Roy, and David Lo. 2016. Rack:
Automatic api recommendation using crowdsourced knowledge. In Proceedings
of the 23rd IEEE International Conference on Software Analysis, Evolution, and
Reengineering (SANER), Vol. 1. IEEE, 349–359.

[27] Lev Ratinov and Dan Roth. 2009. Design challenges and misconceptions in named
entity recognition. In Proceedings of the 13th Conference on Computational Natural
Language Learning (CoNLL). 147–155.

[28] Radim Řehůřek and Petr Sojka. 2010. Software Framework for Topic Modelling
with Large Corpora. In Proceedings of the LREC 2010 Workshop on New Challenges
for NLP Frameworks. ELRA, 45–50.

[29] Xiaoxue Ren, Jiamou Sun, Zhenchang Xing, Xin Xia, and Jianling Sun. 2020.
Demystify official API usage directives with crowdsourced API misuse scenarios,
erroneous code examples and patches. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering (ICSE). 925–936.

[30] Xiaoxue Ren, Xinyuan Ye, Zhenchang Xing, Xin Xia, Xiwei Xu, Liming Zhu, and
Jianling Sun. 2020. API-Misuse Detection Driven by Fine-Grained API-Constraint
Knowledge Graph. In 2020 35th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 461–472.

[31] Peter C Rigby and Martin P Robillard. 2013. Discovering essential code elements
in informal documentation. In Proceedings of the 35th International Conference on
Software Engineering (ICSE). IEEE, 832–841.

[32] Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. 2012. LSTM neural
networks for language modeling. In Annual Conference of the International Speech
Communication Association, Portland, Oregon, USA, September 9-13, 2012. ISCA,
194–197. http://www.isca-speech.org/archive/interspeech_2012/i12_0194.html

[33] Jeniya Tabassum, Mounica Maddela, Wei Xu, and Alan Ritter. 2020. Code and
Named Entity Recognition in StackOverflow. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics (ACL). Association for
Computational Linguistics, 4913–4926.

[34] Erik F. Tjong Kim Sang and Fien De Meulder. 2003. Introduction to the CoNLL-
2003 Shared Task: Language-Independent Named Entity Recognition. In Pro-
ceedings of the 7th Conference on Natural Language Learning at HLT-NAACL.
142–147.

[35] Christoph Treude and Martin P Robillard. 2016. Augmenting api documenta-
tion with insights from stack overflow. In Proceedings of the 38th IEEE/ACM
International Conference on Software Engineering (ICSE). IEEE, 392–403.

[36] ThomasWolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe
Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu,
Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest,
and Alexander M. Rush. 2020. Transformers: State-of-the-Art Natural Language
Processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations. Association for Computational
Linguistics, 38–45.

[37] Wenkai Xie, Xin Peng, Mingwei Liu, Christoph Treude, Zhenchang Xing, Xiaoxin
Zhang, and Wenyun Zhao. 2020. API method recommendation via explicit
matching of functionality verb phrases. In Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 1015–1026.

[38] Bowen Xu, Deheng Ye, Zhenchang Xing, Xin Xia, Guibin Chen, and Shanping Li.
2016. Predicting semantically linkable knowledge in developer online forums via
convolutional neural network. In Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 51–62.

[39] Jie Yang and Yue Zhang. 2018. NCRF++: An Open-source Neural Sequence
Labeling Toolkit. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (ACL).

[40] Deheng Ye, Lingfeng Bao, Zhenchang Xing, and Shang-Wei Lin. 2018. APIReal:
an API recognition and linking approach for online developer forums. Empirical
Software Engineering (ESE) 23, 6 (2018), 3129–3160.

[41] Deheng Ye, Zhenchang Xing, Chee Yong Foo, Zi Qun Ang, Jing Li, and Nachiket
Kapre. 2016. Software-specific named entity recognition in software engineering
social content. In Proceedings of the 23rd IEEE International Conference on Software
Analysis, Evolution, and Reengineering (SANER), Vol. 1. IEEE, 90–101.

[42] Deheng Ye, Zhenchang Xing, Chee Yong Foo, Jing Li, and Nachiket Kapre. 2016.
Learning to extract api mentions from informal natural language discussions. In
Proceedings of the 32nd IEEE International Conference on Software Maintenance
and Evolution (ICSME). IEEE, 389–399.

[43] Haoxiang Zhang, Shaowei Wang, Tse-Hsun Chen, and Ahmed E Hassan. 2019.
Reading answers on stack overflow: Not enough! IEEE Transactions on Software
Engineering (TSE) (2019).

149

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 01,2022 at 05:52:11 UTC from IEEE Xplore. Restrictions apply.

