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Abstract
We investigate the difficulty levels of questions in
reading comprehension datasets such as SQuAD,
and propose a new question generation setting,
named Difficulty-controllable Question Generation
(DQG). Taking as input a sentence in the read-
ing comprehension paragraph and some of its text
fragments (i.e., answers) that we want to ask ques-
tions about, a DQG method needs to generate ques-
tions each of which has a given text fragment as
its answer, and meanwhile the generation is under
the control of specified difficulty labels—the output
questions should satisfy the specified difficulty as
much as possible. To solve this task, we propose an
end-to-end framework to generate questions of des-
ignated difficulty levels by exploring a few impor-
tant intuitions. For evaluation, we prepared the first
dataset of reading comprehension questions with
difficulty labels. The results show that the question
generated by our framework not only have better
quality under the metrics like BLEU, but also com-
ply with the specified difficulty labels.

1 Introduction
Question Generation (QG) aims to generate natural and
human-like questions from a range of data sources, such as
image [Mostafazadeh et al., 2016], knowledge base [Serban
et al., 2016; Su et al., 2016], and free text [Du et al., 2017].
Besides for constructing SQuAD-like dataset [Rajpurkar et
al., 2016], QG is also helpful for the intelligent tutor system:
The instructor can actively ask the learner questions accord-
ing to reading comprehension materials [Heilman and Smith,
2010] or particular knowledge [Danon and Last, 2017]. In
this paper, we focus on QG for reading comprehension text.
For example, Figure 1 gives three questions from SQuAD,
our goal is to generate such questions.

QG for reading comprehension is a challenging task be-
cause the generation should not only follow the syntactic
structure of questions, but also ask questions to the point, i.e.,

∗This work was partially done when Yifan Gao was an intern
at Tencent AI Lab working with Lidong Bing, who was a full-time
researcher there.

S2: It is a member of the chalcogen group on the periodic table and is a 
highly reactive nonmetal and oxidizing agent that readily forms compounds 
(notably oxides) with most elements. 
Q2: (Easy) Of what group in the periodic table is oxygen a member?
A2: chalcogen
S3: The electric guitar is often emphasised, used with distortion and other 
effects, both as a rhythm instrument using repetitive riffs with a varying 
degree of complexity, and as a solo lead instrument. 
Q3: (Hard) What instrument is usually at the center of a hard rock sound?
A3: The electric guitar

S1: Oxygen is a chemical element with symbol O and atomic number 8. 
Q1: (Easy) What is the atomic number of the element oxygen? 
A1: 8

Figure 1: Example questions from SQuAD. The answers of Q1 and
Q2 are facts described in the sentences, thus they are easy to answer.
But it is not straightforward to answer Q3

having a specified aspect as its answer. Some template-based
approaches [Vanderwende, 2007; Heilman and Smith, 2010]
were proposed initially, where well-designed rules and heavy
human labor are required for declarative-to-interrogative sen-
tence transformation. With the rise of data-driven learning
approach and sequence to sequence (seq2seq) framework,
some researchers formulated QG as a seq2seq problem [Du
et al., 2017]: The question is regarded as the decoding tar-
get from the encoded information of its corresponding input
sentence. However, different from existing seq2seq learning
tasks such as machine translation and summarization which
could be loosely regarded as learning a one-to-one mapping,
for question generation, different aspects of the given descrip-
tive sentence can be asked, and hence the generated ques-
tions could be significantly different. Several recent works
tried to tackle this problem by incorporating the answer in-
formation to indicate what to ask about, which helps the
models generate more accurate questions [Song et al., 2018;
Zhou et al., 2017]. In our work, we also focus on the answer-
aware QG problem, which assumes the answer is given. Sim-
ilar problems have been addressed in, e.g., [Zhao et al., 2018;
Sun et al., 2018].

In this paper, we investigate a new setting of QG, namely
Difficulty controllable Question Generation (DQG). In this
setting, given a sentence in the reading comprehension para-
graph, the text fragments (i.e., answers) that we want to ask
questions about, and the specified difficulty levels, a frame-
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work needs to generate questions that are asked about the
specified answers and satisfy the difficulty levels as much as
possible. For example, given the sentence S3 and the answer
“the electric guitar” in Figure 1, the system should be capable
of asking both a hard question like Q3 and an easy one such as
“What is often emphasised as a rhythm instrument?”. DQG
has rich application scenarios. For instance, when instruc-
tors prepare learning materials for students, they may want
to balance the numbers of hard questions and easy questions.
Besides, the generated questions can be used to test how a
QA system works for questions with diverse difficulty levels.

Generating questions with designated difficulty levels is
a more challenging task. First, no existing large-scale QA
dataset has difficulty labels for questions to train a reliable
neural network model. Second, for a single sentence and an-
swer pair, we want to generate questions with diverse dif-
ficulty levels. However, the current datasets like SQuAD
only have one given question for each sentence and answer
pair. Finally, there is no metric to evaluate the difficulty
of questions. To overcome the first issue, we prepare a
dataset of reading comprehension questions with difficulty la-
bels. Specifically, we design a method to automatically label
SQuAD questions with multiple difficulty levels, and obtain
76K questions with difficulty labels.

To overcome the second issue, we propose a framework
that can learn to generate questions complying with the spec-
ified difficulty levels by exploring the following intuitions.
To answer a SQuAD question, one needs to locate a text frag-
ment in the input sentence as its answer. Thus, if a question
has more hints that can help locate the answer fragment, it
would be easier to answer. For the examples in Figure 1,
the hint “atomic number” in Q1 is very helpful, because, in
the corresponding sentence, it is just next to the answer “8”,
while for Q3, the hint “instrument” is far from the answer
“The electric guitar”. The second intuition is inspired by
the recent research on style-guided text generation, which in-
corporates a latent style representation (e.g., sentiment label
or review rating score) as an input of the generator [Shen et
al., 2017; Liao et al., 2018]. Similarly, performing difficulty
control can be regarded as a problem of sentence generation
towards a specified attribute or style. On top of the typical
seq2seq architecture, our framework has two tailor-made de-
signs to explore the above intuitions: (1) Position embeddings
are learned to capture the proximity hint of the answer in the
input sentence; (2) Global difficulty variables are learned to
control the overall “difficulty” of the questions. For the last
issue, we propose to employ the existing reading comprehen-
sion (RC) systems to evaluate the difficulty of generated ques-
tions. Intuitively, questions which cannot be answered by RC
systems are more difficult than these correctly answered ones.

In the quantitative evaluation, we compare our DQG model
with state-of-the-art models and ablation baselines. The re-
sults show that our model not only generates questions of bet-
ter quality under the metrics like BLEU and ROUGE, but also
has the capability of generating questions complying with the
specified difficulty labels. The manual evaluation finds that
the language quality of our generated questions is better, and
our model can indeed control the question difficulty.

2 Task Definition
In the DQG task, our goal is to generate SQuAD-like ques-
tions of diverse difficulty levels for a given sentence. Note
that the answers of SQuAD questions are text spans in the in-
put sentence, and they are significantly different from RACE
questions [Lai et al., 2017] such as “What do you learn from
the story?”. Considering their different emphases, SQuAD
questions are more suitable for our task, while the difficulty
of RACE questions mostly comes from the understanding of
the story but not from the way how the question is asked.
Thereby, we assume that the answers for asking questions are
given, and they appear as text fragments in the input sentences
by following the paradigm of SQuAD.

We propose an end-to-end framework to handle DQG. For-
mally, let a denote the answer for asking question, let s de-
note the sentence containing a from a reading comprehension
paragraph. Given a, s, and a specified difficulty level d as in-
put, the DQG task is to generate a question q which has a
as its answer, and meanwhile should have d as its difficulty
level.

3 The Protocol of Difficulty Labeling
SQuAD [Rajpurkar et al., 2016] is a reading comprehension
dataset containing 100,000+ questions on Wikipedia articles.
The answer of each question is a text fragment from the cor-
responding input passage. We employ SQuAD questions to
prepare our experimental dataset.

The difficulty level is a subjective notion and can be ad-
dressed in many ways, e.g., syntax complexity, coreference
resolution and elaboration [Sugawara et al., 2017]. To avoid
the ambiguity of the “question difficulty” in this preliminary
study, we design the following automatic labeling protocol
and study the correlation between automatically labelled dif-
ficulty with human difficulty. We first define two difficulty
levels, Hard and Easy, in this preliminary dataset for the sake
of simplicity and practicality. We employ two RC systems,
namely R-Net [Wang et al., 2017] 1 and BiDAF [Seo et al.,
2017] 2, to automatically assess the difficulty of the questions.
The labeling protocol is: A question would be labelled with
Easy if both R-Net and BiDAF answer it correctly under the
exact match metric, and labelled with Hard if both systems
fail to answer it. The remaining questions are eliminated for
suppressing the ambiguity.

Note that we cannot directly employ the original data split
of SQuAD to train a model of R-Net or BiDAF, and use the
model to assess all questions. Such assessment is not appro-
priate, because models will overfit training questions and la-
bel them all as easy ones. To avoid this problem, we re-split
the original SQuAD questions into 9 splits and adopt a 9-fold
strategy. To label every single split (the current split), 7 splits
are used as the training data, and the last split is used as the
validation data. Then the trained model is used to assess the
difficulty of questions in the current split. This way guar-
antees that the model is never shown with the questions for
automatic labeling. Finally, we obtain 44,723 easy questions
and 31,332 hard questions.

1https://github.com/HKUST-KnowComp/R-Net
2https://github.com/allenai/bi-att-flow
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Figure 2: Overview of our DQG framework (better viewed in color)

To verify the reasonability of our labeling protocol, we
evaluate its consistency with human being’s judgment. We
sample 100 Easy questions and 100 Hard questions, and hire
3 annotators to rate the difficulty level of all these questions
on a 1-3 scale (3 for the most difficult). The result shows that
average difficulty rating for the Easy questions is 1.90 while
it is 2.52 for the Hard ones.

4 Framework Description
Given an input sentence s = (w1, w2, ..., wm), a text frag-
ment a in s, and a difficulty level d, our task is to gener-
ated a question q, which is asked with s as its background
information, takes a as its answer, and has d as its difficulty.
The architecture of our difficulty-controllable question gen-
erator is depicted in Figure 2. The encoder takes two types
of inputs, namely, the word embeddings and the relative posi-
tion embeddings (capturing the proximity hints) of sentence
words (including the answer words). Bidirectional LSTMs
are employed to encode the input into contextualized repre-
sentations. Besides two standard elements, namely attention
and copy, the decoder contains a special initialization to con-
trol the difficulty of the generated question. Specifically, we
map the difficulty label d into a global difficulty variable with
a lookup table, and combine the variable with the last hidden
state of the encoder to initialize the decoder.

4.1 Exploring Proximity Hints
Recall that our first intuition tells that the proximity hints are
helpful for answering the SQuAD-like questions. Before in-
troducing our design for implementing the intuition, we quan-
titatively verify it by showing some statistics. Specifically,
we examine the average distance of those nonstop question
words that also appear in the input sentence to the answer
fragment. For example, for Q1 in Figure 1 and its corre-
sponding input sentence “Oxygen is a chemical element with
symbol O and atomic number 8”, we calculate the word-level
average distance of words “atomic”, “number”, “element”,
and “oxygen” to the answer “8”. The statistics are given in

Easy Hard All
Avg. distance of question words 7.67 9.71 8.43
Avg. distance of all sentence words 11.23 11.16 11.20

Table 1: Distance statistics for non-stop words

Table 1. In contrast, the average distance of all nonstop sen-
tence words to the answer is also given in the bottom line.
If we only count those nonstop question words, we find that
their distance to the answer fragment is much smaller than
the sentence words, namely 8.43 vs. 11.20. We call this
Question Word Proximity Hint (QWPH). More importantly,
the distance for hard questions is significantly larger than that
for easy questions, namely 9.71 vs. 7.67, which well verifies
our intuition that if a question has more obvious proximity
hints (i.e., containing more words that are near the answer
in the corresponding sentence), it would be easier to solve.
We model QWPH for easy questions and hard questions sep-
arately and call this Difficulty Level Proximity Hint (DLPH).

To implement the QWPH intuition, our model learns a
lookup table which maps the distance of each sentence word
to the answer fragment, i.e., 0 (for answer words), 1, 2,
etc., into a position embedding: (p0,p1,p2, ...,pL), where
pi ∈ Rdp and dp is the dimension. L is the maximum dis-
tance we consider. Different from QWPH that is difficulty
agnostic, the DLPH intuition additionally explores the infor-
mation of question difficulty levels. Therefore, we define two
lookup tables: (pe

0,p
e
1,p

e
2, ...,p

e
L) for the Easy label, and

(ph
0 ,p

h
1 ,p

h
2 , ...,p

h
L) for the Hard label. Note that the above

position embeddings not only carry the information of sen-
tence word position, but also let our model know which as-
pect (i.e., answer) to ask with the embeddings of position 0.

4.2 Characteristic-rich Encoder
The characteristic-rich encoder incorporates several features
into a contextualized representation. For each sentence word
w, an embedding lookup table is firstly used to map tokens
in the sentence into dense vectors: (w1, w2, ...,wm), where
wi ∈ Rdw of dw dimensions. Then we concatenate its word
embedding and position embedding (proximity hints) to de-
rive a characteristic-rich embedding: x = [w;p]. We use
bidirectional LSTMs to encode the sequence (x1,x2, ...,xm)
to get a contextualized representation for each token:
−→
h i =

−−−−→
LSTM(

−→
h i−1,xi),

←−
h i =

←−−−−
LSTM(

←−
h i+1,xi),

where
−→
h i and

←−
h i are the hidden states at the i-th time step of

the forward and the backward LSTMs. We concatenate them
together as hi = [

−→
h i;
←−
h i].

4.3 Difficulty-controllable Decoder
We use another LSTM as the decoder to generate the ques-
tion. We employ the difficulty label d to initialize the hidden
state of the decoder. During the decoding, we incorporate the
attention and copy mechanisms to enhance the performance.

Global Difficulty Control. We regard the generation of
difficulty-controllable questions as a problem of sentence
generation towards a specified style, i.e., easy or hard. To
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Train Dev Test
# easy questions 34,813 4,973 4,937
# hard questions 24,317 3,573 3,442
Easy ratio 58.88% 58.19% 58.92%

Table 2: The statistics of our dataset

do so, we introduce a global difficulty variable to control the
generation. We follow the recent works for the task of style
transfer that apply the control variable globally, i.e., using
the style variable to initialize the decoder [Liao et al., 2018].
Specifically, for the specified difficulty level d, we first map it
to its corresponding difficulty variable d ∈ Rdd , where dd is
the dimension of a difficulty variable. Then we use the con-
catenation of d with the final hidden state hm of the encoder
to initialize the decoder hidden state u0 = [hm;d]. Note that
in the training stage, we feed the model the ground truth dif-
ficulty labels, while in the testing stage, our model can take
any specified difficulty labels, i.e., difficulty-controllable, for
question generation. We have also tried some variations by
adding this variable to other places such as every encoder or
decoder input in the model but it does not work.
Decoder with Attention & Copy. The decoder predicts
the word probability distribution at each decoding timestep
to generate the question. At the t-th timestep, it reads the
word embedding wt and the hidden state ut−1 of the pre-
vious timestep to generate the current hidden state ut =
LSTM(ut−1,wt). Then the decoder employs the atten-
tion mechanism [Luong et al., 2015; Zhang et al., 2018;
Chen et al., 2019] and copy mechanism [See et al., 2017]
to generate the question by copying words in the sentence or
generating words from a predefined vocabulary.

5 Experiments
5.1 Experimental Settings
Dataset. Our prepared dataset is split according to articles
of the SQuAD data, and Table 2 provides the detailed statis-
tics. Across the training, validation and test sets, the splitting
ratio is around 7:1:1, and the easy sample ratio is around 58%
for all three.
Baselines and Ablation Tests. We only employ neural net-
work based methods as our baselines, since they perform bet-
ter than non-neural methods as shown in recent works [Du et
al., 2017; Zhou et al., 2017]. The first baseline models the
question generation as a seq2seq problem incorporating the
attention mechanism, and we refer to it as L2A [Du et al.,
2017]. The second baseline Ans adds answer indicator em-
bedding to the seq2seq model, similar to [Zhou et al., 2017;
Kumar et al., 2018]. Two ablations that only employ the ques-
tion word proximity hint or the difficulty level proximity hint
are referred to as QWPH and DLPH. Moreover, we exam-
ine the effectiveness of the global difficulty control (GDC)
combined with QWPH and DLPH, refer to them as QWPH-
GDC and DLPH-GDC. All these methods are enhanced by
the copy mechanism.
Model Details and Parameter Settings. The embedding
dimensions for the position embedding and the global diffi-
culty variable, i.e. dp and dd, are set to 50 and 10 respectively.

Easy Questions Set Hard Questions Set
R-Net BiDAF R-Net BiDAF

EM F1 EM F1 EM F1 EM F1

Ans 82.16 87.22 75.43 83.17 34.15 60.07 29.36 55.89
QWPH 82.66 87.37 76.10 83.90 33.35 59.50 28.40 55.21
QWPH-GDC 84.35 88.86 77.23 84.78 31.60 57.88 26.68 54.31
DLPH 85.49 89.50 78.35 85.34 28.05 54.21 24.89 51.25
DLPH-GDC 85.82 89.69 79.09 85.72 26.71 53.40 24.47 51.20

Table 3: Difficulty of the generated questions, measured with R-
Net and BiDAF. For easy questions, higher score indicates better
difficulty-control, while for hard questions, lower indicates better

Easy Questions Set Hard Questions Set
R-Net BiDAF R-Net BiDAF

EM F1 EM F1 EM F1 EM F1

QWPH-GDC 7.41 5.72 7.13 5.88 6.45 5.47 6.13 5.10
DLPH 12.41 9.51 11.28 8.49 12.01 10.45 10.51 9.37
DLPH-GDC 12.91 9.95 12.40 9.23 12.68 10.76 11.22 9.97

Table 4: The results of controlling difficulty, measured with R-Net
and BiDAF. The scores are performance gap between questions gen-
erated with original difficulty label and questions generated with re-
verse difficulty label

We use the maximum relative distance L = 20 in the position
embedding. We adopt teacher-forcing in the encoder-decoder
training and use the ground truth difficulty labels. In the test-
ing procedure, we select the model with the lowest perplexity
and beam search with size 3 is employed for question gener-
ation. All important hyper-parameters, such as dp and dd, are
selected on the validation dataset.

5.2 Difficulty Control Results
We run R-Net and BiDAF to assess the difficulty of our gen-
erated hard and easy questions. Here the R-Net and BiDAF
systems are trained using the same train/validation splits as
shown in Table 2, and we report their performance under the
standard reading comprehension measures for SQuAD ques-
tions, i.e., Exact Match (EM) and macro-averaged F1 score
(F1), on the easy and hard question sets respectively. For all
experiments, we firstly show the performance of difficulty-
controllable question generation by feeding ground truth dif-
ficulty labels, then we feed the reverse difficulty labels to
demonstrate our model can control the difficulty of generated
questions.

Recall that the generated questions can be split into an easy
set and a hard set according to the difficulty labels. Here
we evaluate the generated questions from the perspective that
a reading comprehension system (e.g., R-Net and BiDAF)
should perform better on the generated questions in the easy
set, and perform worse on the hard question set. If a pipeline
does not use the answer information, its generated questions
are likely not about the answers, thus both BiDAF and R-Net
cannot work well no matter for easy or hard questions. There-
fore, we do not use L2A here.

As shown in Table 3, for the easy set, the questions gener-
ated by the methods using the difficulty label “Easy” are eas-
ier to answer. Specifically, compared with Ans and QWPH
which cannot control the difficulty, QWPH-GDC, DLPH,
and DLPH-GDC generate easier questions, showing that they
have the capability of generating difficulty-controllable ques-
tions. One instant doubt is that a model can simply produce
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Easy Question Set Hard Question Set
F D R F D R

Ans 2.91 2.02 0.74 2.87 2.12 0.58
DLPH-GDC 2.94 1.84 0.76 2.87 2.26 0.64

Table 5: Human evaluation results for generated questions.
Fluency(F) and Difficulty(D) take values from {1, 2, 3} (3
means the top fluency or difficulty), while Relevance(R) takes a
binary value, i.e., 1 or 0

trivial questions by having them contain the answer words.
In fact, our models do not have this behaviour, because it will
increase the training loss. To further verify this, we calculate
the occurrence rate of answer words in the generated ques-
tions. The result shows that only 0.09% answer words appear
in the questions generated by our models.

For the hard set, we can draw the same conclusion by keep-
ing in mind that a lower score indicates the corresponding
method performs better in generating difficulty-controllable
questions. (Note that questions irrelevant to the answer can
also yield lower scores, and we have more discussion about
this issue in Section 5.3 for the human evaluation.) This ob-
servation shows that incorporating the difficulty information
locally by the two position embeddings or globally by the
difficulty-controlled initialization indeed guides the genera-
tor to generate easier or harder questions. Comparing DLPH
and QWPH-GDC, we find that the local difficulty control by
the position embedding is more effective. DLPH-GDC per-
forms the best by combining the local and global difficulty
control signals.

Moreover, we find that QWPH achieves slightly better per-
formance than Ans baseline. A large performance gap be-
tween QWPH-GDC and QWPH again validates the effective-
ness of the global difficulty control. Meanwhile, the improve-
ment from QWPH to DLPH shows that the local difficulty
level proximity hint can stress the question difficulty at each
time step to perform better.

On the other hand, another way to validate our model is
testing whether our model can control the difficulty by feed-
ing the reversed difficulty labels. For example, for a question
in the easy set, if we feed the “Hard” label together with the
input sentence and answer of this question into our model,
we expect the generated question should be harder than feed-
ing the “Easy” label. Concretely, if a method has the better
capability in controlling the difficulty, on two sets of ques-
tions generated with this method by taking the true label and
the reversed label, the performance gap of a reading compre-
hension system should be larger. The results of this experi-
ment are given in Table 4. We only compare models which
have difficulty control capability. The model combining lo-
cal and global difficulty signals, i.e., DLPH-GDC, achieves
the largest gap, which again shows that: (1) DLPH-GDC has
the strongest capability of generating difficulty-controllable
questions; (2) The local difficulty control (i.e. DLPH) is more
effective than the global (i.e. QWPH-GDC).

5.3 Manual Evaluation
We hire 3 annotators to rate the model generated questions.
We randomly sampled 100 question with “Easy“ labels and
100 with “Hard“ labels from the test set, and let each an-

notator annotate these 200 cases. During the annotation,
each data point contains a sentence, an answer, and the ques-
tions generated by different models, without showing the dif-
ficulty labels. We consider three metrics: Fluency(F),
Difficulty(D) and Relevance(R). The annotators
are first asked to read the generated questions to evaluate their
grammatical correctness and fluency. Then, all annotators are
required to rate the difficulty of each generated question by
considering the corresponding sentence and answer. Finally,
for relevance, we ask the annotators to judge if the question is
asking about the answer. Fluency and Difficulty take
values from {1, 2, 3} (3 means the top fluency or difficulty),
while Relevance takes a binary value (1 or 0).

Table 5 shows the results of the manual evaluation. We
compare our best model DLPH-GDC with the Ans baseline.
We separate the Easy questions and Hard questions for
statistics. For both question sets, both models achieve high
scores on Fluency, owing to the strong language modeling
capability of neural models. For Difficulty, we can find
that DLPH-GDC can generate easier or harder questions than
Ans by feeding the true difficulty labels. Another observation
is that, for the Ans baseline, questions generated in the Easy
set are easier than those in the Hard set, which validates our
difficulty labelling protocol from another perspective. Note
that for human beings, all SQuAD-like questions are not re-
ally difficult, therefore, the difference of Difficulty val-
ues between the easy set and the hard set is not large.

Furthermore, we can observe our model can generate more
relevant questions compared with the Ans baseline. The rea-
son could be that our position embedding can not only tell
where the answer words are, but also indicate the distance of
the context words to the answer. Thus, it provides more in-
formation to the model for asking to the point questions. Ans
only differentiates the answer token and non-answer token,
and treats all non-answer tokens equally.

Recall that we had the concern regarding Table 3 that the
generated hard questions by our difficulty-controlling mod-
els say DLPH-GDC may simply be irrelevant to the answer,
which makes DLPH-GDC achieves lower EM/F1 scores than
the Ans baseline. By comparing the Relevance scores in
Table 5 and EM/F1 scores in Table 3 for Hard Question Set,
we find that the questions generated by DLPH-GDC are more
relevant (as shown in Table 5) and more difficult (as shown in
both Tables 3 and 5) than those generated by the Ans base-
line. This observation resolves our doubt on the irrelevance
issue and supports the conclusion that our DLPH-GDC does
generate more difficult and relevant questions which can fail
the two RC pipelines.

5.4 Automatic Evaluation of Question Quality
Here we evaluate the similarity of generated questions with
the ground truth. Since our dataset is not parallel (i.e., for a
sentence and answer pair, our dataset only has one question
with the “easy” or “hard” label), here we only evaluate the
question quality by feeding the ground truth difficulty labels.
We employ BLEU (B), METEOR (MET) and ROUGE-L (R-
L) scores by following [Du et al., 2017]. BLEU evaluates
the average N-gram precision on a set of reference sentences,
with a penalty for overly long sentences. ROUGE-L is com-
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B1 B2 B3 B4 MET R-L
L2A 36.01 21.61 14.97 10.88 15.99 38.06
Ans 43.51 29.06 21.35 16.22 20.53 45.66
QWPH 43.75 29.28 21.61 16.46 20.70 46.02
QWPH-GDC 43.99 29.60 21.86 16.63 20.87 46.26
DLPH 44.11 29.64 21.89 16.68 20.94 46.22
DLPH-GDC 43.85 29.48 21.77 16.56 20.79 46.16

Table 6: Automatic evaluation for question quality

monly employed to evaluate the recall of the longest common
subsequences, with a penalty for short sentences.

Table 6 shows the quality of generated questions. Com-
paring the first three methods, we can find that the answer
and position information helps a lot for asking to the point
questions, i.e., more similar to the ground truth. Moreover,
QWPH performs better than Ans, indicating that further dis-
tinguishing the different distance of the non-answer words to
the answer provides richer information for the model to gen-
erate better questions. The results in the lower half show that,
given the ground truth difficulty labels, these three methods
with the capability of difficulty control are better than the first
three methods. These three models achieve comparable per-
formance, and DLPH-GDC sacrifices a little in N-gram based
performance here while achieving the best difficulty control
capability (refer to Tables 3 & 4).

5.5 Case Study
Figure 3 provides some examples of generated questions
(with answers marked in red). The number after the model
is the average distance of the overlapped nonstop words be-
tween the question and the input sentence to the answer frag-
ment. The average distance corresponds to the our intuition
proximity hints well. Compared with questions generated
by Ans baseline, our model can give more hints (shorter
distance) when asking easier questions and give less hints
(longer distance) when asking harder questions.

For the first example, we observe that the ground truth
question generated by Human is quite easy, just replacing
the answer “bodhi” with “what”. Among the three systems,
Ans asks a question that is not about the answer. While both
DLPH-GDC and DLPH-GDC (reverse) are able to generate
to the point questions. Specifically, by taking the “Easy” la-
bel, DLPH-GDC tends to use more words from the input sen-
tence, while DLPH-GDC (reverse) uses less and its generated
question is relatively difficult. For the second example, we
find our system is also applicable to the question with “Hard”
label.

6 Related Work
In this section, we primarily review question generation (QG)
works on free text. Vanderwende [2007] proposed this task,
later on, several rule-based approaches were proposed. They
manually design some question templates and transform the
declarative sentences to interrogative questions [Mazidi and
Nielsen, 2014; Labutov et al., 2015; Lindberg et al., 2013;
Heilman and Smith, 2010]. These Rule-based approaches
need extensive human labor to design question templates,

Input 1: prajñā is the wisdom that is able to extinguish afflictions and 
bring about bodhi . (Easy Question)
Human: (4.5) prajna is the wisom that is able to extinguish afflictions and 
bring about what ? 
Ans: (13.0) what is prajñā ?
DLPH-GDC: (6.2) prajñā is able to extinguish afflictions and bring about 
what ?
DLPH-GDC (reverse): (7.3) what is prajñā able to bring ?

Input 2: the electric guitar is often emphasised , used with distortion and 
other effects , both as a rhythm instrument using repetitive riffs with a 
varying degree of complexity , and as a solo lead instrument . (Hard 
Question)
Human: (16.0) what instrument is usually at the center of a hard rock 
sound ?
Ans: (5.5) what is often emphasised with distortion and other effects ?
DLPH-GDC: (25.7) what is a solo lead instrument ?
DLPH-GDC (reverse): (2.5) what is often emphasised ?

Figure 3: Example questions (with answers marked in red). The
human question for Input 2 uses some information (“hard rock”) in
preceding sentences which are not shown here

and usually can only ask annotators to evaluate the generated
questions.

Du et al. [2017] proposed the first automatic QG frame-
work. They view QG as a seq2seq learning problem to
learn the mapping between sentences and questions in read-
ing comprehension. Moreover, the procedure of QG from a
sentence is not a one-to-one mapping, because given a sen-
tence, different questions can be asked from different aspects.
As Du et al. [2017] mentioned, in their dataset, each sentence
corresponds to 1.4 questions on average. Seq2seq learning
may not perform well for learning such a one-to-many map-
ping. Some recent works attempt to solve this issue by assum-
ing the aspect has been already known when asking a question
[Zhou et al., 2017; Yuan et al., 2017] or can be detected with
a third-party pipeline [Du and Cardie, 2018]. This assump-
tion makes sense, because for humans to ask questions, we
usually first read the sentence to decide which aspect to ask.
In this paper, we explore another important dimension in QG,
i.e., generating questions with controllable difficulty, that has
never been studied before.

7 Conclusions
In this paper, we present a novel setting, namely difficulty-
controllable question generation for reading comprehension,
which to the best of our knowledge has never been studied
before. We propose an end-to-end approach to learn the ques-
tion generation with designated difficulty levels. We also pre-
pared the first dataset for this task, and extensive experiments
show that our framework can solve this task reasonably well.
One interesting future direction is to explore generating mul-
tiple questions for different aspects in one sentence [Gao et
al., 2019].
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Çaglar Gülçehre, Sungjin Ahn, A. P. Sarath Chandar,
Aaron C. Courville, and Yoshua Bengio. Generating fac-
toid questions with recurrent neural networks: The 30m
factoid question-answer corpus. In ACL, 2016.

[Shen et al., 2017] Tianxiao Shen, Tao Lei, Regina Barzilay,
and Tommi S. Jaakkola. Style transfer from non-parallel
text by cross-alignment. In NIPS, pages 6833–6844, 2017.

[Song et al., 2018] Linfeng Song, Zhiguo Wang, Wael
Hamza, Yue Zhang, and Daniel Gildea. Leveraging
context information for natural question generation. In
NAACL-HLT, 2018.

[Su et al., 2016] Yu Su, Huan Sun, Brian Sadler, Mudhakar
Srivatsa, Izzeddin Gur, Zenghui Yan, and Xifeng Yan. On
generating characteristic-rich question sets for qa evalua-
tion. In EMNLP, 2016.

[Sugawara et al., 2017] Saku Sugawara, Yusuke Kido,
Hikaru Yokono, and Akiko Aizawa. Evaluation metrics
for machine reading comprehension: Prerequisite skills
and readability. In ACL, 2017.

[Sun et al., 2018] Xingwu Sun, Jing Liu, Yajuan Lyu, Wei
He, Yanjun Ma, and Shi Wang. Answer-focused and
position-aware neural question generation. In EMNLP,
2018.

[Vanderwende, 2007] Lucy Vanderwende. Answering and
questioning for machine reading. In AAAI Spring Sym-
posium: Machine Reading, 2007.

[Wang et al., 2017] Wenhui Wang, Nan Yang, Furu Wei,
Baobao Chang, and Ming Zhou. Gated self-matching net-
works for reading comprehension and question answering.
In ACL, 2017.

[Yuan et al., 2017] Xingdi Yuan, Tong Wang, Çaglar
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