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Abstract

Sentence function is an important linguistic
feature indicating the communicative purpose
in uttering a sentence. Incorporating sen-
tence functions into conversations has shown
improvements in the quality of generated re-
sponses. However, the number of utterances
for different types of fine-grained sentence
functions is extremely imbalanced. Besides a
small number of high-resource sentence func-
tions, a large portion of sentence functions is
infrequent. Consequently, dialogue generation
conditioned on these infrequent sentence func-
tions suffers from data deficiency. In this pa-
per, we investigate a structured meta-learning
(SML) approach for dialogue generation on in-
frequent sentence functions. We treat dialogue
generation conditioned on different sentence
functions as separate tasks, and apply model-
agnostic meta-learning to high-resource sen-
tence functions data. Furthermore, SML en-
hances meta-learning effectiveness by promot-
ing knowledge customization among different
sentence functions but simultaneously preserv-
ing knowledge generalization for similar sen-
tence functions. Experimental results demon-
strate that SML not only improves the informa-
tiveness and relevance of generated responses,
but also can generate responses consistent with
the target sentence functions.

1 Introduction

Humans express intentions in conversations
through sentence functions, such as interrogation
for acquiring further information, declaration for
making statements, and imperative for making re-
quests and instructions. For machines to interact
with humans, it is therefore essential to enable them
to make use of sentence functions for dialogue gen-
eration. Sentence function is an important linguis-
tic feature indicating the communicative purpose
of a sentence in a conversation. There are four

Query 今天心情不错
I am in a good mood today

Sentence Function Positive Declarative
Response 1 什么让你这么开心？

What makes you so happy?
Sentence Function 1 Wh-style Interrogative

Response 2 我今天心情很不好
I feel bad today

Sentence Function 2 Negative Declarative

Figure 1: Query-response pairs with fine-grained sen-
tence functions. Responses under different sentence
functions are completely different in global structures.

major sentence functions: Declarative, Interroga-
tive, Exclamatory and Imperative (Rozakis, 2003).
Each major sentence function can be further de-
composed into fine-grained ones according to dif-
ferent purposes indicated in conversations. For
example, Interrogative is divided into Wh-style In-
terrogative, Yes-no Interrogative and other types.
These fine-grained sentence functions have great
influences on the structures of utterances in conver-
sations including word orders, syntactic patterns,
and other aspects (Akmajian, 1984; Yule, 2016).
Figure 1 presents how sentence functions influence
the responses. Given the same query expressed in
Positive Declarative, the responses expressed in
Wh-style Interrogative and in Negative Declarative
are completely different.

Although the use of sentence functions improves
the overall quality of generated responses (Ke et al.,
2018), it suffers from the data imbalance issue. For
example, in the recently released response gen-
eration dataset with manually annotated sentence
functions STC-SeFun (Bi et al., 2019), more than
40% of utterances are Positive Declarative while
utterances annotated with Declarative with Inter-
rogative words account for less than 1% of the
entire dataset. Therefore, dialogue generation mod-
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els suffer from data deficiency for these infrequent
sentence functions.

Recently, model-agnostic meta-learning
(MAML) (Finn et al., 2017) has shown promising
results on several low-resource natural language
generation (NLG) tasks, including neural ma-
chine translation (Gu et al., 2018), personalized
response generation (Madotto et al., 2019) and
domain-adaptive dialogue generation (Qian and
Yu, 2019). They treat languages of translation,
personas of dialog and dialog domains as separate
tasks in MAML respectively. In the same spirit of
previous works, we first treat dialogue generation
conditioned on different sentence functions as sep-
arate tasks, and meta-train a dialogue generation
model using high-resource sentence functions.
Moreover, we observe that sentence functions
have hierarchical structures: four major sentence
functions can be further divided into twenty
fine-grained types. Some fine-grained sentence
functions may share some similarities while some
others are disparate. For example, utterances
belong to Wh-style Interrogative and Yes-no
Interrogative may share some transferable word
patterns while utterances in Wh-style Interrogative
and in Exclamatory with interjections totally differ
from each other. Motivated by this observation,
we explore a structured meta-learning (SML)
considering inherent structures among fine-grained
sentence functions. Inspired from recent advances
on learning several initializations with a set of
meta-learners (Yao et al., 2019; Vuorio et al.,
2019), we develop our own approach to utilize the
underlying structure of sentence functions. More
specifically, our proposed SML explicitly tailors
transferable knowledge among different sentence
functions. It utilizes the learned representations
of fine-grained sentence functions as parameter
gates to influence the globally shared parameter
initialization. Therefore, conversation models
for similar sentence functions can share similar
parameter initializations and vice versa. As a
result, SML enhances meta-learning effectiveness
by promoting knowledge customization among
different sentence functions but simultaneously
preserving knowledge generalization for similar
sentence functions.

The experimental results on STC-SeFun dataset
(Bi et al., 2019) show that responses generated from
our proposed structured meta-learning algorithm
are of better quality over several baselines in both

human and automatic evaluations. Moreover, our
proposed model can generate responses consistent
with the target sentence functions while baseline
models may ignore the target sentence functions or
generate some generic responses. We further con-
duct a detailed analysis on our proposed model and
show that it indeed can learn word orders and syn-
tactic patterns for different fine-grained sentence
functions.

2 Background

Dialogue Generation with Sentence Function.
Open domain dialogue generation has been
widely studied with sequence-to-sequence learn-
ing (Seq2Seq) (Sutskever et al., 2014). To alleviate
the generate generic and dull responses issue of
Seq2Seq (Li et al., 2016), some efforts provide
additional controlling signals in dialogue genera-
tion, such as emotion (Zhou et al., 2017), persona
(Zhang et al., 2018), and topic (Xing et al., 2017).
Different from these local controlling factors, sen-
tence function can influence the global structure
of the entire response such as changing word or-
ders and word patterns. Zhao et al. (2017) utilize
dialogue acts as prior linguistic knowledge and in-
tegrate it with conditional variational autoencoders
to achieve the discourse-level diversity of gener-
ated responses. Ke et al. (2018) adopt a conditional
variational autoencoder to capture various word
patterns and introduce a type controller to control
the sentence function. Xu et al. (2019) generalize
the concept of dialogue act into meta words and use
meta words for open domain dialogue generation.

Meta-Learning for Low-Resource NLG. Hu-
mans can learn quickly with a few examples while
data-driven models are mostly compute-intensive.
In meta-learning, the goal of the trained model is
to quickly learn a new task from a small amount
of data. Therefore, the model should be able to
learn transferable knowledge on a large number
of different tasks. Recently, model-agnostic meta-
learning (MAML) (Finn et al., 2017) has shown
promising results on several few-shot classifica-
tion tasks. MAML directly optimizes the gradient
towards a good parameter initialization for easy
fine-tuning on low-resource scenarios. Because
of the model-agnostic nature of MAML, it can be
directly applied to low-resource NLG tasks with
modifications on corresponding training strategies.
Gu et al. (2018) frame machine translation between
two language pairs as a single task in meta-learning,



433

and learn to adapt to low-resource languages based
on multilingual high-resource language tasks. In a
similar spirit, recent works apply MAML to person-
alized response generation (Madotto et al., 2019)
and task-oriented dialogue agents (Mi et al., 2019;
Qian and Yu, 2019). In this paper, we not only
investigate how MAML helps for open domain dia-
logue generation on infrequent sentence functions,
but also develop a structured approach to fit the
hierarchical structure of sentence functions.

3 Problem Formulation

We define response generation conditioned on ev-
ery query-response sentence function pair (dX , dY )
as a single task. As the number of utterances for dif-
ferent sentence functions is extremely imbalanced,
some tasks have abundant utterances while some
others are low-resource. We take K high-resource
tasks as training data, denoted as:

Dk
train = {(Xk

n, Y
k
n , d

k
X , d

k
Y ), n = 1...N}, k = 1...K (1)

Then, we take T tasks with infrequent sentence
functions as target tasks, denoted as:

Dt
target = {(Xt

n, Y
t
n, d

t
X , d

t
Y ), n = 1...N ′}, t = 1...T (2)

where N ′ � N .
During training, taking the query X , its sentence

function dX and the target response sentence func-
tion dY as inputs, a dialog model f parameterized
by θ learns the mapping between inputs and the cor-
responding response Y using training data Dtrain

of K tasks,

fθ : X
k × (dkX , d

k
Y )→ Y k, k = 1...K (3)

The initialization parameters of model f learned
from the training process, denoted by θ0, are used
as the initialization parameters in the adaptation
process. The adaptation process on each target task
Dt
target can be formulated as follows:

fθ∗ = argmax
θ

log p(fθ|Dt
target, fθ0) (4)

where fθ∗ is the fine-tuned model that could per-
form well on the target task Dt

target.

4 Proposed Approach

In this section, we first introduce the conditional
sequence-to-sequence (C-Seq2Seq) model for open
domain dialogue generation with fine-grained sen-
tence function. Then we describe how to meta-train

C-Seq2Seq under the algorithm of model-agnostic
meta-learning. Finally, we explore the structure
of fine-grained sentence functions and propose the
structured meta-learning (SML) algorithm.

4.1 C-Seq2Seq
Conditional sequence-to-sequence (C-Seq2Seq)
(Ficler and Goldberg, 2017) is the best genera-
tive model on STC-SeFun dataset (Bi et al., 2019).
We use it to test the effectiveness of our proposed
structured meta-training approach. C-Seq2Seq fol-
lows the widely used encoder-decoder framework
(Sutskever et al., 2014; Vinyals et al., 2015). The
encoder transforms the query X into contextual-
ized representation (h1,h2, ...,hn) through bidi-
rectional LSTMs (Hochreiter and Schmidhuber,
1997). For the decoder part, we learn an additional
sentence function embedding [s1, s2, ..., sK ] for
each query-response sentence function pair, which
plays a major role in our structured modeling (Sec.
4.3). Then we takes the concatenation of word em-
bedding wt and the sentence function embedding
sk as input at each timestep, and updates its hidden
state as follows,

ut = LSTM(ut−1, [wt; sk]). (5)

The decoder utilizes soft attention mechanism (Lu-
ong et al., 2015) to derive the context vector ct,

at,i =
exp(u>t Wahi)∑
j exp(u>t Wahj)

, ct =
∑

i at,ihi. (6)

Finally, the predicted probability distribution over
the vocabulary V is computed as:

h̃t = tanh(Wh[ut; ct]), (7)

PV = softmax(WV h̃t + bV ), (8)

where Wa, Wh, WV and bV are trainable param-
eters.

4.2 Meta-Learning for C-Seq2Seq
The fundamental idea behind meta-learning is
based on a simple machine learning principle: test
and train conditions must match. In the context of
meta-learning, it becomes that the conditions be-
tween task adaptation (fine-tuning) stage (Eqn. 4)
and meta-training stage (Eqn. 3) must match. To
mimic the task adaptation stage, Model-Agnostic
Meta-Learning (MAML) (Finn et al., 2017) explic-
itly train the parameters of the model such that a
small number of gradient steps with a small amount
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Figure 2: An intuitive comparison among (a) Transfer Learning, (b) Model-Agnostic Meta-Learning (MAML)
and (c) Structured Meta-Learning (SML). Tasks of training, validation and testing are colored in blue, orange and
green respectively. Solid lines represent the learning of initialization θ0 while dashed lines show the path of fine-
tuning. Our structured modeling can learn the structure in different sentence functions so that similar tasks will be
initialized from closer starting points than others (T1,2,3 and T4,5,6 in (c)). In the testing (adaptation) stage, a new
sentence function such as Negative Declarative will benefit from this learned structure by initializing from a point
that is close to other fine-grained sentence functions in the same category of Declarative (Ttest in (c)).

of training data will make rapid progress on new
tasks. The intuition behind MAML is that there ex-
ist some transferable internal representations across
tasks. MAML aims to find the most sensitive model
parameters such that small changes in model pa-
rameters will produce large improvements on each
task.

Here is how we apply MAML to response gen-
eration on infrequent sentence functions. We
uniformly sample one source task Tk at random.
Then we independently sample two subsets of data
(DTk , D

′
Tk) from task Tk. DTk is used to simu-

late the process when fθ adapts to the target low-
resource tasks while D

′
Tk is used to evaluate the

outcome of the adapted model.
In the simulation of adaptation stage, the model

f parameterized by θ adapts to this new task Tk
using one or more gradient descent updates,

θ
′
k = θ − α∇θLDTk (fθ), (9)

where α is a hyperparameter for task-specific learn-
ing rate. Then the model evaluates the updated
parameters θ

′
k towards D

′
Tk . The loss can be for-

mulated as,

LD
′
Tk (f

θ
′
k
) = LD

′
Tk (f

θ−α∇θL
DTk (fθ)

) (10)

Afterward, the model is trained by optimizing
the performance of L(f

θ
′
k
) with respect to θ across

randomly sampled tasks. To learn the internal rep-
resentation shared across tasks, it is possible to
aggregate gradients ∇θL(fθ′k) sampled from sev-

eral tasks in the meta-update,

θ ← θ − β
∑
k

∇θL(fθ′k), (11)

where β is the meta learning rate across tasks and
k is the sampled tasks for gradient aggregation1.
Different from common gradient-based approaches,
Eqn. 11 update the model not from θ

′
k but from θ

because MAML aims to learn the most sensitive
parameters to facilitate fast adaptation. As a result,
the meta-learned model is not necessarily a good
model on its own, but it adapts fast on any new task
with a few gradient update steps.

4.3 Exploring Structure Modeling
MAML learns some transferable knowledge in dif-
ferent training tasks (a task in our paper is defined
as response generation conditioned on a given sen-
tence function). In effect, the meta-learned model
can adapt fast for the low-resource testing tasks
(sentence functions). However, MAML assumes all
tasks in training and adaptation stages distributed
uniformly, which is not the case for our conditioned
response generation – some tasks may share some
similarities while some are exclusive to each other.
For example, utterances belong to Wh-style Inter-
rogative and Yes-no Interrogative may share some
transferable word patterns while word patterns in
Wh-style Interrogative and Exclamatory with inter-
jections are totally different. Therefore, we propose

1In our implementation, we follow Finn et al. (2017) to
adopt a first-order approximation for the meta-gradient update
to reduce the computational complexity.
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to represent sentence functions explicitly through
learned embeddings s1; ...; sK (Sec. 4.1). Then
sentence function embeddings are used to interact
with each other via a gated self-attention mech-
anism, which can be viewed as a clustering pro-
cess to make similar sentence function embeddings
close to each other. Finally, the self-attended rep-
resentations of these sentence functions are used
as parameter gates to tailor the transferable knowl-
edge of the meta-learned prior parameters. Re-
cently, the task-aware modulation problem in meta-
learning is also investigated in the machine learn-
ing community (Yao et al., 2019; Vuorio et al.,
2019). In their approaches, they first learn the
task mode from input data as a vectorized repre-
sentation and use the identified mode to modulate
the meta-learned prior parameters. The key dif-
ference between our structured modeling and their
approaches is our model does not learn the task-
aware representation through input data because
the sentence functions are predefined before gen-
erating the responses. Moreover, we propose the
gated self-attentive approach to learn the underly-
ing structure which has never been used before.

Task Representation Learning. To ensure sim-
ilar tasks share similar representations, we design
a gated self-attention module for sentence func-
tion embeddings. For any fine-grained sentence
function k, we first match the sentence function
embedding matrix S = [s1; ...; sK ] with itself sk to
compute the self-matching representation mk, and
then combine it with the original representation sk:

ak = softmax(S>sk), mk = Sak (12)

fk = tanh(Wf [sk;mk]), (13)

The self-matching operation matches the sentence
form embedding to other sentence form embed-
dings, which can be viewed as a clustering process
so that embeddings from similar sentence forms
will be close to each other.

The final representation s̃k is derived via a gated
summation through a learnable gate vector gk,

gk = sigmoid(Wg[sk;mk]) (14)

s̃k = gk � fk + (1− gk)� sk (15)

where Wf , Wg are learnable weights, � is the
element-wise multiplication. For sentence func-
tion embeddings snew in the adaptation stage, we
use the already well-learned sentence function em-
beddings S = [s1; ...; sK ] in the meta-training

Algorithm 1 Meta-training of SML
Require: E : distribution over tasks {T1, ..., TK}
Require: α, β: step size hyperparameters

1: Randomly initialize θ
2: while not done do
3: Sample a batch of tasks Tk ∼ E
4: for all Tk do
5: Sample DTk

, D
′

Tk
from Tk

6: Compute task representation s̃k in Eqn. 15
7: Compute θ0k in Eqn. 16
8: Evaluate ∇θ0kL(fθ0k) with respect to DTk

9: Update θ
′

0k = θ0k −α∇θ0kL(fθ0k) in Eqn. 9
10: end for
11: Update θ ← θ − β

∑
k∇θ′0kL(fθ′0k) in Eqn. 11

with respect to all D
′

Tk

12: end while

stage, concatenate snew with learned embeddings
as S

′
= [s1; ...; sK ; snew] and apply Eqn. 12 ∼

15 for task representation learning in the adapta-
tion stage. Because sentence form embeddings
seen in training are learned to build the underlined
structure: similar sentence functions are clustered
close to each other. In the adaptation phase, the
unseen sentence function embedding can adapt fast
by moving to the cluster it belongs to. For example,
a new sentence form Yes-no Interrogative can learn
some transferable knowledge from trained sentence
forms under the Interrogative category.

Task-Specific Knowledge Adaptation. To
adapt globally transferable knowledge θ0 to each
sentence function, we design a parameter gate ok
for θ0,

ok = FCσWp
(s̃k), θ0k = θ0 � ok (16)

where FCσWp
is a fully connected layer parameter-

ized by Wp and activated by a sigmoid function σ,
� is the element-wise multiplication. Intuitively,
sentence functions with similar representations will
activate similar initial parameters while dissimi-
lar sentence functions trigger different ones. One
major problem for Eqn. 16 is that it introduces
dozens of parameters compared to θ0 to achieve
the element-wise dot product with θ0. Here we
only tailor parameters in the decoder to reduce the
total amount of learnable parameters.

SML Algorithm and Visualization. The whole
algorithm of our proposed model is detailed in Al-
gorithm 1. Figure 2 visually illustrates the dif-
ference between transfer learning, model-agnostic
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meta-learning (MAML) and our proposed struc-
tured meta-learning (SML). All methods in Figure
2 use tasks {T1, ..., T6} for training, Tval for vali-
dation and Ttest for target task adaptation. Transfer
learning in Figure 2(a) solves the training tasks
{T1, ..., T6} in the multi-task learning approach
without knowing the adaptation task Ttest. It aims
at solving tasks in training set and select models
based on the validation task Tval. MAML in Fig-
ure 2(b) tries to learn transferable representation
by repeatedly simulating the learning process in
low-resource task-specific learning. In effect, the
learned model can adapt fast to any unseen task,
such as Ttest. SML in Figure 2(c) additionally
explores the structure across tasks so that similar
tasks will be initialized from closer starting points
than others. In the testing (adaptation) stage, a new
sentence function such as Negative Declarative will
benefit from this learned structure by initializing
from a point that is close to other fine-grained sen-
tence functions in the same category of Declarative.

5 Experimental Settings

Dataset. We conduct experiments on STC-SeFun
dataset (Bi et al., 2019) which is a large-scale Chi-
nese short text conversation dataset with manually
labeled sentence functions. Utterances in STC-
SeFun have two-level sentence function labels. The
four major sentence function types include: Declar-
ative, Interrogative, Imperative and Exclamatory.
Each major sentence function is further divided into
fine-grained sentence function labels like Wh-style
Interrogative which in total is 20 categories. Con-
sidering all query and response sentence functions,
we could have 20 × 20 = 400 meta tasks. How-
ever, some tasks are extremely low-resource with
less than 100 samples. Incorporating these tasks as
our adaptation tasks leads to a high variance of test
performance. To establish concrete evaluation, we
only consider tasks with more than 700 samples,
in which 100 samples are used for validation in
the adaptation stage and 500 samples are used for
the final testing. Under this constraint, we receive
18 query-response fine-grained sentence function
pairs as 18 tasks. We select 9 high-resource tasks
for meta-training, 4 tasks for meta-validation and
5 tasks for testing (adaptation). The dataset statis-
tics is shown in Table 1. Although 18 tasks are far
smaller than thousands of tasks for few-shot im-
age classification, it is still comparable to previous
works such as low-resource machine translation

Query SF Response SF # Samples

Meta
Train

Positive DE Positive DE 27058
Wh-style IN Positive DE 12854
Positive DE Negative DE 5831
Negative DE Positive DE 4006
Positive DE Wh-style IN 3935
A-not-A IN Positive DE 3508
Wh-style IN Negative DE 3367
Yes-no IN Positive DE 3267
Negative DE Negative DE 2466

Meta
Val

Wh-style IN DE w/ IN words 271 100 500
Negative DE Wh-style IN 161 100 500
Positive DE EX w/ interjections 134 100 500
Positive DE DE w/ IN words 120 100 500

Meta
Test

Positive DE Yes-no IN 1314 100 500
Yes-no IN Negative DE 893 100 500
Positive DE EX w/o tone words 846 100 500
A-not-A IN Negative DE 684 100 500
Wh-style IN Wh-style IN 488 100 500

Table 1: Dataset statistics for our experiments. SF: Sen-
tence Function; DE: Declarative; IN: Interrogative; EX:
Exclamatory. For meta validation and meta test tasks,
samples are further split into train, validation (100 sam-
ples) for task-specific adaptation. The rest 500 samples
are used to test the performance of adapted models.

(Gu et al., 2018). Moreover, the experimental re-
sults may generalize to more tasks if there is more
data.

Baselines and Ablations. We train the model C-
Seq2Seq described in Section 4.1 under the follow-
ing learning settings:

• Multi-Task Learning (MTL): We train C-
Seq2Seq under the multi-task learning approach
with training and validation data. Then we directly
apply the trained model on each target task without
fine-tuning.
• Multi-Task Learning + Fine-tuning (MTL+FT):
We train C-Seq2Seq under the same training
paradigm as multi-task learning. Then we fine-
tune the model on each target task. This setting
corresponds to a transfer learning scenario.
• Model-Agnostic Meta-Learning (MAML): We
meta-train the model under the methodology
model-agnostic meta-learning in other low-
resource NLG tasks (Gu et al., 2018; Qian and Yu,
2019). Then we fine-tune the meta-trained model
on each target task. This is the ablation without
structure modeling (Sec. 4.3).
• Structured Meta-Learning (SML): We meta-train
the model using structured meta-learning described
in Algorithm 1. Then we fine-tune the meta-trained
model on each target task.

Model Settings. We take the most frequent 30k
words as our vocabulary and use the pretrained em-
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Query SF Response SF Model Human Evaluation Automatic Evaluation
Flue Rele Info Accu FT Step PPL B1 B2 Dist1 Dist2

Positive DE Yes-no IN

MTL 59.40 50.40 36.53 0.33 n/a 177.44 4.59 1.49 0.11 0.16
MTL+FT 62.47 53.93 39.87 34.00 304.00 91.65 10.47 3.38 0.17 0.36
MAML 63.40 55.87 39.87 57.67 111.33 87.55 12.20 4.47 0.18 0.39
SML 64.27 56.00 40.13 69.00 104.00 87.28 12.88 4.72 0.21 0.48

Yes-no IN Negative DE

MTL 60.47 57.07 49.87 6.00 n/a 73.04 5.46 1.46 0.10 0.14
MTL+FT 61.07 56.80 54.00 73.00 195.00 56.85 9.98 3.37 0.22 0.40
MAML 62.00 59.53 53.67 91.00 111.00 58.79 11.12 3.81 0.16 0.26
SML 64.93 57.80 55.93 91.00 102.33 58.65 11.91 3.76 0.13 0.20

Positive DE EX without
tone words

MTL 57.13 53.53 35.40 1.00 n/a 100.21 6.06 2.69 0.14 0.23
MTL+FT 56.40 53.67 36.67 39.00 268.00 80.32 12.20 4.26 0.12 0.22
MAML 65.33 56.20 39.27 71.00 89.33 68.08 14.09 4.61 0.19 0.40
SML 65.80 57.13 40.93 68.00 91.33 71.71 14.94 4.94 0.17 0.33

A-not-A IN Negative DE

MTL 60.33 54.93 49.73 4.33 n/a 73.99 5.89 1.77 0.10 0.17
MTL+FT 62.13 55.13 51.47 53.67 158.00 59.53 9.79 3.41 0.15 0.27
MAML 62.60 55.20 51.27 89.33 114.33 60.35 10.39 3.60 0.13 0.20
SML 63.27 56.00 52.80 96.00 105.00 58.24 11.28 3.96 0.12 0.19

Wh-style IN Wh-style IN

MTL 62.47 51.67 38.33 1.00 n/a 97.24 7.63 2.33 0.14 0.22
MTL+FT 63.60 52.60 39.13 22.33 167.00 61.70 7.98 2.58 0.17 0.30
MAML 64.07 53.13 43.33 85.00 88.00 44.02 7.84 3.31 0.19 0.46
SML 64.13 53.80 45.20 88.00 83.33 43.06 8.04 3.96 0.19 0.43

Table 2: Human evaluation results (in percentage %) and automatic evaluation results in five testing tasks. The
best/second-best results are bold/underlined except automatic metrics which are inconsistent with human percep-
tions (Liu et al., 2016). Note that MTL does not fine-tune on target tasks, so FT Step is not applicable to this
setting.

Metrics Flue Rele Info Accu
Fleiss’s Kappa κ 0.61 0.72 0.67 0.90

Table 3: Fleiss’s Kappa score for evaluating the inter
annotator agreement.

beddings (Song et al., 2018) for initialization. The
sentence function embedding with dimension 20
is randomly initialized and learned through train-
ing. We use two-layer LSTMs in both encoder and
decoder, and the LSTMs hidden unit size is set to
400. We use dropout (Srivastava et al., 2014) with
the probability p = 0.3. All trainable parameters,
except word embeddings, are randomly initialized
with the uniform distribution in (−0.1, 0.1). We
adopt the teacher-forcing for the training. In the
testing, we select the model with the lowest per-
plexity and beam search with size 5 is employed
for generation. All hyper-parameters and models
are selected on the validation dataset.

Learning Settings. We use SGD as the opti-
mizer with a minibatch size of 64 and an initial
learning rate of 1.0 for both meta-learning (line 9
and line 11 in Algorithm 1) and multi-task learning.
For meta-learning, we sample 3 tasks for line 3 in
Algorithm 1 and take a single gradient step for line
9 and line 11 in Algorithm 1. We meta-train the
model for 8 epochs and start having the learning
rate after the 3 epoch. All models are fine-tuned
with a SGD optimizer with a minibatch size of 64
and learning rate of 0.1. We set the gradient norm

upper bound to 3 and 1 during the training and fine-
tuning respectively. To avoid any random results,
we report the average of five runs for all results.

Evaluation Metrics. Since automatic metrics for
open-domain conversations may not be consistent
with human perceptions (Liu et al., 2016), we hire
5 full-time human judges from a third-party data
annotation company. We provide them a detailed
annotation guideline (in Chinese) with good and
bad response samples for each metric. They are
first asked to annotate 100 responses for trial, and
we select the top 3 judges according to the annota-
tion quality. Finally, the 3 selected judges indepen-
dently evaluate 2,000 responses generated from our
model and three baselines for all five adaptation
tasks. For each query, four responses generated
from the proposed model, and three baselines are
randomly shuffled to reduce the priming effect.

The annotators evaluate responses on four met-
rics: (1) “Fluency” (Flue) measures the gram-
matical correctness of responses; (2) “Relevance”
(Rele) measures whether the response is a relevant
reply to the query; (3) “Informativeness” (Info)
evaluates whether the response provides any mean-
ingful information with regard to the query; (4)
“Accuracy” (Accu) evaluates whether the response
is coherent with the given response sentence func-
tion. “Fluency”, “Relevance” and “Informative-
ness” are graded independently in a 1-5 scale where
5 is the best. “Accuracy” takes a binary value (1 or
0). We further normalize the average scores over
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all rated samples into [0, 1]. Besides, we compare
the adaption time of all models by calculating the
“Fine-Tuning Step” (FT Step) till convergence
on each test task. For completeness, we also show
the following automatic evaluation metrics: “Per-
plexity” (PPL); “BLEU-1/2” (B1/B2) (Papineni
et al., 2002); “Distinct-1/2” (Dist1/Dist2) (Li
et al., 2016).

6 Results

Performance of Human Evaluation. Human
evaluation on “Fluency” (Flue), “Relevance”
(Rele), “Informativeness” (Info) and “Accuracy”
(Accu) are shown in Table 2. The inter annotator
agreement κ scores are shown in Table 3. We can
make the following observations:

• MTL receives the worst performance on all hu-
man evaluation metrics. Recall that MTL is
trained on a mixture of all training tasks. It can
only learn some generic response patterns like
“So do I”. That is why MTL has the worst per-
formance on “Informativeness” metric. More-
over, since MTL never sees responses in target
sentence functions in training, the generated re-
sponses are not coherent with the given sentence
function at all.
• MTL+FT achieves better performance than MTL

because it further fine-tunes on each target
dataset. However, the performance on the ac-
curacy of target sentence function is still unsat-
isfactory. This reveals that fine-tuning may not
solve the adaptation problem on low-resource
tasks.
• SML and MAML achieve the best/second-best

human evaluation results across most of the met-
rics. This indicates that by simulating the low-
resource testing scenarios in meta-training, the
learned model adapts well on the low-resource
testing tasks. Moreover, there is a huge improve-
ment on the accuracy of given sentence functions
(Accu), which reveals that MAML/SML can find
model parameters that are sensitive to changes
in the new task, such that small changes in the
parameters produce large improvement on the
accuracy of sentence functions.
• SML outperforms MAML in most of the cases.

This tells us exploring the structure of sentence
functions can balance knowledge generation and
knowledge customization. The task-specific ini-
tialized model can leverage the knowledge of

Figure 3: Heatmap of the self-attention weight matrix.
Each row shows the attention distribution ak in Eqn. 12
for a given query-response sentence function pair (de-
noted in “Query | Response” format).

similar tasks and thus adapts the target tasks bet-
ter.

Performance of Automatic Evaluation. We
also show the results of automatic evaluations in Ta-
ble 2. Compared to transfer learning based model
MTL+FT, our meta-learning based models adapt
faster (lower fine-tune step) and better (lower per-
plexity). Although BLEU is not reliable enough
to evaluate response generation, MAML and SML
still achieve slightly better results than baselines.
Presumably, they can capture frequent word pattern
in low-resource tasks. Finally, MTL+FT, MAML
and SML achieve comparable performance with
regard to the unigram/bigram diversity (Dist1/2) of
generated responses.

Effect of Structure Modeling. To get more in-
sight into how our proposed SML balances the
knowledge generalization and customization, in
Figure 3, we visualize the heatmap of self-attention
weight ak in Eqn. 12 for all 9 training sentence
function representations. Each row in Figure 3
demonstrates the similarity between sentence func-
tion sk and all sentence functions [s1; ...; sK ]. Take
the first row in Figure 3 for example, it tells us
how all nine query-response sentence function
pairs contribute to the representation of current
query-response sentence function pair “Positive
Declarative (DE) | Positive Declarative (DE)”. We
see that sentence functions containing Interroga-
tive(IN) have nearly zero contribution while sen-
tence functions containing Declarative(DE) in both
query and response have a certain amount of contri-
bution. Therefore, similar sentence functions trig-
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Query ᑀࢥဌᘍ鉑ฎ犋ฎ盄ഃ牫
(Am I stupid for not passing the 4th part of 
the driving-test?)

Query SF A-not-A Interrogative
Target Response SF Negative Declarative

MTL ౯犖ฎ
(So do I)

MTL+FT ౯鉕ဌᤑᘍ
(I have not taken a make-up driving-test)

MAML 鉕�ᘍ
(I have not taken the driving-test yet)

SML ౯犖�鉑
(I did not pass too.)

Query 犡ॠᶾᦤԧ
(I register for a marriage today)

Query SF Positive Declarative
Target Response SF Yes-no Interrogative

MTL ꔊࡅꔊࡅ
(Congratulations)

MTL+FT ꔊ֦ࡅ
(Congratulations to you)

MAML 鉕ဌېᐑހ牫
(+DYHQ
W you held the wedding ceremony")

SML 牫ހᐑԧې
('R you hold the wedding ceremony")

Figure 4: Responses of all models. Words in red are
related to the target sentence function. SF: Sentence
Function.

ger similar initializations and dissimilar sentence
functions trigger different ones.

Case Study. We present two examples in Figure
4, each of which shows a test query with the target
sentence function and responses generated by all
models. We see that responses generated by MTL
are generic and can be used to reply to a large num-
ber of queries. With fine-tuning on responses of the
target sentence function, MTL+FT can capture the
correct response pattern in some cases. However,
it is inferior to our proposed models MAML and
SML, which can not only generate words related
to the target sentence function but also keep the
coherence and informativeness of responses.

7 Conclusion

In this paper, we propose a structured meta-learning
algorithm for open domain dialogue generation on
infrequent sentence functions. To tackle the low-
resource issue, our proposed model, based on the
recently proposed model-agnostic meta-learning,
can find both transferable internal representations
and sensible parameters which can produce large
improvement under a few adaptation steps. More-
over, we further explore the structure across fine-

grained sentence functions and such that the model
can balance knowledge generalization and knowl-
edge customization. Extensive experiments show
that our structured meta-learning (SML) algorithm
outperforms existing approaches under the low-
resource setting.
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