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Abstract

Inspired by heavy-tailed distributions in prac-
tical scenarios, we investigate the problem
on pure exploration of Multi-Armed Bandits
(MAB) with heavy-tailed payoffs by breaking
the assumption of payoffs with sub-Gaussian
noises in MAB, and assuming that stochastic
payoffs from bandits are with finite p-th mo-
ments, where p ∈ (1,+∞). The main contri-
butions in this paper are three-fold. First, we
technically analyze tail probabilities of empir-
ical average and truncated empirical average
(TEA) for estimating expected payoffs in se-
quential decisions with heavy-tailed noises via
martingales. Second, we propose two effective
bandit algorithms based on different prior in-
formation (i.e., fixed confidence or fixed bud-
get) for pure exploration of MAB generating
payoffs with finite p-th moments. Third, we
derive theoretical guarantees for the proposed
two bandit algorithms, and demonstrate the ef-
fectiveness of two algorithms in pure explo-
ration of MAB with heavy-tailed payoffs in
synthetic data and real-world financial data.

1 INTRODUCTION
The prevailing decision-making model named Multi-
Armed Bandits (MAB) elegantly characterizes a wide
class of practical problems on sequential learning with
partial feedbacks, which was first formally proposed and
investigated in (Robbins, 1952). In general, a predomi-
nant characteristic of MAB is a trade-off between explo-
ration and exploitation for sequential decisions, which
has been frequently encountered in scientific research
and various industrial applications, e.g., resource alloca-
tion, online advertising and personalized recommenda-
tions (Auer et al., 2002; Bubeck et al., 2012; Chu et al.,
2011; Lattimore et al., 2015; Wu et al., 2016).

Most algorithms in MAB are primarily developed to
maximize cumulative payoffs during a number of rounds
for sequential decisions. Recently, there have been in-
teresting investigations on various variants of the tradi-
tional MAB model, such as linear bandits (Auer, 2002;
Yu et al., 2017b; Zhao and King, 2016), pure explo-
ration of MAB (Audibert and Bubeck, 2010), risk-averse
MAB (Sani et al., 2012; Yu et al., 2017a), cascading ban-
dits (Kveton et al., 2015) and clustering bandits (Korda
et al., 2016; Li et al., 2016).

One non-trivial branch of MAB is pure exploration,
where the goal is to find the optimal arm in a given
decision-arm set at the end of exploration. In this case,
there is no explicit trade-off between exploration and ex-
ploitation for sequential decisions, which means that the
exploration phase and the exploitation phase are sepa-
rated. The problem of pure exploration is motivated by
real scenarios which prefer to identify an optimal arm
instead of maximizing cumulative payoffs. Recent ad-
vances in pure exploration of MAB have found potential
applications in many practical domains including com-
munication networks and commercialized products (Au-
dibert and Bubeck, 2010; Chen et al., 2014).

In previous studies on pure exploration of MAB, a com-
mon assumption is that noises in observed payoffs are
sub-Gaussian. The sub-Gaussian assumption encom-
passes cases of all bounded payoffs and many unbounded
payoffs in MAB, e.g., payoffs of an arm following a
Gaussian distribution. However, there exist non-sub-
Gaussian noises in observed payoffs for bandits, e.g.,
high-probability extreme payoffs in sequential decisions
which are called heavy-tailed payoffs. A practical mo-
tivation example for MAB with heavy-tailed payoffs is
the distribution of delays in end-to-end network rout-
ing (Liebeherr et al., 2012). Pure exploration of MAB
with heavy-tailed payoffs is important, especially for
identifications of the potential optimal investment tar-
get for practical financial applications. It is worth men-
tioning that the case of maximizing cumulative payoffs



of MAB with heavy tails has been extensively investi-
gated in (Bubeck et al., 2013a; Carpentier and Valko,
2014; Lattimore, 2017; Medina and Yang, 2016; Vakili
et al., 2013). In (Bubeck et al., 2013a), the setting of se-
quential payoffs with bounded p-th moments was investi-
gated for regret minimization in MAB, where p ∈ (1, 2].
Vakili et al. (Vakili et al., 2013) introduced bounded p-
th moments with the support over (1,+∞), and pro-
vided a complete regret guarantee in MAB. In (Med-
ina and Yang, 2016), regret guarantee in linear bandits
with heavy-tailed payoffs was investigated, which is still
scaled by parameters of bounded moments. Recently,
payoffs in bandits with bounded kurtosis were discussed
in (Lattimore, 2017).

In this paper, we investigate the problem on pure explo-
ration of MAB with heavy-tailed payoffs characterized
by the bound of p-th moments. It is surprising to find that
less effort has been devoted to pure exploration of MAB
with heavy-tailed payoffs. Compared with previous work
on pure exploration of MAB, the problem of best arm
identifcation with heavy-tailed payoffs has three chal-
lenges. The first challenge is the estimate of expected
payoffs of an arm in MAB. It might not be sufficient
to adopt an empirical average (EA) of observed payoffs
with heavy-tailed noises for estimating a true mean. The
second challenge is the probability of error for the esti-
mate of expected payoffs, which affects performance of
bandit algorithms in pure exploration of MAB. The third
challenge is to develop effective bandit algorithms with
theoretical guarantees for pure exploration of MAB with
heavy-tailed stochastic payoffs.

To solve the above three challenges, we need to introduce
a general assumption that stochastic payoffs in MAB are
with finite p-th moments, where p ∈ (1,+∞). Note that
the case of p ∈ (1, 2] is weaker than the classic assump-
tion of payoffs with sub-Gaussian noises in MAB. Then,
under the assumption of finite p-th moments, we present
theoretical behaviours of empirical average, and ana-
lyze the estimate of truncated empirical average (TEA).
Based on different prior information, i.e., fixed confi-
dence or fixed budget, we propose two bandit algorithms
in pure exploration of bandits with heavy-tailed pay-
offs. Finally, based on synthetic data with noises from
standard Student’s t-distribution and real-world financial
data, we demonstrate the effectiveness of the proposed
bandit algorithms. To the best of our knowledge, this
is the first systematic investigation on pure exploration
of MAB with heavy-tailed payoffs. For reading conve-
nience, we list contributions of this paper below.
• We technically analyze tail probabilities of EA and

TEA to estimate true mean of arms in MAB with
the general assumption of conditionally indepen-
dent payoffs.

• We propose two bandit algorithms for pure explo-
ration of MAB with heavy-tailed stochastic pay-
offs characterized by finite p-th moments, where
p ∈ (1,+∞).
• We derive theoretical results of the proposed bandit

algorithms, as well as demonstrating effectiveness
of two algorithms via synthetic data and real-world
financial data.

2 PRELIMINARIES
In this section, we first present related notations and def-
initions in this paper. Then, we present assumptions and
the problem definition for pure exploration of MAB with
heavy-tailed payoffs.

2.1 NOTATIONS
Let A be a bandit algorithm for pure exploration of
MAB, which contains K arms at the beginning of ex-
ploration. For pure exploration, let Opt be the true
optimal arm among K arms, where Opt ∈ [K] with
[K] , {1, 2, · · · ,K}. The total number of sequential
rounds for A to play bandits is T , which is also called as
sample complexity. The confidence parameter is denoted
by δ ∈ (0, 1), which means that, with probability at least
1− δ,A generates an output optimal arm Out equivalent
to Opt, where Out ∈ [K]. In other words, it happens
with a small probability δ that Opt 6= Out, and δ can be
also called the probability of error.

There are two settings based on different prior informa-
tion given at the beginning of exploration, i.e., fixed con-
fidence or fixed budget. For the setting of fixed confi-
dence, A receives the information of δ at the beginning,
and A generates Out when a certain condition related to
δ is satisfied. For the setting of fixed budget, A receives
the information of T at the beginning, and A generates
Out at the end of T .

We present the learning process on pure exploration of
MAB as follows. For t = 1, 2, · · · , T , A decides to
play an arm at ∈ [K] with historical information of
{a1, π1(a1), · · · , at−1, πt−1(at−1)}. Then, A observes
a stochastic payoff πt(at) ∈ R with respect to at, of
which the expectation conditional on Ft−1 is µ(at) with
Ft−1 , {a1, π1(a1), · · · , at−1, πt−1(at−1), at} and F0

being an empty set. Based on πt(at), A updates param-
eters to proceed with the exploration at t + 1. We store
time index t of playing arm at in Φ(at), which is a set
with increasing integers.

Given an event E and a random variable ξ, let P[E ] be
the probability of E and E[ξ] be the expectation of ξ. For
x ∈ R, we denote by |x| the absolute value of x, and for
a set S, we denote by |S| the cardinality of S. For an
event E , let 1[E] be the indicator function of E .



Definition 1. (Heavy-tailed payoffs in MAB) Given MAB
with K arms, let π(k) be a stochastic payoff drawn from
any arm k ∈ [K]. For t = 1, · · · , T , conditional
on Ft−1, MAB has heavy-tailed payoffs with the p-th
raw moment bounded by B, or the p-th central moment
bounded by C, where p ∈ (1,+∞), B,C ∈ (0,+∞)
and k ∈ [K].

2.2 PROBLEM DEFINITION
It is general to assume that payoffs during sequential de-
cisions contain noises in many practical scenarios. We
list the assumptions in this paper for pure exploration of
MAB with heavy-tailed payoffs as follows.

1. Assume that Opt , arg maxk∈[K] µ(k) is unique
for pure exploration of MAB with K arms.

2. Assume that MAB has heavy-tailed payoffs with
the p-th raw or central moment conditional on Ft−1

bounded by B or C, for t = 1, · · · , T .
3. Assume that the sequence of stochastic payoffs

from arm k ∈ [K] has noises with zero mean con-
ditional on Ft−1 in pure exploration of MAB. For
any time instant t ∈ [T ] and the selected arm at,
we define random noise of a true payoff as ξt(at) ,
πt(at)− µ(at), and assume E[ξt(at)|Ft−1] = 0.

Now we present a problem definition for pure explo-
ration of MAB as follows. Given K arms satisfying As-
sumptions 1–3, the problem in this paper is to develop a
bandit algorithm A generating an arm OutT ∈ [K] af-
ter T pullings of bandits such that P[OutT 6= Opt] ≤ δ,
where δ ∈ (0, 1).

We discuss theoretical guarantees in two settings for best
arm identification of bandits. One is to derive the theo-
retical guarantee of T by fixing the value of δ, which is
called fixed confidence. The other is to derive the theo-
retical guarantee of δ by fixing the value of T , which is
called fixed budget.

For simplicity of notations, we enumerate the arms
according to their expected payoffs as a sequence of
µ(1) > µ(2) ≥ · · · ≥ µ(K). In the ranked sequence,
we know that Opt = 1. Note that the ranking opera-
tion does not affect our theoretical guarantees. For any
arm k 6= Opt and k ∈ [K], we define the sub-optimality
as ∆k , µ(Opt) − µ(k), which leads to a sequence of
sub-optimality as {∆k}Kk=2. To obtain K terms in sub-
optimality, which helps theoretical analyses, we further
define ∆1 , ∆2. Inspired by (Audibert and Bubeck,
2010), we define the hardness for pure exploration of
MAB with heavy-tailed payoffs by quantities as

Hp
2 , max

k∈[K]
kp−1∆−pk . (1)

3 RELATED WORK

Pure exploration in MAB, aiming at finding the opti-
mal arm after exploration among a given decision-arm
set, has become an attracting branch in the decision-
making domain (Audibert and Bubeck, 2010; Bubeck
et al., 2009; Chen et al., 2014; Gabillon et al., 2012,
2016; Jamieson and Nowak, 2014). It has been pointed
out that pure exploration in MAB has many applications,
such as communication networks and online advertising.

For pure exploration of MAB with payoffs under sub-
Gaussian noises, theoretical guarantees have been well
studied. Specifically, in the setting of fixed confidence,
the first distribution-dependent lower bound of sample
complexity was developed in (Mannor and Tsitsiklis,
2004), which is

∑
k∈[K] ∆−2

k . Even-Dar et al. (2002)
originally proposed a bandit algorithm via successive
elimination for bounded payoffs with an upper bound
of sample complexity matching the lower bound up to
a multiplicative logarithmic factor. Karnin et al. (2013)
proposed an improved bandit algorithm, which achieves
an upper bound of sample complexity matching the
lower bound up to a multiplicative doubly-logarithmic
factor. Jamieson et al. (2014) proved that it is necessary
to have a multiplicative doubly-logarithmic factor in the
distribution-dependent lower bound of sample complex-
ity. Jamieson et al. also developed a bandit algorithm
via the law of iterated logarithm algorithm for pure ex-
ploration of MAB, which achieved the optimal sample
complexity of the problem.

In the setting of fixed budget with payoffs under sub-
Gaussian noises, (Audibert and Bubeck, 2010) devel-
oped a distribution-dependent lower bound of probabil-
ity of error, and provided two algorithms, which achieve
optimal probability of error up to logarithmic factors.
Gabillon et al. (2012) proposed a unified algorithm for
fixed budget and fixed confidence, which discusses ε-
optimal learning in best arm identification of MAB.
Karnin et al. (2013) proposed a bandit algorithm via se-
quential halving to improve probability of error by a mul-
tiplicative constant. It is worth mentioning that (Kauf-
mann et al., 2016) investigated best arm identification of
MAB under Gaussian or Bernoulli assumption, and pro-
vided lower bounds in terms of Kullback-Leibler diver-
gence. We also notice that there are extensions of best
arm identification of MAB, which is multiple-arm iden-
tification (Bubeck et al., 2013b; Chen et al., 2014).

To the best of our knowledge, there is no investigation
on pure exploration of MAB without the strict assump-
tion of payoffs under sub-Gaussian noises. There are
some potential reasons for this fact. One main reason
can be that, without sub-Gaussian noises, the tail prob-
abilities of estimates for expected payoffs can be heavy



Table 1: Comparisons on distributional assumptions and theoretical guarantees in pure exploration of MAB. Note we
omit constant factors in the following inequalities, and H1, H2 and H3 can refer to the corresponding work.

setting work assumption on payoffs algorithm theoretical guarantee

Even-Dar et al. (2002) bounded payoffs in [0, 1]
SE P

[
T ≤

∑K
k=1 ∆−2

k log
(

K
δ∆k

)]
≥ 1− δ

ME P
[
T ≤ K

ε2
log
(

1
δ

)]
≥ 1− δ

Karnin et al. (2013) bounded payoffs in [0, 1] EGE P
[
T ≤

∑K
k=1 ∆−2

k log
(

1
δ log

(
1

∆k

))]
≥ 1− δ

Jamieson et al. (2014) sub-Gaussian noise LILUCB P
[
T ≤ H1 log

(
1
δ

)
+H3

]
≥ 1− 4

√
cδ − 4cδ

fixed δ Kaufmann et al. (2016) two-armed Gaussian bandits α-E P
[
T ≤ (σ1+σ2)2

(µ1−µ2)2
log
(

1
δ

)]
≥ 1− δ

our work finite p-th moments SE-δ(EA) P
[
T ≤

∑K
k=1

(
22p+1KC

∆
p
k
δ

) 1
p−1

]
≥ 1− δ

with p ∈ (1, 2] SE-δ(TEA) P

T ≤∑K
k=1

(
20B

1
p

∆k

) p
p−1

log
(

2K
δ

) ≥ 1− δ

Audibert and Bubeck (2010) bounded payoffs in [0, 1]
UCB-E P[Out 6= Opt] ≤ TK exp

(
−T−KH1

)
SR P[Out 6= Opt] ≤ K(K − 1) exp

(
− T−K

log(K)H2

)
Gabillon et al. (2012) bounded payoffs in [0, b] UGapEb P[µOut − µOpt ≥ ε] ≤ TK exp

(
−T−KHε

)
Karnin et al. (2013) bounded payoffs in [0, 1] SH P [Out 6= Opt] ≤ log(K) exp

(
− T

log(K)H2

)
fixed T Kaufmann et al. (2016) two-armed Gaussian bandits SS P [Out 6= Opt] ≤ exp

(
− (µ1−µ2)2T

2(σ1+σ2)2

)

our work finite p-th moments SE-T (EA) P[Out 6= Opt] ≤ 2p+1CK(K − 1)Hp2

(
K̄

T−K

)p−1

with p ∈ (1, 2] SE-T (TEA) P[Out 6= Opt] ≤ 2K(K − 1) exp

(
− (T−K)B̄1

K̄K∆p/(1−p)

)

because Chernoff-Hoeffding inequalities of estimates do
not hold in general. The failure of Chernoff-Hoeffding
inequalities of estimates is a big challenge in pure explo-
ration of MAB. In this paper, we investigate theoretical
performance of pure exploration of MAB with heavy-
tailed stochastic payoffs characterized by finite p-th mo-
ments, where p ∈ (1,+∞). We will put more efforts
on p ∈ (1, 2] because the case of p ∈ (2,+∞) enjoys
a similar format of p = 2. To compare our work with
prior studies, we list the distributional assumptions and
theoretical guarantees in pure exploration of MAB in Ta-
ble 1. Finally, it is worth mentioning that the case of
maximizing expected cumulative payoffs of MAB with
heavy tails has been extensively investigated in (Bubeck
et al., 2013a; Carpentier and Valko, 2014; Medina and
Yang, 2016; Vakili et al., 2013).

4 ALGORITHMS AND ANALYSES

In this section, we first investigate two estimates, i.e., EA
and TEA, for expected payoffs of bandits, and derive tail
probabilities for EA and TEA under sequential payoffs.
Then, we develop two bandit algorithms for best arm
identification of MAB in the spirit of successive elim-
ination (SE) and successive rejects (SR). In particular,
SE is for the setting of fixed confidence and SR is for
the setting of fixed budget. Finally, we derive theoreti-

cal guarantees for each bandit algorithm, where we take
advantage of EA or TEA.

4.1 EMPIRICAL ESTIMATES
In SE and SR, it is common forA to maintain a subset of
arms St ⊆ [K] at time t = 1, 2, · · · andA will output an
arm when a certain condition is satisfied, e.g., |St| = 1
in the setting of fixed confidence. Similar to the most fre-
quently used estimates for expected payoffs in MAB, we
consider the following EA to estimate expected payoffs
for any arm k ∈ St:

µ̂t(k) ,
1

st,k

∑
i∈Φ(k)

πi(k), (2)

where st,k , |Φ(k)| at time t. Note that the number of
elements in Φ(k) will increase or hold with time evolu-
tion, and the elements in Φ(k) may not successively in-
crease. We also investigate the following estimator TEA
for any arm k ∈ St:

µ̂†t(k) ,
1

st,k

∑
i∈Φ(k)

πi(k)1[|πi(k)|≤bi], (3)

where bi > 0 is a truncating parameter, and bi will be
completely discussed in the ensuing theoretical analyses.

We do not discuss the estimator called median of means
(MoM) shown in (Bubeck et al., 2013a), because theo-



retical guarantees of MoM enjoy similar formats to those
of TEA. Before we prove concentration inequalities for
estimates via martingales, we have results as below.

Proposition 1. (Dharmadhikari et al., 1968; von Bahr
et al., 1965) Let {νi}ti=1 be random variables satisfy-
ing E[|νi|p] ≤ C and E[νi|Fi−1] = 0. If p ∈ (1, 2],

then we have E
[∣∣∣∑t

i=1 νi

∣∣∣p] ≤ 2tC. If p ∈ (2,+∞),

then we have E
[∣∣∣∑t

i=1 νi

∣∣∣p] ≤ CpCt
p/2, where Cp ,(

8(p− 1) max(1, 2p−3)
)p

.

Proposition 2. (Seldin et al., 2012) Let {νi}ti=1 be
random variables satisfying |νi| ≤ bi with {bi}ti=1 be-
ing a non-decreasing sequence, E[νi|Fi−1] = 0 and
E[ν2

i |Fi−1] is bounded. Then, with probability 1 − δ,

we have
∣∣∣∑t

i=1 νi

∣∣∣ ≤ bt log(2/δ) + Vt/bt, and Vt =∑t
i=1 E[ν2

i |Fi−1].

Lemma 1. In pure exploration of MAB withK arms, for
any t ∈ [T ] and any arm k ∈ St, with probability 1− δ

• for EA, we have
|µ̂t(k)− µ(k)| ≤

(
2C

s
p−1
t,k

δ

) 1
p

, 1 < p ≤ 2,

|µ̂t(k)− µ(k)| ≤
(
CpC

s
p/2
t,k

δ

) 1
p

, p > 2;

• for TEA, we have|µ̂
†
t (k)− µ(k)| ≤ 5B

1
p

(
log(2/δ)
st,k

) p−1
p
, 1 < p ≤ 2,

|µ̂†t (k)− µ(k)| ≤ 5B
1
p

(
log(2/δ)
st,k

) 1
2
, p > 2.

Proof. We first prove the results with the estimator µ̂t(k)
with k ∈ St. By Chebyshev’s inequality, we have

P[|µ̂t(k)− µ(k)| ≥ δ] ≤ E[|µ̂t(k)− µ(k)|p]
δp

=
E[|
∑
i∈Φ(k) πi(k)− µ(k)|p]

spt,kδ
p

, (4)

where δ ∈ (0, 1) and st,k is fixed at time t.

Based on Assumption 2, we have E[|ξi(k)|p] ≤ C and
E[ξi(k)|Fi−1] = 0 for any i ∈ Φ(k) at t. For p ∈ (1, 2],

P[|µ̂t(k)− µ(k)| ≥ δ] ≤
E
[∣∣∣∑i∈Φ(k) ξi

∣∣∣p]
spt,kδ

p
≤ 2C

sp−1
t,k δ

p
,

where we adopt Proposition 1. Thus, for any arm k ∈ St,
with probability at least 1− δ

|µ̂t(k)− µ(k)| ≤

(
2C

sp−1
t,k δ

) 1
p

. (5)

For p ∈ (2,+∞), we have

P[|µ̂t(k)− µ(k)| ≥ δ] ≤ CpC

s
p/2
t,k δ

p
, (6)

where we adopt Proposition 1. With probability 1− δ

|µ̂t(k)− µ(k)| ≤

(
CpC

s
p/2
t,k δ

) 1
p

. (7)

Now we prove the results with the estimator µ̂†t(k),
where k ∈ St. Considering bi in Eq. (3), we de-
fine µ†i (k) , E

[
πi(k)1[|πi(k)|≤bi]|Fi−1

]
, and ζi(k) ,

µ†i (k) − πi(k)1[|πi(k)|≤bi], for any i ∈ Φ(k). We
have |ζi(k)| ≤ 2bi, E[ζi(k)|Fi−1] = 0 and
E
[
πi(k)1[|πi(k)|>bi]|Fi−1

]
≤ B/bp−1

i . Besides, we
also have

µ(k)− µ̂†t(k)

=
1

st,k

∑
i∈Φ(k)

[
µ(k)− µ†i (k)

]
+

1

st,k

∑
i∈Φ(k)

[
µ†i (k)− πi(k)1[|πi(k)|≤bi]

]
=

1

st,k

∑
i∈Φ(k)

(
E
[
πi(k)1[|πi(k)|>bi]|Fi−1

]
+ ζi(k)

)
,

which implies the inequality of µ(k) − µ̂†t(k) ≤
1
st,k

∑
i∈Φ(k)

(
B

bp−1
i

+ ζi(k)
)

. For p ∈ (1, 2], we have

E[ζ2
i (k)|Fi−1] ≤ E

[
π2
i (k)1[|πi(k)|≤bi]|Fi−1

]
≤ B

bp−2
i

.

Based on Proposition 2, with probability at least 1− δ∣∣∣∣∣∣
∑
i∈Φ(k)

ζi(k)

∣∣∣∣∣∣ ≤ 2bt log(2/δ) +
1

2bt

∑
i∈Φ(k)

E[ζ2
i (k)|Fi−1]

≤ 2bt log(2/δ) + st,k
B

2bp−1
t

, (8)

where we adopt the design of {bi}i∈Φ(k) as a non-
decreasing sequence, i.e., b1 ≤ b2 ≤ · · · ≤ bt. Thus,

by setting bt =
(

Bst,k
log(2/δ)

) 1
p

, with probability at least
1− δ, we have

|µ̂†t(k)− µ(k)| ≤ 5B
1
p

(
log(2/δ)

st,k

) p−1
p

, (9)

where we adopt the fact of

1

st,k

∑
i∈Φ(k)

B

bp−1
i

≤ 2B
1
p

(
log(2/δ)

st,k

) p−1
p

. (10)



For p ∈ (2,+∞), by Jensen’s inequality, we have

E[ζ2
i (k)|Fi−1] ≤ B

2
p . (11)

By converting the condition in p ∈ (2,+∞) to the condi-
tion in p = 2 with Jensen’s inequality and using Eq. (9),
with probability at least 1− δ, we have

|µ̂†t(k)− µ(k)| ≤ 5B
1
p

(
log(2/δ)

st,k

) 1
2

, (12)

which completes the proof.

Remark 1. In (Bubeck et al., 2013a; Vakili et al., 2013),
the Bernstein inequality without martingales is adopted
with an implicit assumption of sampling payoffs of an
arm being independent of sequential decisions, which is
informal. By contrast, in Lemma 1, conditional on Ft−1,
the subset St is fixed, and we adopt Bernstein inequal-
ity with martingales. Thus, we break the assumption
of independent payoffs in previous work, and prove for-
mal theoretical results of tail probabilities of estimators
EA and TEA. Note that the superiority of martingales in
sequential decisions has been fully discussed in (Zhao
et al., 2016).

Remark 2. The concentration results with martingales
in Lemma 1 for p ∈ (1,+∞) can also be applied into re-
gret minimization of heavy-tailed payoffs and other ap-
plications in sequential decisions. In particular, we ob-
serve that the concentration inequality of p = 2 recov-
ers that of payoffs under sub-Gaussian noises. Besides,
when p > 2, the concentration results indicate constant
variations with respect to B. Note that, in Lemma 1,
we analyze concentration results when p > 2, which has
not been analyzed in (Bubeck et al., 2013a). Compared
to (Vakili et al., 2013), the concentration result in our
work for TEA when p > 2 enjoys a constant improve-
ment. Since the case of p ∈ (2,+∞) can be resolved by
p = 2, we will focus on p ∈ (1, 2] in bandit algorithms
for pure exploration of MAB with heavy-tailed payoffs.

4.2 FIXED CONFIDENCE
In this subsection, we present a bandit algorithm for pure
exploration of MAB with heavy-tailed payoffs under a
fixed confidence. Then, we derive upper bounds of sam-
ple complexity of the bandit algorithms.

4.2.1 Description of SE-δ
In fixed confidence, we design our bandit algorithm
for pure exploration of MAB with heavy-tailed payoffs
based on the idea of SE, which is inspired by (Even-Dar
et al., 2002). For SE-δ(EA), the algorithmic procedures
are almost the same as that in (Even-Dar et al., 2002),
which are omitted here. For SE-δ(TEA),Awill output an
arm Out when |St| = 1 with computation details shown

Algorithm 1 Successive Elimination-δ (SE-δ(TEA))
1: input: δ, K, p, B
2: initialization: µ̂†1(k) ← 0 for any arm k ∈ [K], S1 ←

[K], and b1 ← 0
3: t← 1 . begin to explore arms in [K]

4: while |St| > 1 do

5: ct ← 5B
1
p

(
log(2K/δ)

t

) p−1
p

. update confidence bound

6: bt ←
(

Bt
log(2K/δ)

) 1
p

. update truncating parameter

7: for k ∈ St do
8: play arm k and observe a payoff πt(k)

9: µ̂†t (k)← 1
t

∑t
i πi(k)1[|πi(k)|≤bi] . calculate TEA

10: end for
11: at ← arg maxk∈[K] µ̂

†
t (k) . choose the best arm at t

12: St+1 ← ∅ . create a new arm set for t+ 1

13: for k ∈ St do
14: if µ̂†t (at)− µ̂

†
t (k) ≤ 2ct then

15: St+1 ← St+1 + {k} . add arm k to St+1

16: end if
17: end for
18: t← t+ 1 . update time index
19: end while
20: Out← St[0] . assign the first entry of St to Out
21: return: Out

in Algorithm 1, where δ is a given parameter. The idea
is to eliminate the arm which has the farthest deviation
compared with the empirical best arm in St.

4.2.2 Theoretical Guarantee of SE-δ
We derive upper bounds of sample complexity of SE-δ
with estimators of EA and TEA. Note that T is the time
complexity of SE-δ.

Theorem 1. For pure exploration in MAB with K arms,
with probability at least 1− δ, Algorithm SE-δ identifies
the optimal arm Opt with sample complexity as

• for SE-δ(EA)

T ≤
K∑
k=1

(
22p+1KC

∆p
kδ

) 1
p−1

;

• for SE-δ(TEA)

T ≤
K∑
k=1

(
20B

1
p

∆k

) p
p−1

log

(
2K

δ

)
,

where p ∈ (1, 2].

Proof. We first consider EA in Eq. (2) for estimating the
expected payoffs in MAB. For p ∈ (1, 2], for any arm
k ∈ St, we have

P[|µ̂t(k)− µ(k)| ≥ δ] ≤ 2C

tp−1δp
, (13)



where we adopt st,k = t in SE-δ(EA). We notice the
inherent characteristic of SE that, for any arm k ∈ St,
we have Φ(k) = {1, 2, · · · , t}.

Based on Lemma 1, for t = 1, 2, · · · , with probability at
least 1− δ/K, the following event holds

Et , {k ∈ St, |µ̂t(k)− µ(k)| ≤ ctk} ,

where ctk =
(

2KC/(tp−1
k δ)

) 1
p

is a confidence interval.
To eliminate a sub-optimal arm k, we need to play any
arm k ∈ [K]\Opt with tk times such that

∆̂k , µ̂tk(Opt)− µ̂tk(k) ≥ 2ctk . (14)

Based on Lemma 1, with a high probability, we have

∆̂k ≥ µ(Opt)− ctk − (µ(k) + ctk) = ∆k − 2ctk ,

where ctk is a confidence interval. To satisfy Eq. (14),
we are ready to set

∆k − 2ctk ≥ 2ctk . (15)

To solve the above inequality, we are ready to have that

tk =
(

22p+1KC
∆p
kδ

) 1
p−1

is sufficient. The total sample

complexity is T = t2 +
∑K
k=2 tk, because the number

of pulling the optimal arm t1 = t2. This implies, with
probability at least 1− δ, we have

T ≤
K∑
k=1

(
22p+1KC

∆p
kδ

) 1
p−1

. (16)

Now we consider TEA in Eq. (3) for estimating the ex-
pected payoffs in MAB. Similarly, for p ∈ (1, 2], with
probability at least 1− δ, we have

T ≤
K∑
k=1

(
20B

1
p

∆k

) p
p−1

log

(
2K

δ

)
, (17)

which completes the proof.
4.3 FIXED BUDGET
In this subsection, we present a bandit algorithm for pure
exploration of MAB with heavy-tailed payoffs under a
fixed budget. Then, we derive upper bounds of probabil-
ity of error for the bandit algorithms.

4.3.1 Description of SR-T
For SR-T (EA), we omit the algorithm because it is al-
most the same as that in (Audibert and Bubeck, 2010).
For SR-T (TEA), we design a bandit algorithm for pure
exploration of MAB with heavy-tailed payoffs based on
the idea of SR, with computation details shown in Algo-
rithm 2, where T is a given parameter. The high-level

Algorithm 2 Successive Rejects-T (SR-T (TEA))
1: input T , K, p, B, ∆ > 0
2: initialization: µ̂†(k) ← 0 for any arm k ∈ [K], S1 ←

[K], n0 ← 0, b← 0 and K̄ ←
∑K
i=1

1
i

3: b←
(

3Bp
∆

) 1
p−1

. calculate truncating parameter

4: for k ∈ S1 do
5: Φ(k)← ∅ . construct sets to store time index
6: end for
7: for k ∈ [K − 1] do
8: nk ← d T−K

K̄(K+1−k)
e . calculate nk at stage k

9: n← nk − nk−1 . calculate the number of times to pull arms
10: for y ∈ Sk do
11: for i ∈ [n] do
12: t← t+ 1
13: play arm y, and observe a payoff πt(y)
14: Φ(y)← Φ(y) + {t} . store time index for arm y
15: end for
16: µ̂†k(y)← 1

|Φ(y)|
∑
i∈Φ(y) πi(y)1[|πi(y)|≤b]

17: end for
18: ak ← arg miny∈Sk µ̂

†
t (y) . choose the worst arm at k

19: Sk+1 ← Sk − {ak} . successively reject arm ak
20: end for
21: Out← SK [0] . assign the first entry of SK to Out
22: return: Out

idea is to conduct non-uniform pulling of arms by K − 1
phases, and SR-T rejects a worst empirical arm for each
phase. The reject operation is based on EA or TEA,
and we distinguish the two cases by SR-T (EA) and SR-
T (TEA).

For simplicity, we show SR-T (TEA) in Algorithm 2,
where ∆ > 0 is a design parameter for the estimator
of TEA. The design parameter ∆ helps to calculate the
truncating parameter b in SR-T (TEA). Usually, we set
∆ ≤ ∆k for any k ∈ [K].

4.3.2 Theoretical Guarantee of SR-T
We derive upper bounds of probability of error for SR-T
with estimators of EA and TEA. We have the following
theorem for SR-T .

Theorem 2. For pure exploration in MAB with K arms,
if Algorithm SR-T is run with a fixed budget T , we have
probability of error for p ∈ (1, 2] as

• for SR-T (EA)

P[Out 6= Opt] ≤ 2p+1CK(K − 1)Hp
2

(
K̄

T −K

)p−1

;

• for SR-T (TEA)

P[Out 6= Opt] ≤ 2K(K − 1) exp

(
− (T −K)B̄1

K̄K∆p/(1−p)

)
,

where B̄1 = p−1

4(2p3Bpp)
1
p−1

.



Proof. We first consider EA in Eq. (2) for estimating the
expected payoffs in MAB. For p ∈ (1, 2], we have

P[Out 6= Opt] ≤
K−1∑
k=1

K∑
i=K+1−k

P [µ̂k(Opt) ≤ µ̂k(i)]

≤
K−1∑
k=1

K∑
i=K+1−k

P [µ̂k(i)− µ(i) + µ(Opt)− µ̂k(Opt) ≥ ∆i]

≤
K−1∑
k=1

K∑
i=K+1−k

4C

np−1
i

(
∆i
2

)p (18)

≤
K−1∑
k=1

2p+2Ck

np−1
k ∆p

K+1−k

, (19)

where the inequality of Eq. (18) is due to the results in
Lemma 1 by setting st,k = nk. Besides, we notice that

np−1
k ∆p

K+1−k ≥
1

Hp
2

(
T −K
K̄

)p−1

,

which implies that

P[Out 6= Opt] ≤ 2p+1CK(K − 1)Hp
2

(
K̄

T −K

)p−1

.

Now we consider TEA in Eq. (3) for estimating the ex-
pected payoffs in MAB. By considering the design of b
in SR-T (TEA), we have a similar result of Lemma 1.
Then, for p ∈ (1, 2], we have probability of error as

P[Out 6= Opt] ≤
K−1∑
k=1

K∑
i=K+1−k

P
[
µ̂
†
k(Opt) ≤ µ̂†k(i)

]

≤
K−1∑
k=1

K∑
i=K+1−k

P
[
µ̂
†
k(i)− µ(i) + µ(Opt)− µ̂†k(Opt) ≥ ∆

]

≤ 2K(K − 1) exp

(
−

(T −K)B̄1

K̄K∆p/(1−p)

)
, (20)

which completes the proof.

5 EXPERIMENTS
In this section, we conduct experiments via synthetic
and real-world data to evaluate the performance of the
proposed bandit algorithms. We run experiments in a
personal computer with Intel CPU@3.70GHz and 16GB
memory. For the setting of fixed confidence, we compare
the sample complexities of SE-δ(EA) and SE-δ(TEA).
For the setting of fixed budget, we compare the error
probabilities of SR-T (EA) and SR-T (TEA).

5.1 SYNTHETIC DATA AND RESULTS
For verifications, we adopt two synthetic data (named
as S1-S2) in the experiments, of which statistics are
shown in Table 2. The data are generated from Stu-
dent’s t-distribution with 3 degrees of freedom. In ex-
periments, we run multiple epochs for each dataset, with
each epoch containing ten independent experiments for

Table 2: Statistics of used synthetic data.
dataset #arms {µ(k)} heavy-tailed

{p,B,C}

S1 10 one arm is 2.0 and
nine arms are over
[0.7, 1.5] with a

uniform gap

{2, 7, 3}

S2 10 one arm is 2.0 and
nine arms are over
[1.0, 1.8] with a

uniform gap

{2, 7, 3}

(a) S1 (b) S2

Figure 1: Sample complexity for SE-δ in pure explo-
ration of MAB with heavy-tailed payoffs.

(a) S1 (b) S2

Figure 2: Probability of error for SR-T in pure explo-
ration of MAB with heavy-tailed payoffs.

best arm identification of MAB. Besides, we set the value
of fixed confidence from 0.005 to 0.040 with a uniform
gap of 0.005. We set the value of fixed budget from 400
to 1100 with a uniform gap of 100.

We show experimental results in Figures 1 and 2, where
both proposed algorithms are effective for pure explo-
ration of MAB with heavy-tailed payoffs. In particular,
in fixed-confidence setting, sample complexity decreases
with increasing value of δ. In fixed-budget setting, prob-
ability of error converges to zero with increasing value
of T . Besides, for fixed-confidence setting, SE-δ(TEA)
beats SE-δ(EA) in both datasets with small δ due to a bet-
ter control of confidence interval. The experimental re-
sults also reflect that the concentration properties of EA
are much weaker than those of TEA. For fixed-budget
setting, SR-T (TEA) is comparable to SR-T (EA) due to
the selection of truncating parameter.

5.2 FINANCIAL DATA AND RESULTS
It has been pointed out that financial data show the in-
herent characteristic of heavy tails (Panahi, 2016). We
choose a financial application of identifying the most
profitable cryptocurrency in a given pool of digital cur-



Table 3: Statistical property of ten selected cryptocur-
rencies with hourly returns from Feb. 3rd, 2018 to Apr.
27th, 2018. KS-test1 denotes Kolmogrov-Smirnov (KS)
test with a null hypothesis that real data follow a Gaus-
sian distribution. KS-test2 denotes KS test with a null
hypothesis that real data follow a Student’s t-distribution.

symbol empirical statistics KS-test1 KS-test2
(mean×103,

variance×103)
(statistic,
p̄-value)

(statistic,
p̄-value)

BTC (0.36, 0.54) (0.08, 0.005) (0.05, 0.20)

ETC (0.29, 1.03) (0.07, 0.02) (0.03, 0.89)

XRP (0.33, 0.94) (0.09, 0.0004) (0.03, 0.61)

BCH (0.78, 0.92) (0.08, 0.001) (0.03, 0.64)

EOS (1.56, 1.18) (0.09, 0.0002) (0.03, 0.88)

LTC (0.68, 0.86) (0.10, 0.0002) (0.04, 0.49)

ADA (0.02, 1.22) (0.07, 0.03) (0.02, 0.99)

XLM (0.62, 0.12) (0.07, 0.02) (0.03, 0.80)

IOT (0.68, 0.11) (0.07, 0.02) (0.04, 0.57)

NEO (−0.31, 1.26) (0.10, 0.0002) (0.04, 0.53)

Table 4: Estimated parameters for ten cryptocurrencies.
symbol degree of freedom (p,B,C) in experiments

BTC 3.50

ETC 3.81

XRP 2.53

BCH 3.00

EOS 2.90

LTC 2.75 (2,1.577×10−3,1.575×10−3)

ADA 3.55

XLM 3.81

IOT 4.66

NEO 3.13

rencies. The identification for the most profitable cryp-
tocurrency among the top ten cryptocurrency in terms of
market value is motivated by the practical scenario that
an investor would like to invest a fixed budget of money
in a cryptocurrency and get return as much as possible.

For experiments, we get hourly price data of the ten se-
lected cryptocurrencies1, and show the statistics of real
data in Table 3. In the table, we conduct a statistical anal-
ysis in hindsight with hourly returns of cryptocurrency
from February 3rd, 2018 to April 27th, 2018. From the
table, we find that the optimal option in hindsight is EOS
in terms of the maximal empirical mean of hourly pay-
offs. Besides, we conduct Kolmogrov-Smirnov (KS) test
to fit real data of a cryptocurrency to a distribution. In
particular, via KS test, we know that the null hypothesis
of real data following a Gaussian distribution is rejected,
because p̄-value is smaller than a significant level of 0.05.
We observe that real data of cryptocurrency are likely to
follow a Student’s t-distribution via KS test in Table 3.

1https://www.cryptocompare.com/

(a) fixed confidence (b) fixed budget

Figure 3: Pure exploration of cryptocurrency.

With the above statistical analyses, we can fit real data of
cryptocurrency to a Student’s t-distribution, and obtain
distribution parameters shown in Table 4. Based on the
property of Student’s t-distribution, we can set p = 2,
and estimate B and C as shown in the table.

Via a similar setting to that of synthetic data, we show the
results on pure exploration of top ten cryptocurrencies in
Figure 3. Note that, due to limitation of data points in
the setting of fixed confidence, we generate payoffs from
Student’s t-distributions fitting to real data. But in the
setting of fixed budget, we adopt exactly real financial
data. We have similar observations as those in synthetic
data. It is worth mentioning that, TEA algorithm out-
performs EA algorithm in fixed-confidence setting when
the value of δ is small. Besides, TEA is comparable to
EA in fixed-budget setting because the truncating param-
eter in Algorithm 2 only has budget information and does
not increase with the number of samples. Overall, with
synthetic and real-world data, we have verified the effec-
tiveness of our two algorithms.

6 CONCLUSION
In this paper, we broke the assumption of payoffs under
sub-Gaussian noises in pure exploration of MAB, and in-
vestigated best arm identification of MAB with a general
assumption that the p-th moments of stochastic payoffs
are bounded, where p ∈ (1,+∞). We have technically
analyzed tail probabilities of empirical average and trun-
cated empirical average for estimating expected payoffs
in sequential decisions. Besides, we proposed two ban-
dit algorithms for pure exploration of MAB with heavy-
tailed payoffs based on SE and SR. Finally, we derived
theoretical guarantees of the proposed bandit algorithms,
and demonstrated the effectiveness of bandit algorithms
in pure exploration of MAB with heavy-tailed payoffs.
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