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Abstract—Best arm identification in stochastic Multi-Armed
Bandits (MAB) has become an essential variant in the research
line of bandits for decision-making problems. In previous work,
the best arm usually refers to an arm with the highest expected
payoff in a given decision-arm set. However, in many practical
scenarios, it would be more important and desirable to incor-
porate the risk of an arm into the best decision. In this paper,
motivated by practical applications with risk via bandits, we
investigate the problem of Risk Control of Best Arm Identification
(RCBAI) in stochastic MAB. Based on the technique of Successive
Rejects (SR), we show that the error resulting from the mean-
variance estimation is sub-Gamma by setting mild assumptions
on stochastic payoffs of arms. Besides, we develop an algorithm
named as RCMAB.SR, and derive an upper bound for the proba-
bility of error for RCBAI in stochastic MAB. We demonstrate the
superiority of the RCMAB.SR algorithm in synthetic datasets, and
then apply the RCMAB.SR algorithm in financial data for yearly
investments to show its superiority for practical applications.

Keywords—Multi-armed bandits; Risk control; Successive re-
jects; Sub-Gamma noise

I. INTRODUCTION

The popular decision-making model of Multi-Armed Ban-

dits (MAB) elegantly characterizes a wide class of problems

for sequential learning with partial feedbacks, which was

originally proposed and investigated in [1]. Most of MAB

algorithms are originally developed to maximize the expected

cumulative payoffs during a number of rounds for sequential

decisions but the algorithms have limited knowledge on the

mechanism of generating a payoff for each round [2], [3]. In

recent twenty years, there have been increasing investigations

on various variants of the traditional MAB problem [4]–[7].

It is worth pointing out that best arm identification of

stochastic MAB has become an important variant due to its

inherent characteristic in finding the optimal decision with

exploration. Intuitively, its goal is to find the best arm in

a given decision-arm set at the end of exploration. In this

case, there is no explicit trade-off between exploration and

exploitation for each round of sequential learning.

The problem of Risk Control of Best Arm Identification

(RCBAI) in stochastic MAB has been rarely investigated,

which might be caused by different reasons. One reason is

that risk control leads to analysis of high-order statistics, e.g.,

variance. The high-order statistics may bring the divergence of

errors in sequential decisions, and need additional assumptions

on distributions of payoffs. Another reason could be that the

probability of error for selecting the best arm after exploration

is affected by statistics with different orders. Since the problem

of RCBAI plays an important role in real applications, it

is urgent and meaningful to develop bandit algorithms for

conducting best arm identification with consideration of risk

control, especially in the case of introducing mild assumptions

on the distributions of payoffs in MAB.

In this paper, motivated by the above discussions and two

listed examples, we investigate the problem of RCBAI in

stochastic MAB, where we adopt the metric of mean-variance.

There are three main challenges in solving this problem.

The first comes from the analysis of the error between the

estimation of mean-variance and the true mean-variance for

each arm in MAB, which contains the second order statistics.

The second is how to guarantee the independence of samples

in sequential decisions, which can affect the final decision of

the best arm. The third is how to bound the probability of

error for selecting the best arm after T rounds of sequential

decisions. Here the best arm refers to the arm with the

minimum mean-variance in a given decision-arm set. To solve

the challenges, based on the popular technique of Successive

Rejects (SR), we prove that the error resulting from the

mean-variance estimation is sub-Gamma, where we set mild

assumptions on payoffs of arms. Besides, we develop a bandit

algorithm to solve the problem of RCBAI in stochastic MAB

via SR, which is then simply named as RCMAB.SR. We derive

an upper bound for the probability of error for RCBAI in

stochastic MAB with the proposed algorithm. We demonstrate

the superiority of the proposed algorithm in synthetic datasets,

and then apply the RCMAB.SR algorithm in real financial data

to show its superiority for practical applications.

II. RELATED WORK AND PRELIMINARY

In this section, we first give a brief review on best arm

identification of MAB, as well as risk control of MAB. Then,

we present related notations and definitions used in this paper.

A. Related Work

Best arm identification in MAB has become an attracting

branch in decision-making problems, where the goal is to

identify the best arm after exploration among a given decision-

arm set [4], [8]–[10]. It has been pointed out that best arm

identification (also known as pure exploration) in MAB has
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many potential practical applications, such as communication

network and online advertising.

Generally, there are two settings for the line of best arm

identification in MAB [6]. One is the setting with a fixed

budget, which means that an algorithm would output an best

arm after playing a fixed number of rounds. In this case, the

theoretical guarantee of the bandit algorithm is to upper bound

the probability of error for selecting the best arm [9]. The other

setting is to fix a level of confidence to output the best arm, and

the theoretical guarantee is to minimize the number of rounds

for playing arms [11]. Recently, it has been pointed out that

these two setting can be equivalent in the sense of sample

complexity [4]. Besides, these two settings can be unified into

a model in a recent study [6].

B. Notations

The total number of sequential rounds is T . For each round

of t ∈ [T ] with [T ] � {1, 2, · · · , T}, an algorithm decides to

play an arm among a given decision-arm set of D. At the end

of each round t, the algorithm observes a stochastic payoff.

Let K ∈ N+ be the number of arms in D (i.e., the size of D)

and πt(y) ∈ R the stochastic payoff of playing the arm y at

round t with y ∈ [K] and [K] � {1, 2, · · · ,K}.
C. Definitions

Definition 1. A random variable ζ has a Gamma distribution
if the probability density function of ζ is

f(ζ) =

{
βαζα−1

Γ(α) exp(−βζ) if ζ ∈ R+,

0 if ζ �∈ R+,
(1)

where Γ(y) =
∫∞
0

xy−1 exp(−x)dx is a Gamma function, the
shape parameter α > 0 , the scale parameter β > 0, and R+

is a set of positive real numbers.

By letting α = n/2 and β = 1/2 in Gamma distributions,

we have a Chi-square distribution with n degrees of freedom

and n ∈ N+. For more details, one can refer to [12].

Definition 2. (see [13]) A random variable ζ is sub-Gaussian
if there exists a constant R ≥ 0 such that

E[exp(λζ)] ≤ exp
(λ2R2

2

)
, (2)

where λ ∈ R, E[·] is the expectation of a random variable
and exp(·) denotes the exponential operation.

Definition 3. (see [14]) A random variable ζ is sub-Gamma
on the right tail if

E[exp(λ(ζ −E[ζ]))] ≤ exp
( λ2v

2(1− cλ)

)
, (3)

where v > 0 is a variance factor, c ∈ R is a scale parameter
and λ ∈ (0, 1/c).
Definition 4. The measure of mean-variance for a random
variable ξ is defined as

ω(ξ) � σ2(ξ)− κμ(ξ), (4)

where σ2(ξ) and μ(ξ) are, respectively, the variance and the
mean of ξ, and the coefficient κ ≥ 0 is the risk tolerance factor.
It is worth mentioning that κ gives a trade-off between the
mean of ξ and the risk of ξ, and κ is a given parameter based
on practical needs in RCBAI of stochastic MAB. Besides, given
T independent samples as {ξt}Tt=1, we directly define the em-
pirical mean and variance, respectively, as μ̂T �

∑T
t=1 ξt/T

and σ̂2T �
∑T

t=1(ξt − μ̂T )
2/(T − 1). Then, the empirical

mean-variance over T samples is ω̂T � σ̂2T − κμ̂T .

At the end of round T , an algorithm A chooses an action

aT ∈ [K]. The empirical mean-variance of arm aT is denoted

by ω̂(aT ). Let y∗ denote the best arm with the minimum

mean-variance shown as Eq. (4). Then, we can infer errors

in terms of the difference between the mean-variance of the

best arm and its empirical mean-variance. For y �= y∗, we

further introduce the following sub-optimality metric between

arms y and y∗ as

Δy � ω(y)− ω(y∗), (5)

where y ∈ [K]. Based on Eq. (5), we easily define the minimal

sub-optimality as Δy∗ � miny �=y∗,y∈[K]Δy . We introduce the

notation (y) ∈ [K] to denote the y-th best arm, thus

Δy∗ = Δ(1) ≤ Δ(2) ≤ Δ(3) ≤ · · · ≤ Δ(K). (6)

The sorted sequence of sub-optimality shown in Eq. (6) is

helpful to analyze the probability of error for selecting the

best arm. Besides, given K arms with a unique optimal arm,

the number of sub-optimal arms is K − 1. Without loss of

generality, the probability of error for selecting an best arm

after t rounds can be presented as P[at �= y∗]. Inspired by [9],

the probability of error is related to the sub-optimality in

Eq. (5). We define the hardness as:

H1 �
K∑

y=1

1

Δ2
y

, H2 � max
y∈[K]

yΔ−2(y),

H3 �
K∑

y=1

1

Δy
,H4 � max

y∈[K]
yΔ−1(y).

Besides, by letting log(K) = 1/2+
∑K

i=2 1/i, we have the

result of log(K + 1) − 1/2 ≤ log(K) ≤ log(2K). We can

generalize the inequality on the hardness of [9] as

H2 ≤ H1 ≤ log(K)H2. (7)

H4 ≤ H3 ≤ log(K)H4. (8)

III. ASSUMPTIONS, PROBLEM AND CHALLENGES

In this section, we first present the assumptions. Then, we

give the problem definition of RCBAI in stochastic MAB.

A. Assumptions

1) We assume that there are K arms for best arm iden-

tification in stochastic MAB, and payoffs of arm y
(with y ∈ [K]) are independently drawn from a normal

distribution as N (μ(y), σ2(y)), where μ(y) is the mean

of arm y and σ2(y) is the variance of arm y.
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Algorithm 1 RCMAB.SR

1: input T , K, κ
2: construct a decision-arm set D1 ← [K]
3: calculate log(K)← 1

2 +
∑K

i=2
1
i

4: for y ∈ [K] do
5: Φ(y)← ø � construct sets to store time index
6: end for
7: t← 0; T0 ← 0
8: for k ∈ [K − 1] do
9: Tk ← � T−K

log(K)(K+1−k)
� � take ceiling of the division

10: n← Tk − Tk−1
11: for y ∈ Dk do
12: for i ∈ [n] do
13: t← t+ 1
14: select arm y, and observe a payoff πt(y)
15: Φ(y)← Φ(y) ∪ t � store the index for arm y
16: end for
17: end for
18: for y ∈ Dk do
19: ω̂t(y)← σ̂2t (y)− κμ̂t(y) � estimate mean-variance
20: end for
21: a← argmaxy∈Dk

ω̂t(y) � break ties arbitrarily
22: Dk+1 ← Dk − {a} � successive rejects of arms
23: end for
24: return aT ← DK � only one element in DK

2) We assume that, given an arm y ∈ [K], the variance of

arm y is a constant denoted as σ2(y). Besides, we also

assume that the variances among K arms are not all the

same, and they are upper bounded by σ̄2 with σ̄2 < +∞.

3) We assume that the best arm is unique among K arms,

and thus the best arm is denoted by y∗ for best arm

identification in MAB among K arms.

B. Problem Definition

Without loss of generality, in this paper, we focus on the

problem of RCBAI for stochastic MAB in the setting of a

fixed budget, which is an important scenario [4], [6]. For

an algorithm A, the goal of RCBAI of MAB is to identify

the best arm of y∗ with the smallest mean-variance shown

in (4). Specifically, given a fixed budget of T , we design

bandit algorithms to minimize the probability of error, which

is explicitly shown as

min P[aT �= y∗]. (9)

It is very difficult to directly solve the problem of Eq. (9). A

potential solution is to upper bound the probability of error in

P[aT �= y∗], which is popular in [4], [9]. Compared with the

problem of best arm identification in the traditional MAB, the

problem of RCBAI will encounter second order statistics.

IV. ALGORITHM

In order to solve the problem of RCBAI in stochastic

MAB (shown as Eq. (9)), we develop a bandit algorithm,

which is simply named as RCMAB.SR (i.e., Algorithm 1). The

RCMAB.SR algorithm is based on the technique of SR with

estimations of mean-variance.

In light of the definition of mean-variance, at time t, we can

design the mean-variance estimation as follows:

ω̂t(y) = σ̂2t (y)− κμ̂t(y), (10)

where μ̂t(y) is the estimation of the true expected payoff of

μ(y) at time t. We can calculate μ̂t(y) as

μ̂t(y) =

st(y)∑
i∈Φ(y)

πi(y)

st(y)
, (11)

where Φ(y) is a set to store time instants of selecting arm y,

and st(y) is the size of the set Φ(y) at time t. Besides, we

have σ̂2t (y) as

σ̂2t (y) =
1

st(y)− 1

st(y)∑
i∈Φ(y)

(πi(y)− μ̂t(y))
2. (12)

A. Successive Rejects

In the research line of bandits, the technique of SR has

become popular in best arm identification with stochastic

MAB [4], [6], [9]. The main idea of SR is to divide K − 1
phrases of exploration given a fixed budget T among K arms.

For each phrase, algorithms with SR eliminate a worst arm in

the decision-arm set. When the (K − 1)-th phrase is finished,

the decision-arm set should always has only one arm, which

is selected as the best arm. Because the number of pulls for

each arm in the decision-arm set is the same in a phrase, then

the samples for pulling arms are independent.

B. Description of Algorithm

We show the proposed RCMAB.SR algorithm to solve the

problem of RCBAI in Algorithm 1. Specifically, given a

fixed budget T , K arms and a risk tolerance factor κ, the

RCMAB.SR algorithm should output the best arm after T
rounds. We divide T rounds into K−1 phrases, and the phrases

are not uniform in the sense of the number of time for pulling

arms. We follow the phrase design in [9], which is technical

and helpful for theoretical analysis. We can infer the number

of pulling arms in RCMAB.SR is Tpull =
∑K−1

i=1 Ti + TK−1,

which is bounded as T −K ≤ Tpull ≤ T .

It is worth pointing out that the estimation of mean-variance

in Line 19 brings the challenges in the RCMAB.SR algorithm.

The technique of SR guarantees the independence of samples,

which is helpful for analyzing the estimation errors of mean-

variance. At the end of exploration, we always has a unique

element in the decision-arm set, which is directly output as

the best arm. For the time consumption of RCMAB.SR, we

can calculate its time complexity as O(TK).

V. THEORETICAL ANALYSES

Theorem 1. For stochastic MAB with K arms, each arm
follows a normal distribution as N (μ(y), σ2(y)) and y ∈ [K].
In best arm identification of MAB, we assume payoffs {πi(y)}
are independently drawn from arm y with i ∈ Φ(y) and Φ(y)
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(a) S1 (b) S2 (c) S3

Fig. 1. Probability of error for best arm identification in MAB with κ = 1.0 and different values of T .

being an index set for choosing arm y. If the sample mean-
variance of arm y is designed as ω̂t(y) = σ̂2t (y) − κμ̂t(y),
where we have

σ̂2t (y) =
1

st(y)− 1

st(y)∑
i∈Φ(y)

(πi(y)− μ̂t(y))
2,

μ̂t(y) =
∑st(y)

i∈Φt(y)
πi(y)/st(y) with st(y) being the size of

Φ(y) at time t and κ ≥ 0, then the variable of ρt(y) = ω̂t(y)−
ω(y) is sub-Gamma on the right tail, which means that

E[exp(λ(ρt(y)−E[ρt(y)]))] ≤ exp
( λ2v

2(1− cλ)

)
,

where c = 2σ̄2, v = (2σ̄2 + κ2/2)σ̄2, and λ ∈ (0, 1/c).
Proof. We give a sketch of proof as follows. We first derive

moment generating functions of mean and variance separately.

Then, due to independence, we combine them together to

obtain a sub-Gamma distribution.

Theorem 2. For stochastic MAB with K arms, each arm
follows a normal distribution as N (μ(y), σ2(y)), where σ2(y)
is upper bounded by σ̄2 (with σ̄2 ≥ 1) and y ∈ [K]. Suppose
Assumptions 1-3 are satisfied for best arm identification in
stochastic MAB. If Algorithm 1 is run with a fixed budget of
T , we have an upper bound of the probability of error as

P[aT �= y∗] ≤ K(K − 1)

2
exp

(
− T −K

log(K)H

)
, (13)

where H = max{H4(6σ̄
4+3κ2σ̄2),H2(18σ̄

4+9κ2σ̄2)} and
log(K) = 1

2 +
∑K

i=2
1
i .

Proof. The proof can be generalized from [9].

VI. EXPERIMENTS

In this section, we conduct a series of experiments via

synthetic and real datasets to evaluate the performance of the

proposed RCMAB.SR algorithm. We compare the RCMAB.SR
algorithm with two state-of-the-art algorithms in best arm

identification of bandits, i.e., MAB.SR [9] and CuRisk [15].

TABLE I
STATISTICS OF USED DATASETS.

dataset #arms {μ(y)} {σ2(y)}
S1 3 {1.0,1.5,1.3} {0.2,0.5,0.1}
S2 5 [1.0,1.4] with a

uniform gap
{0.1,0.2,0.4,

0.5,0.3}
S3 8 [1.0,1.7] with a

uniform gap
{σ2(5)=0.3, σ2(8)
=0.5, others 0.1}

A. Settings

We conduct experiments on a personal computer with Intel

CPU@3.70GHz and 16GB memory. In order to evaluate the

performance of algorithms in synthetic datasets, we calculate

the probability of error based on frequency of wrong deci-

sion after exploration. Specifically, we run multiple epochs

of experiments, with each epoch containing ten independent

experiments for best arm identification. For each independent

experiment, algorithms output an estimated best arm at T . We

label 1 for an experiment if the output arm is the optimal arm

in hindsight. Otherwise we label 0. For the ten experiments

of an epoch, we evaluate the probability of error in terms of

frequency of zero in labels. Clearly, we have an estimated

probability of error in an epoch. By running multiple epochs,

we obtain an average of probability of error and its standard

error. In experiments, we set the number of epochs as 10.

B. Synthetic Datasets and Results

For verifications, we adopt three synthetic datasets (named

as S1-S3) in the experiments, of which statistics are shown in

Table I. It is worth mentioning that, with κ = 1.0, the best

arm with true mean-variance in S2 is equivalent to that with

mean. For comparisons, we set the parameters in MAB.SR the

same as those in RCMAB.SR.

Via experimental results in Fig. 1, we find superior perfor-

mance of the proposed RCMAB.SR algorithm in terms of the

probability of error for selecting the best arm with a fixed

budget of T . We also find that different values of κ affect the

performance of RCMAB.SR, as shown in Fig. 2.

From Fig. 1, we find that RCMAB.SR beats CuRisk for

best arm identification, because the probability of error for
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Fig. 2. Probability of error via RCMAB.SR in S2 with T = 1000.

RCMAB.SR is the lower. Besides, we find that RCMAB.SR is

comparable to MAB.SR in S2. Note that the best arm with

mean-variance in S2 with κ = 1.0 is equivalent to that with

mean. In this case, the RCMAB.SR incurs higher errors than

MAB.SR. It means that the first order statistics is sufficient

for best arm identification with κ = 1.0 in S2. Finally, by

increasing T , we observe that the performance of RCMAB.SR
will increase. This is consistent with theoretical analysis of

the probability of error.

In Fig. 2, we set different values of κ in experiments.

From the figure, we know that different values of κ affect

the performance RCMAB.SR, and the effect is nonlinear.

C. Financial Data and Results

The real data for experiments are historical returns on

stocks, bonds and bills of United States from 1928 to 20161.

The dataset contains 89 samples of annual returns on SP500,

3-month Treasury Bill and 10-year Treasury Bond.

We design the experiment as follows, of which the scheme is

shown in Fig. 3. For yearly investments of the above dataset,

we should output the best arm (i.e., the red dot with dash

line in Fig. 3) for investments in each year. For example, at

the beginning of 2015, we first determine which choice is

the best among SP500, 3-month Treasury Bill and 10-year

Treasury Bond, and then invest all the available money on that

choice. After a year (i.e., at the beginning of 2016), we observe

the realized return of the choice in 2015, and sequentially

determine the best choice for investments in 2016. We define

the cumulative returns as

Cret(N) =

N∏
i=1

(1 + ri), (14)

where ri is the realized return for the i-th investment period,

and N is the total periods in investments. Clearly, an algorithm

performs better if Cret(N) is higher.

We apply best arm identification of bandits in each invest-

ment period. For best arm identification, the sliding window

1http://pages.stern.nyu.edu/∼adamodar/New Home Page/datafile/

Fig. 3. Yearly investments over N rounds with a sliding window W .

contains historical W samples for each arm, and the fixed

budget in RCMAB.SR is set as T =W . We show the empirical

performance of Cret(N) based on three bandit algorithms

(i.e., RCMAB.SR, MAB.SR and CuRisk) in Figs. 4 and 5.

We set different κ as {0.5, 1.0, 1.5, 2.0, 2.5, 3.0}, and different

observation window W as {10, 40}.
In Fig. 4, we find that RCMAB.SR always outperforms

CuRisk in terms of cumulative returns. This superiority

comes from the key idea of the technique of SR in best arm

identification. Besides, it is interesting to find that RCMAB.SR
outperforms MAB.SR in some region of κ, which means that,

based on Eq. (4), one should not overweight or neglect the

mean of payoff in investments. When the mean of payoff is

overweighted, the dominant term is the mean of payoff. This

can be verified by the performance in Fig. 4(f).

We demonstrate similar results in Fig. 5, where κ =
0.5, 1.5, 3.0. In Fig. 5(a), it is surprising to find that the yearly

investments over 49 years via RCMAB.SR have a non-negative

return for each year. This reveals that the sufficient exploration

(i.e., large T in RCMAB.SR) brings better identification of the

best arm given a decision-arm set.

Overall, by comparing with MAB.SR and CuRisk, we

show the superiority of RCMAB.SR in yearly investments with

the measure of cumulative returns.

VII. CONCLUSION

In this paper, motivated by risk control in best arm identifi-

cation for real applications, we studied the problem of RCBAI

in stochastic MAB. We proved the error resulting from the

estimation of mean-variance for best arm identification is sub-

Gamma by setting mild assumptions on stochastic payoffs

of arms. We developed an efficient bandit algorithm named

RCMAB.SR to solve the problem, and derived an upper bound

for the probability of error. By comparing with two baselines,

we showed superior performance of the RCMAB.SR algorithm

with synthetic and real datasets. We showed that RCMAB.SR
helped to bring stable cumulative returns in yearly investments.
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(a) κ = 0.5 and W = 10 (b) κ = 1.0 and W = 10 (c) κ = 1.5 and W = 10

(d) κ = 2.0 and W = 10 (e) κ = 2.5 and W = 10 (f) κ = 3.0 and W = 10

Fig. 4. Cumulative returns in yearly investments on SP500, 3-month Treasury Bill and 10-year Treasury Bond with sliding window W = 10. The investment
is one-year forward from 1937 to 2016.

(a) κ = 0.5 and W = 40 (b) κ = 1.5 and W = 40 (c) κ = 3.0 and W = 40

Fig. 5. Cumulative returns in yearly investments on SP500, 3-month Treasury Bill and 10-year Treasury Bond with sliding window W = 40. The investment
is one-year forward from 1967 to 2016.
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