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ABSTRACT
Most high-level information extraction (IE) consists of com-
pound and aggregated subtasks. Such IE problems are gen-
erally challenging and they have generated increasing inter-
est recently. We investigate two representative IE tasks: (1)
entity identification and relation extraction from Wikipedia,
and (2) citation matching, and we formally define joint op-
timization of information extraction. We propose a joint
paradigm integrating three factors – segmentation, relation,
and segmentation-relation joint factors, to solve all rele-
vant subtasks simultaneously. This modeling offers a nat-
ural formalism for exploiting bidirectional rich dependen-
cies and interactions between relevant subtasks to capture
mutual benefits. Since exact parameter estimation is pro-
hibitively intractable, we present a general, highly-coupled
learning algorithm based on variational expectation maxi-
mization (VEM) to perform parameter estimation approxi-
mately in a top-down and bottom-up manner, such that in-
formation can flow bidirectionally and mutual benefits from
different subtasks can be well exploited. In this algorithm,
both segmentation and relation are optimized iteratively and
collaboratively using hypotheses from each other. We con-
ducted extensive experiments using two real-world datasets
to demonstrate the promise of our approach.
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1. INTRODUCTION
Information extraction (IE) aiming at extracting struc-

tured information from text or semi-structured sources plays
an important role for a wide variety of applications and it has
been investigated for decades. Among such IE tasks, high-
level IE problems consisting of compound subtasks have be-
come increasingly popular and they present new challenges
to research communities. Typically, two key subtasks are
segmentation which identifies candidate records (e.g., word
segmentation, chunking and entity recognition), and relation
discovery which discovers certain relations between different
records (e.g., entity resolution, relation extraction and social
relation mining) [23].

The most common and simplest approach to performing
compound IE tasks is to use 1-best or K-best pipeline archi-
tecture: components are run independently in some order,
and there is no feedback from later components to earlier
ones [2, 3]. This approach is feed-forward, which is only
top-down or bottom-up integrated, and mutual interactions
between different components cannot be exploited. Errors
cascade and accumulate, and a once-made error can hardly
be corrected in the pipeline. Due to this reason, the end-to-
end performance is often hampered and upper-bounded.

Ideally, we would like to advocate joint information ex-
traction, which is to solve all relevant subtasks in informa-
tion extraction jointly, that is, all relevant IE subtasks are
optimized simultaneously and decisions of them are made
together in a single coherent manner. Joint IE aims to han-
dle multiple hypotheses and uncertainty information and to
predict many variables at once such that subtasks can aid
each other to boost the performance [6, 12, 29, 24, 15, 10, 26,
25]. This is usually very challenging, and often increases the
model complexity. It is typically intractable to run a joint
model and they sometimes can hurt the performance, since
they increase the number of paths to propagate errors. Due
to these difficulties, research on building joint approaches is
still in the infancy stage.

Recently, a significant amount of work has shown the fea-
sibility and effectiveness of discriminatively-trained proba-
bilistic graphical models for a variety of IE tasks [18, 20].
The superiority of graphical model is its ability to represent
a large number of random variables as a family of probabil-
ity distributions that factorize according to an underlying
graph, and it can capture complex dependencies between
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Figure 1: A snapshot of the encyclopedic article
about Bill Gates in Wikipedia.

variables. This progress has begun to make the joint learning
approach possible. While a number of previous researchers
have taken steps toward this direction, there are still vari-
ous shortcomings: high computational complexity [19], the
number of uncertain hypotheses is severely limited [6, 2],
the subtasks are only loosely coupled [27], or the approach
is feed-forward or top-down integrated and it only allows
information to flow in one direction [30].

Exploring bidirectional information and rich interdepen-
dencies between relevant subtasks is intuitively appealing.
In the following, we use examples from two real-world datasets
in our experiments to show the disadvantages of the pipeline
architecture and the necessarity of top-down and bottom-up
modeling, and to demonstrate the merits of our approach.

1.1 Motivating Examples

1.1.1 Entity Identification and Relation Extraction
From Wikipedia

For compound, aggregated IE problems, the availability
of robust, flexible, and accurate systems is highly desirable.
Wikipedia1 is the world’s largest free online encyclopedia,
representing the outcome of a continuous collaborative ef-
fort of a large number of volunteer contributors. We inves-
tigate the task of identifying entities (e.g., person, location,
and organization names) and extracting semantic relation-
ships (e.g., member of and associate) between entity pairs
in English encyclopedic articles from Wikipedia. For ex-
ample, Figure 1 gives a snapshot of Wikipedia Web page
about the person Bill Gates. The basic document is an arti-
cle, which mainly defines and describes an entity (e.g., Bill
Gates). This document mentions some other entities (e.g.,
Microsoft, Paul Allen, Seattle, etc) related to the entity Bill
Gates. As an illustrative example, consider the following
text excerpted from our dataset:

George W. Bush was elected President in 2000 as the Re-
publican candidate.

Clearly, our task consists of two subtasks. First, for entity
identification, we need to recognize the entities (both the

1http://www.wikipedia.org/

boundaries and types of them): the person name George
W. Bush, the year 2000 and the organization Republican.
Second, for relation extraction, we should extract the ex-
ecutive relation between George W. Bush and Republican.
However, the pipeline approach in our experiments cannot
extract the executive relation between George W. Bush and
Republican, since the organization name Republican is incor-
rectly labeled as miscellaneous in entity identification stage,
and the later relation extraction stage consuming this result
also produces erroneous output. From the bottom-up view-
point, knowing that Republican is an organization is help-
ful for the executive relation discovery between this entity
and the person George W. Bush. From the top-down view-
point, the executive relation is a strong evidence indicating a
person name George W. Bush and an organization Republi-
can. Modeling top-down and bottom-up simultaneously can
therefore explore interdependencies between multiple sub-
tasks, and allow information to flow in both directions to
exploit mutual benefits.

1.1.2 Citation Matching
Citation matching requires extracting bibliographic records

(e.g., author, title, and venue fields) from citation lists in
technical papers (segmentation), and then identifying dupli-
cate records to find the citations referring to the same paper
(entity resolution). Citation strings may have different ci-
tation styles, different abbreviations, and typographical er-
rors. Correct coreference of a messy citation with a clean
citation provides the opportunity for an alignment between
these two citations to help the model correctly segment the
messy one. Also, coreference between two citations can be
assessed more accurately if we can compare well-segmented
title fields and venue fields. Given the following two cita-
tions from the Cora database:

Hu, Y. & Kibler, D Generation of Attributes for Learning
Algorithms, in Proceeding of the 13th National Conference
on Artificial Intelligence, p806-811, 1996.

Hu, Y., and Kibler, D., Generation of Attributes
for Learning Algorithms, Proceedings of the Thirteenth
National Conference on Artificial Intelligence (AAAI96),
p.806-811, 1996.

In the second citation, the author field Hu, Y., and Kibler,
D. and the title field Generation of Attributes for Learning
Algorithms are clearly separated by a comma, and extract-
ing them is fairly straightforward. However, in the first one,
there is no clear author-title boundary, and correctly pin-
pointing it seems very difficult. Large quantities of labeled
training data and an extensive lexicon could help, but they
are very expensive to obtain, and even available they are far
from a guarantee of success. However, if we notice that the
two citations are coreferent and the title of the second one
begins with the substring “Generation of Attributes for”, we
can hypothesize that the title of the first one also begins
with this substring, allowing us to correctly segment it.

To summarize, what appears to be necessary is a mecha-
nism to consistently integrate top-down and bottom-up pro-
cessing in a bidirectional manner such that segmentation
and entity resolution can aid each other to boost the perfor-
mance of citation matching. In the following, we summarize
our major contributions to show that our approach meets
these requirements.
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1.2 Our Contributions
Inspired by the above motivation and to address the prob-

lems such as brittle accumulation of errors in pipeline sys-
tems, in this paper we propose a general, strongly-coupled,
and bidirectional paradigm, based on conditionally-trained
factor graphs for both top-down and bottom-up modeling,
to attack the problem of joint information extraction. More
specifically, we summarize our major contributions of this
paper as follows:

• First, we formally define joint optimization of informa-
tion extraction. We propose a discriminative frame-
work in which the segmentation-relation joint factor
connects bidirectionally with the segmentation and re-
lation factors. This modeling offers a natural formal-
ism for exploiting rich dependencies and interactions
between relevant subtasks to capture mutual benefits.
It also has several advantages over previous probabilis-
tic graphical models.

• Second, since exact parameter estimation in this model
is too expensive, we propose a highly-coupled learn-
ing algorithm based on variational expectation maxi-
mization (VEM) to perform parameter estimation ap-
proximately in a top-down and bottom-up manner,
which allows information to flow in both directions
and explores mutual benefits from relevant subtasks.
Both segmentation and relation are optimized collab-
oratively to boost the performance. This algorithm
is guaranteed to converge in finding the maximum a
posteriori (MAP) assignments for model parameters.

• Third, we perform extensive experiments on two im-
portant IE tasks, namely, entity identification and rela-
tionship extraction from Wikipedia’s encyclopedic ar-
ticles, and citation matching. Our model significantly
outperforms state-of-the-art pipeline, integrated and
joint models. Some interesting issues, such as the ef-
fect of joint factors on performance and efficiency of
our approach, are also discussed and analyzed.

2. PROBLEM FORMULATION
Let x = {x1, x2, . . . , xp} be an observation sequence con-

taining p tokens. Let s = {s1, s2, . . . , sq} be a segmentation
assignment of observation sequence x. Each segment si is
a triple si = {αi, βi, yi}, where αi is a start position, βi
is an end position, and yi(yi ∈ Y) is the label assigned to
all tokens of this segment. It is reasonable to assume that
segments have positive lengths, and the segment si satisfies
0 ≤ αi < βi ≤ p and αi+1 = βi + 1. s essentially mod-
els entity candidates, and each segment si can be an entity
or a non-entity. Without loss of generality, let em and en
(em, en ∈ s) be two arbitrary entities in the sequence x, and
rmn be the relation assignment between them. r is the set of
relation assignments of all entity pairs in sequence x. r al-
lows a variety of relations and dependencies, and it is built
upon the segmentation s which models entity candidates.
Note that the definitions of s and r are general and there-
fore can be applied to a variety of IE tasks. For example,
em and en can be entity candidates from segments or entire
observation sequences. rmn can be a semantic relation (e.g.,
employer) between entity candidates or the boolean corefer-
ence variable indicating whether or not two sequences (e.g.,
paper citations) are referring to each other. rmn can also

be an author community or a friendship relation in a social
Web.

Based on the preliminaries and notations, we define the
concepts of segmentation and relation discovery as follows.

Definition 1. (Segmentation). Given an observation
sequence x, segmentation is the task of assigning segments s
to x such that s∗ = arg maxs P (s|x).

Definition 2. (Relation Discovery). For a segmen-
tation s of sequence x, relation discovery is the process of
extracting and discovering relation r between pairs of entity
candidates from s such that r∗ = arg maxr P (r|s, x).

Let y = {r, s} be the pair of segmentation s and relation r.
y must satisfy the condition that both the assignments of the
segments and the assignments of the relations of segments
are maximized simultaneously. We now formally define the
problem of joint information extraction as follows.

Definition 3. (Joint Optimization of Information
Extraction). Given an observation sequence x, the goal
of joint information extraction is to find the assignment
y∗ = {r∗, s∗} that has the maximum a posteriori (MAP)
probability

y∗ = arg max
y

P (y|x), (1)

where r∗ and s∗ denote the most likely relation assignment
and segmentation assignment, respectively.

Note that this definition is different from pipeline mod-
els which perform segmentation and relation in sequential
order without capturing interactions between them. This
problem is more challenging, and offers new opportunities
for information extraction.

3. MODEL
Following the notations in Section 2, we define a joint con-

ditional distribution based on discriminatively-trained fac-
tor graphs. Let G be a factor graph [7] defining a probabil-
ity distribution over a set of output variables o conditioned
on observation sequences x. {Φi} is a set of factors in G,
where each factor is defined as the exponential family of an
inner product over sufficient statistics {fik(xi,oi)} and cor-
responding parameters θik as Φi = exp{

∑
k θikfik(xi,oi)}

[8, 18]. Using parameter tying, the nature of our modeling
enables us to partition the factors of G into three groups,
namely the segmentation factor, the relation factor, and the
segmentation-relation joint factor. Each factor is a clique
template whose parameters are tied. In the following we
describe these factors in detail. As we will see, this model-
ing offers a natural formalism for exploiting top-down and
bottom-up bidirectional dependencies and interactions be-
tween relevant subtasks to capture mutual benefits, as well
as a great flexibility to incorporate a large collection of ar-
bitrary, overlapping and nonindependent features.

Segmentation factor. The segmentation factor φS(i, s,x)
models segmentations s in x. We assume that φS(i, s,x) fac-
torizes according to a set of feature functions gk(i, s,x) and
a corresponding set of real-valued weights λk as

φS(i, s,x) = exp

(
K∑
k=1

λkgk(i, s,x)

)
, (2)

where K is the number of feature functions. To effectively
capture properties of segmentation, we relax the first-order
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Markov assumption to semi-Markov [14] such that each seg-
ment feature function gk(·) depends on the current seg-
ment si, the previous segment si−1, and the whole obser-
vation sequence x, that is, gk(i, s,x) = gk(si−1, si,x) =
gk(yi−1, yi, αi, βi,x). In addition, transitions within a seg-
ment can be non-Markovian.

Relation factor. The relation factor φR(em, en, rmn)
models relations rmn rmn ∈ r between all possible entity
candidate pairs (em, en), em, en ∈ s,m 6= n in observation
sequence x. Similar to the segmentation factor, the relation
factor is written as

φR(em, en, rmn) = exp

(
W∑
w=1

ξwfw(em, en, rmn)

)
, (3)

where W is the number of features, fw(em, en, rmn) are fea-
ture functions, and ξw are corresponding weights. The factor
φR(em, en, rmn) represents dependencies (e.g., long-distance
dependencies, relation transitivity, etc.) between any two
entity candidates em and en. For example, if the same en-
tity is mentioned more than once in an observation sequence,
all occurrences probably have the same relation to another
entity. Using the relation factor φR(em, en, rmn), evidences
for the same entity segments (or entity candidates) to an-
other entity are shared among all their occurrences within
the observation sequence.

Segmentation-relation joint factor. Both of segmen-
tation and relation factors are local, since they do not take
into account dependencies between relevant subtasks. We
propose a global factor, the segmentation-relation joint fac-
tor, to capture both segmentation-to-relation (bottom-up)
and relation-to-segmentation (top-down) dependencies. This
joint factor φSRJ(s, r,x) involves both segmentation and re-
lation hypotheses as its input. It captures the rich and com-
plex interactions between segmentations and relations bidi-
rectionally, which is defined as

φSRJ(s, r,x) =

exp

(
T∑
t=1

ηtqt(si−1, si, r,x) +

T∑
t=1

γtht(em, en, rmn, s,x)

)
.

(4)

The newly introduced feature function qt(si−1, si, r,x) ex-
ploits relation-to-segmentation (top-down) dependencies, which
uses relation hypotheses r between different segments for
segmentation of observation sequence x. Intuitively, know-
ing the relation between two entity segments is very helpful
for segmentation and entity identification. For example, the
employment relation can only exist between an organization
and a person, and cannot exist between an organization and
a location, or a location and a person). On the other hand,
the function ht(em, en, rmn, s,x) captures segmentation-to-
relation (bottom-up) interactions, which uses segmentation
information s for relation discovery. For example, if two
segments are labeled as a location and a person, the seman-
tic relation between them can be birth place or visited, but
cannot be employment. ηt and γt are the corresponding
real-valued weights for qt(·) and ht(·), respectively, and T is
the number of features. Notably, this joint factor captures
bidirectional interactions and mutual benefits between seg-
mentations and relations. Such dependencies are crucial and
modeling them often leads to improved performance.

According to the celebrated Hammersley-Clifford theo-

Figure 2: Graphical representation of the proposed
model consisting of a bidirectional structure. The
segmentation-relation joint factor enables both top-
down and bottom-up connections with relation and
segmentation factors to explore tight dependencies
and mutual benefits for multiple subtasks.

rem, the joint conditional distribution P (y|x) = P ({r, s}|x)
is factorized as a product of potential functions over cliques
in the graph G as the form of an exponential family:

P (y|x) =
1

Z(x)

( |s|∏
i=1

φS(i, s,x)

)(
M∏
m,n

φR(em, em, rmn)

)
( |s|∏
i=1

M∏
m,n

φSRJ(s, r,x)

)
,

(5)

where M is the number of arbitrary entity segments in the
observation sequence x, |s| is the number of segments of x,

and Z(x) =
∑

y

∏|s|
i=1 φS(i, s,x)

∏M
m,n φR(em, em, rmn)

∏|s|
i=1∏M

m,n φSRJ(s, r,x) is the normalization factor of our model.
In summary, our model consists of three sub-structures:

(1) a semi-Markov chain on the segmentations s conditioned
on the observation sequences x, represented by φS(i, s,x);
(2) potential φR(em, en, rmn) measuring dependencies and
relations rmn between two arbitrary entity candidates em
and en from segmentations s; and (3) a fully-connected
graph exploiting tight dependencies between segmentations
s and relations r, represented by φSRJ(s, r,x). It is par-
ticularly notable that our model has a dynamic graphical
structure. Since the segments (entity candidates) from the
semi-Markov chains are dynamically changed, the structure
of relation factor will change correspondingly given different
segmentations. Moreover, different structures of the rela-
tion factor will also have influence on segmentations. This
is different from the conventional semi-CRFs [14].

While some special cases of CRFs are of particular inter-
est, several major elements make our model different. We
emphasize on the differences and advantages of our model
against others. Most importantly, our model captures bidi-
rectional top-down and bottom-up dependencies between
multiple subtasks for joint IE problems. Linear-chain CRFs
[8] and semi-CRFs [14] can only perform single IE tasks
such as sequence labeling, which lack the ability to capture
long-distance dependencies and to represent complex inter-
actions between multiple subtasks. Skip-chain CRFs [17]
introduce skip edges to model long-distance dependencies
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to handle the label consistency problem in single sequence
labeling and extraction. 2D CRFs [28] are two-dimensional
conditional random fields incorporating the two-dimensional
neighborhood dependencies in Web pages, and the graphical
representation of this model is a 2D grid. Hierarchical CRFs
[9] are a class of CRFs with hierarchical tree structure. Our
proposed model, on the other hand, has a distinct graphical
structure from 2D and hierarchical CRFs. By modeling both
segmentations s and relations r simultaneously in a single
coherent framework, this paradigm offers a natural way for
joint information extraction, avoiding the problems such as
error propagation occurred in pipeline approaches. Further-
more, this modeling has several advantages over previous
probabilistic graphical models, including the employment of
semi-Markov chains for efficient segmentation and labeling,
the representation of long-range dependencies between dif-
ferent segments, and the capture of rich and complex inter-
actions between relevant subtasks to exploit mutual benefits.

4. TOP-DOWN AND BOTTOM-UP LEARN-
ING

Given independent and identically distributed (i.i.d.) train-
ing data D = {xi,yi}Ni=1, where xi is the i-th sequence in-
stance, and yi = {ri, si} is the corresponding segmentation
and relation assignments. The objective of parameter esti-
mation is to estimate the whole set of model’s parameters
Θ = {{λk}Kk=1, {ξw}Ww=1, {ηt}Tt=1, {γt}Tt=1}. Under the i.i.d.

assumption, we ignore the summation operator
∑N
i=1 in

the log-likelihood during the following equations and deriva-
tions. We would like to maximize the log-likelihood of the
observation given the data:

L(Θ) = logPΘ(x) = log
∑
s,r

PΘ(s, r,x). (6)

The above function does not have a closed-form solution
because of the marginalization taking place within the log-
arithm. Working directly with this function is typically
precluded by the need to compute the normalization fac-
tor Z(x), which is intractable in our model. We exploit
variational approximation methods [5, 20] that offer guar-
antees in the form of a lower bound on the marginal prob-
abilities. This family of approaches aims to minimize the
Kullback-Leibler (KL) divergence between an approximated
distribution Q and the target distribution PΘ(s, r|x) by find-
ing the best distribution Q from some family of distributions
for which an inference is feasible. The variational inference
method provides a fast, deterministic approximation to oth-
erwise unattainable posteriors. Also its convergence time is
independent of dimensionality [20].

Let Qν(s, r|x) be the variational distribution which serves
as an approximation of the target distribution PΘ(s, r|x).
According to the mean-field variational theory [5, 21, 4], the
optimal solution is the distribution that has the minimum
KL divergence between two distributions Q and P . Based
on Jensen’s inequality we have

L(Θ) = log
∑
s,r

Qν(s, r|x)
PΘ(s, r,x)

Qν(s, r|x)

≥
∑
s,r

Qν(s, r|x) log
PΘ(s, r,x)

Qν(s, r|x)
= KL(Qν(s, r|x)||PΘ(s, r,x)).

(7)

As can be seen, Equation 7 is the same as maximizing a
lower bound on the log-marginal probability PΘ(x), with

equality when Qν(s, r|x) = PΘ(s, r|x). It is easy to obtain
the following formulation:

logPΘ(x)−KL(Qν(s, r|x)||PΘ(s, r|x))

= KL(Qν(s, r|x)||PΘ(s, r,x)). (8)

According to Equations 7 and 8, optimizing a variational
bound on the observed data is equivalent to minimizing the
KL divergence between PΘ(s, r|x) and Qν(s, r|x). This is
equivalent to minimizing the KL divergence between the dis-
tribution Qν(s, r|x) and the distribution PΘ(s, r,x). Given
the non-negativity property of the KL divergence, the cost
function we work is

L = KL(Qν(s, r|x)||PΘ(s, r,x))

=
∑
s,r

Qν(s, r|x)
[
− logQν(s, r|x) + logPΘ(s, r,x)

]
(9)

= H(Qν) + EQν
{

logPΘ(s, r,x)
}

(10)

≤ L(Θ), (11)

where H(Qν) = −
∑

s,rQν(s, r|x) logQν(s, r|x) is the en-

tropy of the variational distribution, and EQν
{

logPΘ(s, r,x)
}

=
∑

s,rQν(s, r|x) logPΘ(s, r,x) is the expectation with re-

spect to Qν(s, r|x). Notice that the cost L balances two
competing goals: assign values to variables r and s with
high probability under PΘ(s, r,x) (the second term), but at
the same time be as less committed as possible (the entropy
term). Clearly, L is the lower bound of the log-likelihood
L(Θ). Thus by maximizing L we will always recover the
log-likelihood of the data L ∗ = logPΘ(x)− 0.

For efficient learning, it is critical that the variational fam-
ily of distributions Qν has a tractable form [5, 4]. In the fol-
lowing, we use Qν(s, r) to denote Qν(s, r|x). According to
the mean-field variational theory, we assume that Qν(s, r)
forms a factorized distribution; that is, the variables are in-
dependent and the joint distribution is a product of single
variable marginal probabilities as

Qν(s, r) = Qν(y) =
∏
i∈Vs

Qνi(si)
∏
j∈Vr

Qνj(rj), (12)

where s = {si}i∈Vs and r = {rj}j∈Vr . Let PΘ(s, r,x) fac-
torize into a product of pairwise potentials depending only
on the variables associated with each undirected edge as
PΘ(s, r,x) =

∏
e∈E Ψ(se, re,xe). Mean-field inference algo-

rithms exploit this additional factorization structure. Note
that we absorb the normalization constant into one of the
potentials. The cost function L reduces to a sum of the
following terms as

L = H(Qν) + EQν
{

logPΘ(s, r,x)
}

= H(Qν) + EQν
{

log
∏
e∈E

Ψ(se, re,xe)
}

(13)

=
∑
i∈Vs

H(Qνi) +
∑
j∈Vr

H(Qνj) +
∑
e∈E

∑
ye∩V

Qν(ye∩V ) log Ψ(se, re,xe), (14)

where Qν(ye∩V ) is the variational marginal probability over
variables y = {r, s} associated with edge e and Vs∪Vr = V .

To optimize the function L , let EQν{·|yk} k ∈ V be the
conditional expectation with respect to Qν . We provide a
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more explicit illustration and the feasibility of evaluating
EQν{·|yk} in the updates as

EQν{logPΘ(s, r,x)|yk}

=
∑

{yi}i∈V \k

[ ∏
i∈V \k

Qνi(yi)
]

logPΘ(s, r,x) (15)

=
∑
e∈E

∑
ye∩{V \k}yV \k

Qν(ye∩{V \k}) log Ψ(se, re,xe), (16)

where V \k is the set of variables other than k and Qνi(yi) =
Qνi(si)Qνi(ri). Note that the expectation specifically does
not depend on the variational marginal Qνk(·) over yk. The
result is a function of the conditional variable yk.

To update the kth variational marginal, we view L as a
function of Qνk(·) while keeping other marginals fixed. We
treat the entropy terms H(Qν) corresponding to remaining
marginals as fixed and appeal to the linearity of expectation
EQν{·} =

∑
yk
Qνk(yk)EQν{·|yk} to obtain

L = H(Qνk(yk))

+
∑
yk

Qνk(yk)EQν{logPΘ(s, r,x)|yk}+ const, (17)

where the dependence of L on the marginal Qνk(yk) is ex-
plicit. It is easy to verify via straightforward calculation that
maximizing this cost function with respect to the marginal
Qνk(yk) yields the following mean field equations for all k
as:

Qνk(yk)← 1

Zk
exp

{
EQν{logPΘ(s, r,x)|yk}

}
(18)

Zk ←
∑
yk

exp
{
EQν{logPΘ(s, r,x)|yk}

}
(19)

Obviously, Qνk(yk) is in the form of the exponential fam-
ily. This property considerably simplifies the complexity
and facilitates the computation. Recall that Qν(s, r) =
Qν(s)Qν(r) =

∏
i∈Vs Qνi(si)

∏
j∈Vr Qνj(rj) (Equation 12),

we further assumeQν(s) to be of the form 1
ZQν (s)

∏
i∈Vs φi(µi)

and Qν(r) to be 1
ZQν (r)

∏
j∈Vr φj(ωj). ZQν(s) and ZQν(r) are

two local normalization factors. Here, we introduce two vari-
ational parameters µ = {µi}i∈Vs and ω = {ωj}j∈Vr , where
µ and ω are associated with segmentation and relation, re-
spectively, and we rewrite L as L (µ, ω).

We propose a bidirectional learning algorithm based on
variational expectation maximization (VEM) to optimize
the variational parameters µ and ω efficiently in a collabora-
tive manner such that they can benefit from each other. For
example, if we have trained segmentation parameter µ, its
decision can guide the learning for relation parameter ω. As
shown in Algorithm 1, we summarize the whole parameter
estimation procedure as follows: in the E-step, we maximize
the variational distributions Qνk(yk), which is accomplished
by computing EQν{logPΘ(s, r,x)|yk} based on Equations
15 and 16, and by updating Qνk(yk) based on Equations 18
and 19. After we calculate the cost function L (µ, ω) based
on Equation 17, we perform bottom-up learning to opti-
mize the relation parameter ω using the hypotheses from
segmentations. Here we keep the segmentation parameter µ
fixed. In the M-step, we perform top-down learning to opti-
mize the segmentation parameter µ using hypotheses from
relations while keeping Qνk(yk) fixed. Such iterative opti-
mization allows information to flow bidirectionally to boost

Algorithm 1: The variational expectation maximiza-
tion (VEM) algorithm for bidirectional top-down and
bottom-up learning

Input: A set of pairwise potentials Ψ(se, re,xe)
defining logPΘ(s, r,x), initial potentials for
Qν(s) and Qν(r).

Output: Optimized variational parameters µ∗ and ω∗

for segmentation s and relation r.
while equilibrium states or a threshold number of
iterations are not reached do

E-step:
repeat

Compute EQν{logPΘ(s, r,x)|yk} based on
Equation 15 and 16,
Update Qνk(yk) based on Equation 18 and 19,
Compute L (µ, ω) based on Equation 17.
// Bottom-up learning

ωi+1 = arg maxω L (µi, ω).
until converge;
M-step:
repeat

// Top-down learning

µi+1 = arg maxµ L (µ, ωi).

until converge;

end
return µ∗ and ω∗

both the segmentation and relation performance. This two-
step max-max algorithm leads to a monotonically increasing
cost function L (µ, ω) and log-likelihood of data. Conse-
quently, it is guaranteed to converge to an equilibrium state
of the KL divergence between Q and P among all distri-
butions Q of the given form Qν(s) = 1

ZQν (s)

∏
i∈Vs φi(µi)

and Qν(r) = 1
ZQν (r)

∏
j∈Vr φj(ωj). This shows that the al-

gorithm is theoretically sound and correct. Moreover, the
variational formulation remains applicable even when we can
no longer handle logPΘ(s, r,x), this is superior to the con-
ventional EM algorithm.

4.1 Complexity Analysis
We now investigate and analyze the computational com-

plexity of Algorithm 1. Suppose |V | is the number of seg-
mentation and relation variables, and d is the number of
distinct values each variable (either s or r) may take. In
Equation 17, the evaluation of the first summation term
H(Qνk(yk)) takesO(|V |d). For computing EQν{logPΘ(s, r,x)|yk}
in the second term of Equation 17, e ∩ {V \k} is either an
empty set or a single node associated with edge e, where
each expectation involves at most two variables and there
are |E| edges, thus the complexity will be at most O(|E|d2).
For Algorithm 1, suppose the iteration number is I, then the
overall computational complexity is O((|V |d+ |E|d2)I).

4.2 Inference
Ideally, the objective of inference is to find the most likely

segmentation assignment s∗ and the corresponding most likely
relation assignment r∗, that is, to find y∗ = arg maxy P (s, r|x)
such that both of them are optimized simultaneously. Un-
fortunately, exact inference to this problem is generally in-
tractable, since the search space is the Cartesian product
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Table 1: Comparative performance of our model, the CRF+CRF, Single MLN, and DCRF models for entity
identification from Wikipedia.

Entities
CRF+CRF Single MLN DCRF Our model

P R F1 P R F1 P R F1 P R F1

person 75.33 83.22 79.08 75.94 83.93 79.74 75.96 83.82 79.70 82.91 84.26 83.58

location 77.03 69.45 73.04 77.42 70.13 73.59 77.68 70.13 73.71 82.95 81.44 82.19

organization 53.78 47.76 50.59 54.11 47.06 50.34 54.55 46.98 50.48 72.43 63.69 67.78

date 98.54 97.53 98.03 97.79 95.68 96.72 97.98 95.22 96.58 98.90 96.24 97.55

year 97.14 99.10 98.11 98.06 99.12 98.59 98.12 99.09 98.60 97.36 99.55 98.44

time 60.00 20.33 30.37 50.00 15.38 23.53 50.00 25.33 33.63 100.0 33.00 49.62

number 98.88 60.33 74.94 100.0 66.07 79.57 100.0 70.00 82.35 100.0 65.52 79.17

miscellaneous 77.42 80.56 78.96 79.81 84.14 81.92 79.81 83.14 81.44 81.50 82.16 81.83

Overall 89.55 88.70 89.12 90.45 90.45 90.45 90.98 90.37 90.67 94.06 93.95 93.97

of all possible segmentation and relation assignments. Con-
sequently, approximate inference becomes an inevitable al-
ternative. At the equilibrium state of Algorithm 1, varia-
tional distributions Qν(s) and Qν(r) are obtained such that
Qν(s, r) = Qν(s)Qν(r) is an equilibrium state of the KL
divergence KL(Q||P ). Such kind of inference is straightfor-
ward, since the maximum a posterior (MAP) segmentation
assignment s is constructed from the optimized variational
parameter µ∗, and the MAP or most likely relation assign-
ment r is found from the variational parameter ω∗.

5. EXPERIMENTS

5.1 Entity Identification and Relation Extrac-
tion

5.1.1 Data and Methodology
Our dataset consists of 1,127 paragraphs from 441 pages

from the online encyclopedic articles in Wikipedia. The la-
beled 7,740 entities are classified into 8 categories, yield-
ing 1,243 person, 1,085 location, 875 organization, 641 date,
1,495 year, 38 time, 59 number, and 2,304 miscellaneous
names. This dataset also contains 4,701 relation instances
and 53 labeled relation types, and the 10 most frequent
relation types are job title, visited, birth place, associate,
birth year, member of, birth day, opus, death year, and death day.
The 8 entity categories and 53 relation types are label sets
for entity identification and relation extraction in our model.
All experiments were performed on the Linux platform, with
a 3.2GHz Pentium 4 CPU and 4 GB of memory.

Accurate entities enable features that are naturally ex-
pected to be useful to boost relation extraction. A wide
range of rich, overlapping features can be exploited in our
model. These features include contextual features, part-of-
speech tags, morphological features, entity-level dictionary
features, and clue word features. Feature conjunctions are
also used. In leveraging relation extraction to improve en-
tity identification, we employ a combination of syntactic,
entity, keyword, semantic, and Wikipedia characteristic fea-
tures. More importantly, our model introduces joint factors
to capture both top-down and bottom-up dependencies, and
function qt(·) uses relation hypotheses and ht(·) uses seg-
mentation hypotheses as features. These features capture
deep dependencies between entities and relations, and they
are natural and effective in enhancing the performance.

We perform four-fold cross-validation on this dataset, and
take the average performance. For performance evaluation,
we use the standard measures of Precision (P ), Recall (R),
and Fβ=1 (Fβ=1 is the harmonic mean of P and R and
Fβ=1 = 2PR

P+R
) for both entity identification and relation ex-

traction. We compare our approach with one pipeline model
CRF+CRF, one integrated model Single MLN, and one

Table 2: Comparative performance of different mod-
els for relation extraction from Wikipedia.

Method Accuracy Precision Recall F-measure

CRF+CRF 93.72 70.40 57.85 63.51
Single MLN 93.96 68.54 61.75 64.97
DCRF 93.90 69.30 60.22 64.44
Our model 96.92 72.85 64.25 68.28

Table 3: Performance comparison with other top-
performing systems on relation extraction.

System Precision Recall F-measure

Culotta et al. [1] 75.53 61.69 67.91
Nguyen et al. [11] 29.07 53.86 37.76
Yu et al. [27] 72.80 59.80 65.66
Our model 72.85 64.25 68.28

joint model DCRF. CRF+CRF employs one linear-chain
CRFs [8] for entity recognition, and another linear-chain
CRF for relation prediction. Single MLN performs joint
inference for both subtasks in a single Markov logic network
(MLN) [12], which is a highly expressive language for first-
order logic and can conduct relational learning between en-
tity pairs. DCRF [19] is a factorial CRF applied to jointly
solve the two subtasks. All these models exploit standard
parameter learning and inference algorithms in our exper-
iments. To avoid over-fitting, penalization techniques on
likelihood are also performed.

5.1.2 Experimental Results and Discussions
Table 1 shows the performance of entity identification and

Table 2 shows the overall performance of relation extraction2

of different models, respectively. For relation extraction in
Table 2, we also recorded the token-wise labeling accuracy.
Our model substantially outperforms all baseline models on
F-measure for both entity identification and relation extrac-
tion, and it is statistically significantly better (p-value< 0.05
with a 95% confidence interval) according to McNemar’s
paired tests. The pipeline model CRF+CRF suffers from
pipeline inherent inferiority such as brittle accumulation of
errors. For example, this model cannot correctly extract
relations between mis-recognized entities. As discussed, it
performs entity identification and relation extraction inde-
pendently without considering the mutual correlations be-
tween them, leading to reduced performance. By model-
ing interactions between two subtasks, boosted performance
can be achieved, as illustrated by the integrated model Sin-
gle MLN and the joint model DCRF. The Single MLN
model captures dependencies between entities and relations
via first-order logic; however, limitations of first-order logic

2Due to space limitation, we only present the overall perfor-
mance, and omit the performance on 53 relation types.
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Figure 3: An example of identified entities and extracted semantic relationships from Wikipedia’s encyclo-
pedic article about Bill Gates by using our model. The major person name Bill Gates is in pink and other
person names are in green color. Organizations are in yellow and locations are in blue, and other types of
entities are in gray. Semantic relations between entities are also labeled.

make it difficult to specify a relation factor that utilizes the
uncertain output of segmentation [15, 22]. Joint inference in
Single MLN is only weakly coupled and does not enforce
transitivity, since the logic formulas only examine pairs of
consecutive labels, not whole fields. As can be seen, our
model achieves stronger interactions between two subtasks,
which is strongly coupled and bidirectional. The DCRF
model applies loopy belief propagation (LBP) for approx-
imate learning and inference, which is inherently unstable
and may cause convergence problems. Consequently, train-
ing a DCRF model with unobserved nodes (hidden vari-
ables) makes this approach difficult to optimize. Figure 3
illustrates an example of identified entities and extracted
semantic relationships from Wikipedia’s encyclopedic arti-
cle about Bill Gates by employing our model. As can be
seen, different entity types are in different colors, and the
relations between them are also linked and labeled. Inter-
estingly, these results are versatile for a variety of applica-
tions, such as Web data mining, social network analysis and
mining, etc.

A large number of engineered systems were developed for
identifying relations of interest. Table 3 compares our results
with some recently published results on the same dataset.
Notably, our approach outperforms previous ones given that
we deal with a fairly more challenging problem involving
both entity identification and relation extraction. Similar to
[13], these systems assume that the golden-standard entities
are already known or extracted from text without errors, and
they only perform relation extraction (due to this reason,
we only compare the performance on relation extraction.).
Unfortunately, such assumption is not valid in practice. As
a result, our model is more applicable to real-world IE tasks.

5.1.3 Effect of Joint Factors on Performance
We investigate the nature and effectiveness of segmentation-

relation joint factors and Figure 4 demonstrates their feasi-
bility in our modeling. It shows that the joint factors con-
sistently enhance precision, recall, and F-measure for both
entity identification and relation extraction subtasks. For
example, the joint factors significantly improve the overall
F-measure by 2.65% for entity identification. Our approach
demonstrates its merits by using joint factors to explore bidi-
rectional tight interactions between segmentations and rela-
tions and by optimizing them collaboratively in a top-down
and bottom-up manner, resulting in improved performance.

5.1.4 Efficiency
Table 4 summarizes the efficiency of different models. The

pipeline CRF+CRF takes the least time for learning, due
to its simple pipeline architecture. Compared to Single
MLN, the running time of our model is only increased
slightly, which is reasonable to apply to real IE problems.
It is particularly notable that our model takes much less

Table 4: Efficiency comparison of different models
on learning time (min.) and inference time (min.).

Method Learning time Inference time

CRF+CRF 15.30 0.20
Single MLN 35.95 2.67
DCRF 677.67 0.33
Our model 39.83 0.30

time than the joint model DCRF. Specifically, our model
is over an order of magnitude (approximately 17.5 times)
faster than DCRF for running. When the graph has large
tree-width as in our case, the LBP algorithm in DCRF is
inefficient and slow to converge.

5.2 Citation Matching

5.2.1 Data and Methodology
We apply the Cora dataset to evaluate our approach. This

dataset contains 1295 citations and 134 clusters (sets of ci-
tations that refer to the same paper), and each citation has
three fields – author, title, and venue. We run three-fold
cross-validation on this dataset. Segmentation is evaluated
by P, R, and F1. For entity resolution, we measure both
pairwise P, R, F1 and cluster recall. Cluster recall is the
fraction of clusters that are correctly output by the system
after taking transitive closure from pairwise decisions.

A wide range of rich features can be exploited in our
model. For segmentation, these features largely consider
field-level similarity using a number of string and token-
based comparison metrics (e.g., string edit distance, tf-idf
over tokens and n-grams, etc.). We also include feature con-
junctions, specialized features for author and title matching,
and global features based on distance metrics for entire ci-
tations. In leveraging coreference to improve segmentation,
we employ a combination of local (e.g., contextual and mor-
phological), layout, lexicon membership features.

For performance comparison, the CRF+CRF model ap-
plies first CRF for segmentation, and another CRF for entity
resolution (which views resolution as a pairwise classifica-
tion problem). For the Single MLN model, we follow [12]
to design it, engaging features mentioned above. Moreover,
we also compare the performance of our model with some
recently published results on the same dataset.

5.2.2 Experimental Results and Discussions
Our comparative results are shown in Table 5 and Table 6,

demonstrating the promise of our approach with significant
improvements on both segmentation and coreference com-
pared with the three baseline models CRF+CRF, Single
MLN, DCRF, and other previously published results.

Table 5 shows the improvements on F-measure for seg-
mentation, where we list both the overall performance and
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Figure 4: Performance comparison of joint factors
on entity identification (left) and relation extraction
(right) from Wikipedia.

Table 5: Comparative performance of different mod-
els for segmentation in citation matching.

Method Author Title Venue Total

Isolated MLN [12] 99.30 97.30 98.20 98.20
Single MLN [12] 99.50 97.60 98.30 98.40
CRF+CRF 98.77 97.02 97.56 97.66
Single MLN 99.39 97.79 98.36 98.41
DCRF 99.40 97.82 98.45 98.47
Our model 99.41 98.00 98.68 98.63

the performance on the three fields. Our model outper-
forms earlier results such as Isolated MLN [12] and Single
MLN [12]. Compared to the three baseline models, the rel-
ative error reduction (RER) is 41.45%, 13.84% and 11.68%,
respectively. Note that the difference between our Single
MLN model and the one in [12] is that we engage different
features. Table 6 compares the performance of entity reso-
lution for different models on both metrics of F1 and cluster
recall. Our model, which concurrently solves the citation
matching task, easily outperforms previously published re-
sults in [16] and [12]. It also outperforms the three baseline
models by 3.30%, 1.15%, and 0.88% in pairwise F1. Even
though the Single MLN model in [12] captures interactions
between segmentation and coreference, it is only a weak in-
teraction. Since the logic formulae in [12] only examine pairs
of consecutive labels but not whole fields – failing to utilize
information from predicted field range and non-consecutive
words in the field. As can be seen, our model is highly-
coupled and achieves stronger interaction between multiple
subtasks. Importantly, Table 6 shows that our approach al-
lows cluster recall to improve substantially, resulting in an
improvement of up to 6.83% compared to DCRF model.
This is particularly notable given that cluster recall is more
strict than the pairwise F1 metric.

5.2.3 Effect of Joint Factors on Performance
Figure 5 illustrates the benefits of the joint factors in our

modeling for citation matching. This figure demonstrates
the bidirectionality of joint factors using segmentation to
aid coreference and vice versa, which is highly coupled and
information can flow in both directions to capture mutual
benefits and strong interactions between segmentation and
resolution. Compared to the pairwise F-measure, the cluster
recall is boosted substantially (up to 5.65%) by joint factors.
This is particularly interesting as it shows that exploiting
joint factors is much more accurate under the strict metric.

5.2.4 Efficiency
Table 7 lists the running times (for both training and in-

ference) for CRF+CRF, Single MLN, DCRF, and our

Figure 5: Performance comparison of joint factors
on segmentation (left) and entity resolution (right)
in citation matching.

Table 6: Comparative performance of different mod-
els for entity resolution in citation matching.

Method P R F1 Cluster
Recall

Fellegi-Sunter [16] 78.00 97.70 86.70 62.70
Single MLN [12] 94.30 97.00 95.60 78.10
CRF+CRF 93.10 94.65 93.87 76.32
Single MLN 94.84 97.22 96.02 85.15
DCRF 94.92 97.69 96.29 85.77
Our model 96.20 98.15 97.17 92.60

model (we cannot compare it with the models in [16] and
[12] since experimental settings are different). The running
time of our model is reasonably slower than that of the
pipeline model CRF+CRF, and comparable to that of Sin-
gle MLN, illustrating the efficiency of our approach. How-
ever, the DCRF model takes 458.83 minutes to converge,
which is very slow. This disadvantage limits the ability of
DCRF for real-world IE problems to a large extent.

6. RELATED WORK
Some work has been dedicated to improving the pipeline

architecture [2, 3]. Finkel et al.[2] modeled pipelines as
Bayesian networks, with each low level task corresponding
to a variable in the network. This architecture has the draw-
back that it only allows information to flow in one direction.
Hollingshead and Roark [3] proposed pipeline iteration, us-
ing output from later stages of a pipeline to constrain ear-
lier stages of the same pipeline, but it lacks the ability to
model internal tight dependencies between stages. However,
all these approaches suffer from inherent problems such as
brittle accumulation of errors caused by their pipeline archi-
tecture.

Integrated and joint models exploring mutual benefits on
different subtasks have shown great promise, where several
closely related approaches have been proposed. Recently,
Zhu et al. [30] proposed an integrated probabilistic approach
to Web page understanding. Nevertheless, this model is
feed-forward or top-down integrated and it only allows infor-
mation to flow in one direction. Ko et al. [6] proposed a joint
answer ranking framework based on probabilistic graphical
models for question answering. However, they employed N -
best list for inference procedure which is a restricted ap-
proximation for the full distribution of large-output compo-
nents. Thus, the number of uncertain hypotheses in their
framework is severely limited. Yu et al.[27] integrated two
sub-models, semi-CRFs and MLNs, together, but they are
only loosely coupled in that the parameter estimation is per-
formed separately and the inference information can only
flow in one direction, which is similar to [2]. Luo et al. [10]
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Table 7: Efficiency comparison of different models
on learning time (min.) and inference time (min.).

Method Learning time Inference time

CRF+CRF 10.33 0.17
Single MLN 23.80 1.85
DCRF 458.83 0.30
Our model 26.67 0.25

combined Web classification and Web IE based on the CRF
model. However, since it was defined according to the DOM
tree structure for Web pages, this model cannot be applied
to more general tasks that we are investigating.

Furthermore, Poon and Domingos [12] performed joint in-
ference in a single MLN to citation matching, and Sutton
et al.[19] proposed dynamic CRFs to jointly solve part-of-
speech tagging and NP chunking tasks. As shown in our
experiments, limitations of first-order logic make the model
in [12] only loosely coupled. On the other hand, the dy-
namic CRF model in [19] includes complex graphical struc-
ture and high computational complexity, which may cause
convergence problems. Our proposed model is highly cou-
pled and bidirectional, and considerably outperforms both
of them.

7. CONCLUSION AND FUTURE WORK
We presented a strongly-coupled, bidirectional approach

to the problem of joint information extraction. We intro-
duced joint factors to capture top-down and bottom-up bidi-
rectional tight correlations and dependencies between sub-
tasks, and we proposed a learning algorithm based on VEM
to perform parameter estimation approximately in a top-
down and bottom-up manner. This algorithm allows in-
formation to flow in both directions and explores mutual
benefits from multiple subtasks. Experimental results on
two real-world datasets exhibit that our model significantly
outperforms recent state-of-the-art pipeline, integrated and
joint models while also running much faster than the joint
models. Several interesting issues, such as the effect of joint
factors on performance and the efficiency of our approach
are analyzed and discussed as well. This approach allows
extensive further investigation, both for parameter learning
and inference. We also plan to apply and test our model to
other real-world IE applications.
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