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Abstract

Contextual bandits with linear payoffs, which are also
known as linear bandits, provide a powerful alternative
for solving practical problems of sequential decisions,
e.g., online advertisements. In the era of big data, con-
textual data usually tend to be high-dimensional, which
leads to new challenges for traditional linear bandits
mostly designed for the setting of low-dimensional con-
textual data. Due to the curse of dimensionality, there
are two challenges in most of the current bandit algo-
rithms: the first is high time-complexity; and the sec-
ond is extreme large upper regret bounds with high-
dimensional data. In this paper, in order to attack the
above two challenges effectively, we develop an algo-
rithm of Contextual Bandits via RAndom Projection
(CBRAP) in the setting of linear payoffs, which works
especially for high-dimensional contextual data. The
proposed CBRAP algorithm is time-efficient and flex-
ible, because it enables players to choose an arm in
a low-dimensional space, and relaxes the sparsity as-
sumption of constant number of non-zero components
in previous work. Besides, we prove an upper regret
bound for the proposed algorithm, which is associ-
ated with reduced dimensions. By comparing with three
benchmark algorithms, we demonstrate improved per-
formance on cumulative payoffs of CBRAP during its
sequential decisions on both synthetic and real-world
datasets, as well as its superior time-efficiency.

Introduction

The Multi-Armed Bandit (MAB) problem was proposed and
investigated by Robbins in 1952, which has attracted great
interests from numerous researchers in operation research
and computer science (Robbins 1952; Auer, Cesa-Bianchi,
and Fischer 2002; Bubeck and Cesa-Bianchi 2012). The fun-
damental issue in the MAB problem and its variants focuses
on the exploration-exploitation trade-off, which refers to an
algorithm trying to maximize cumulative rewards in sequen-
tial decisions but the algorithm has only limited knowledge
about the mechanism of generating the rewards (Auer 2002).

As a natural and important variant of the basic MAB
problem, contextual bandits with linear payoffs, which are
also known as linear bandits, are sequential decision-making
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problems with side information (Wang, Kulkarni, and Poor
2005; Dani, Hayes, and Kakade 2008; Abbasi-Yadkori, Pál,
and Szepesvári 2011; Chu et al. 2011). Specifically, given
feature information of arm space for each of T rounds, a
learner is required to choose one of K arms. Linear bandits
contain a basic assumption of linearly mapping from the arm
space to the reward space (Filippi et al. 2010), which should
be the most common case in reality.

Recently, contextual bandits with linear payoffs have been
successfully applied into many practical applications, such
as recommender systems (Tang et al. 2013), social network
analysis (Zhao, McAuley, and King 2014; Zhao and King
2016b) and information retrieval (Zhao and King 2016a).
In (Tang et al. 2013), the demonstration of advertisements
was based on users’ input information on web pages. The
authors formulated the problem of automatic layout selec-
tion in online advertisements as a contextual bandit prob-
lem. These personalized advertisements are expected to im-
prove click-through rates of web links. For these models of
sequential decisions, recommendation algorithms always re-
ceive additional contextual information from users, which
could be greatly useful for the online sequential decisions.

In the big data era, it is pretty common to encounter high-
dimensional and/or sparse contextual information. In this
case, traditional bandit algorithms, which are mostly de-
signed in the setting of low-dimensional data, are facing new
challenges in applications. Due to the curse of dimension-
ality, there are two challenges in most the of current ban-
dit algorithms. The first is high time-complexity; and the
second is extremely large upper regret bounds with high-
dimensional data. Specifically, traditional contextual bandits
(e.g., LinUCB in (Chu et al. 2011)) contain inverse opera-
tions in the original contextual space, which will be time-
consuming for computations. Besides, the regret bounds of
linear bandits in (Chu et al. 2011; Abbasi-Yadkori, Pál, and
Szepesvári 2011) are related to the original dimension of
contextual data, which can lead to increasing regret bounds
with the curse of dimensionality. This will be even worse
when the original dimension of contextual data is larger than
the the total sequential rounds of playing bandits.

There have been some efforts on context bandits with
linear payoffs in high-dimensional and/or sparse contextual
data (Deshpande and Montanari 2012; Carpentier, Munos,
and others 2012). The corresponding bandit algorithms are
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named BallExp in (Deshpande and Montanari 2012), and
SLUCB in (Carpentier, Munos, and others 2012).

However, in SLUCB, the authors assumed that the con-
textual data contain S non-zero components, which may not
be flexible in applications, especially for cases with high-
dimensional dense data. In BallExp, the upper and lower
regret bounds are relatively loose, and are still closely re-
lated to the original dimension of contextual data. Besides,
both SLUCB and BallExp adopted the technique of ball
exploration in the high-dimensional space, which will be
time-consuming in applications. For rigorous analysis of
time complexity for these two algorithms, interested read-
ers can refer to (Dani, Hayes, and Kakade 2008).

Random projection is a powerful and popular technique
to deal with high-dimensional data (Fern and Brodley 2003;
Zhang et al. 2016), which maps high-dimensional data onto
a low-dimensional space. Note that random projection does
not contain the assumption of sparsity in high-dimensional
data. The most common case in random projection is to con-
struct a Gaussian random matrix, where each element is an
i.i.d. sample following a standard normal distribution. It has
been proved to preserve the Euclidean distance within an
error ball (Dasgupta and Gupta 1999). Besides, the error
bounds for inner products in random projection have been
investigated (Kabán 2015), which will be an effective tool
for analysis of upper regret bounds in contextual bandits.

In this paper, to tackle the aforementioned two challenges
effectively, we propose an algorithm of Contextual Bandits
via RAndom Projection (CBRAP) in the setting of linear
payoffs, which works especially for high-dimensional data.
Note that, for simplicity in the work, we assume that con-
textual bandits have linear payoff functions. But the frame-
work of our bandit algorithm can be easily generalized
to the case of relaxing the linear assumption. Specifically,
our proposed algorithm adopts random projection to map
the high-dimensional contextual information onto a low-
dimension space, where we should design a random matrix.
The proposed CBRAP algorithm is time-efficient and flexi-
ble, because it enables players to choose an arm in a low-
dimensional space, and relaxes the sparsity assumption of
constant number of non-zero components in previous work.
Besides, we prove an upper regret bound for the proposed al-
gorithm, and show the bound to be better than the traditional
ones with appropriate reduced dimensions. By comparing
with three benchmark algorithms (i.e., LinUCB, BallExp
and SLUCB), we demonstrate improved performance on cu-
mulative payoffs of the CBRAP algorithm during its sequen-
tial decisions on both synthetic and real-world datasets, as
well as its superior time-efficiency.

In summary, we make the following contributions.
• For contextual bandits in the setting of linear payoffs,

we develop an efficient and practical algorithm named
CBRAP by taking advantage of random projection.

• We derive an upper regret bound for the proposed CBRAP
algorithm, which guarantee the worst case is associ-
ated with the reduced dimensions. Besides, our algorithm
is more flexible and time-efficient than BallExp and
SLUCB in high-dimensional settings.

• We evaluate the CBRAP algorithm via a series of exper-

iments with synthetic and real-world datasets. Compared
with the three benchmarks, we demonstrate the proposed
algorithm’s improved performance of cumulative payoffs
during sequential decisions, as well as its time-efficiency.

Preliminary and Related Work

In this section, we first introduce notions and the definition
of sub-Gaussian of a random variable, which will be used in
this paper. Then, we present the process of contextual ban-
dits with linear payoffs, as well as the metric of bandits. Fi-
nally, we provide a brief survey on random projection.

Notations and Definition of Sub-Gaussian

The total sequential rounds of playing bandits is T . For each
round t ∈ [T ] with [T ] = {1, 2, · · · , T}, a learner receives
contextual information from the set of X ∈ R

n, where
n can be an extremely large integer representing a high-
dimensional space. In this work, high-dimensional contex-
tual data precisely mean that T ≤ n or even T � n,
which is the case mentioned in (Carpentier, Munos, and
others 2012). Let K ∈ N+ be the number of arms and
πt,y ∈ [0, 1] the reward of arm y on round t with y ∈ [K]
and [K] = {1, 2, · · · ,K}. We adopt ‖ · ‖2 to denote the �2

norm of a vector x ∈ R
n, and Im×m to denote the identity

matrix with dimensions of m × m. For a positive definite
matrix A ∈ R

m×m, the weighted norm of vector x is de-
fined as ‖x‖A =

√
xTAx. The inner product is represented

as 〈·, ·〉, and the weighted inner product is xATy = 〈x,y〉A.
Mathematically, we given the following definition on the

sub-Gaussian of a random variable.
Definition 1 ((Buldygin and Kozachenko 1980)). A random
variable ξ is sub-Gaussian if there exists an R ≥ 0 such that

E[exp(λξ)] ≤ exp(
λ2R2

2
), (1)

where λ ∈ R, E[·] is the expectation of a random variable
and exp(·) denotes the exponential operation.

Given a set F , ξ is conditionally R-sub-Gaussian if ∀λ ∈
R and a fixed R ≥ 0, we have E[exp(λξ)|F ] ≤ exp(λ

2R2

2 ).

Contextual Bandits with Linear Payoffs

As shown in (Auer 2002; Chu et al. 2011), an algorithm (de-
noted by A) for contextual bandits with linear payoffs usu-
ally contains the following three steps at round t:
1) contextual information xt,y ∈ X for all y ∈ [K] is re-

vealed to the bandit algorithm A;
2) the bandit algorithm A chooses an arm at ∈ [K], which

follows an underlying distribution Π(xt,at
,θ∗) with θ∗ ∈

R
n being the unknown true parameter vector; and

3) a stochastic payoff πt,at ∈ [0, 1] is revealed to the bandit
algorithm A.
In the above stochastic setting of step 3, for the chosen

arm at at round t, we usually assume that there is an un-
derlying distribution Π(xt,at

,θ∗) with the first moment in-
formation being 〈xt,at

,θ∗〉, so that πt,at
is a sample from

Π(xt,at
,θ∗). Thus, we have

πt,at
= xT

t,at
θ∗ + ηt, (2)
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where ηt is a random noise satisfying the assumption of con-
ditionally R-sub-Gaussian. That is, ∀λ ∈ R, we have

E[exp(ληt)|Ft] ≤ exp(
λ2R2

2
), (3)

where Ft is the σ-algebra of σ({xi,ai
}i∈[t], {ηi}i∈[t−1]) and

R ≥ 0. Eq. (3) implies that E[ηt|Ft] = 0.
A popular measure in demonstrating the performance of

an algorithm for solving MAB problems is regret, which
is defined as the difference between the expected payoff of
the optimal decision in hindsight and that of the algorithm.
Mathematically, the regret of the algorithm A is defined as

Regret(T ) � E[

T∑
t=1

max
y∈[K]

xT
t,yθ

∗ −
T∑

t=1

πt,at
]. (4)

Random Projection

One common technique for dimensionality reduction is to
perform linear random projection (Baraniuk, Cevher, and
Wakin 2010; Fodor 2002). In this paper, we consider project-
ing the contextual data of X ∈ R

n onto a low-dimensional
space of Z ∈ R

m. Without loss of generality, we denote the
random projection matrix by M ∈ R

m×n. Then, we have

z = Mx, (5)

where z ∈ Z and x ∈ X .
In (Blum 2006), M is constructed as a random matrix

where each element follows a normal distribution of N ∼
(0, σ̂2). By setting σ̂2 = 1/m in the next section, we name
our algorithm of CBRAP with Standard Gaussian (SG) ma-
trix (abbreviated as CBRAP.SG).

In (Achlioptas 2003), the authors proposed new methods
for constructing sparse random sign matrix for dimensional-
ity reduction. In the ensuing section, we name our algorithm
of CBRAP with Random Sign (RS) matrix (abbreviated as
CBRAP.RS).

In addition to the above work, there have been other ways
of constructing a matrix for random projection (Li, Hastie,
and Church 2006; Ailon and Chazelle 2006; Clarkson and
Woodruff 2013; Lu et al. 2013). These investigations con-
sider how to speed up the dimensionality reduction, or how
to conduct the random projection with the assumption of
low-rank matrix. In this paper, since our focus is to con-
duct the dimensionality reduction of contextual bandits in
a general way, we only consider the construction of random
matrix in (Blum 2006; Achlioptas 2003).

Related Work

Contextual bandits are important variants of traditional
MAB problems and match many real applications (Lang-
ford and Zhang 2008; Li et al. 2010; Tang et al. 2013;
Wang, Kulkarni, and Poor 2005). Contextual bandits with
linear payoffs have been intensively investigated in previous
work (Abbasi-Yadkori, Pal, and Szepesvari 2012; Abe, Bier-
mann, and Long 2003; Abe and Long 1999; Chu et al. 2011;
Kaelbling 1994). As shown in (Chu et al. 2011), the tradi-
tional upper regret bound for the LinUCB algorithm is

Regret(T ) ≤ O(

√
Tn ln3(KT ln(T )/δ)), (6)

where δ ∈ (0, 1) is a confidence parameter. We know that
the dimension of contextual information of n in Eq. (6)
will increase when the dimension of context space increases.
Roughly, we have the upper regret bound as R(T ) ≤ O(T )
when n = T . This will be even worse when the dimension
of context data becomes larger, especially for n � T .

In (Abbasi-Yadkori, Pal, and Szepesvari 2012), Abbasi-
Yadkori et al. studied a sparse variant of stochastic lin-
ear bandits. For high-dimensional bandits, Carpentier and
Munos (Carpentier, Munos, and others 2012) attacked high-
dimensional stochastic linear bandits with the sparsity as-
sumption of S non-zero component, where the algorithm
is named SLUCB. The upper regret bound in (Carpentier,
Munos, and others 2012) is O(S

√
T ). In real applications,

the sparsity assumption may be unreasonable, especially for
high-dimensional dense data.

In (Deshpande and Montanari 2012), the authors pro-
posed an algorithm named BallExp for high-dimensional
linear bandits, where the regret bound is relatively loose, and
is directly related to the dimension of data.

Recently, by adopting additional assumptions of margin
and compatibility conditions in (Bastani and Bayati 2015),
the authors investigated high-dimensional covariates in on-
line decision-marking.

From prior work, it is urgent and important to develop a
flexible and practical algorithm for contextual bandits with
high-dimensional data, where we do not have additional as-
sumptions (e.g., sparsity or the margin condition). This mo-
tivates our proposed CBRAP algorithm in the next section.

The CBRAP Algorithm

In this section, we firstly present the overview of CBRAP,
and then provide theoretical analyses of a practical upper
regret bound and time complexity for the algorithm.

Overview of CBRAP

Our proposed bandit algorithm is shown in Algorithm 1,
which is named CBRAP. As depicted in Algorithm 1, the
basic idea of CBRAP algorithm is to project the high-
dimensional data onto a low-dimensional space, and main-
tains a confidence set of the unknown optimal parameter
θ∗
z ∈ R

m in a low-dimensional space. θ∗
z is corresponding

to the original true parameter θ∗ in n-dimensional space.
Our main contribution in the CBRAP algorithm is two-

fold. First, we construct a random matrix for contextual ban-
dits from Step 2 to Step 7 in Algorithm 1. Note that the de-
signed random matrix is flexible, and can be revised based
on users’ needs. Here we just consider the random matrix
in (Blum 2006; Achlioptas 2003). Second, via the designed
random matrix M, we conduct dimensionality reduction for
the contextual information in Algorithm 1.

Theoretical Analyses of Regret Bound

In this section, we provide theoretical results on upper
regret bound of the proposed CBRAP algorithm. First of
all, we show that errors resulting from projecting high-
dimensional data onto low-dimensional data are condition-
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Algorithm 1 CBRAP

1: input: m, T , β ∈ R+ and α ∈ R+

2: for p = 1, 2, · · · ,m do
3: for q = 1, 2, · · · , n do
4: generate a random value bpq based on SG or RS
5: M(p, q) ← bpq
6: end for
7: end for
8: A0 ← Im×m

9: b0 ← 0m

10: for t = 1, 2, · · · , T do
11: observe context xt,y ∈ R

n for all y ∈ [K]
12: zt,y ← Mxt,y for all y ∈ [K]
13: if t == 1 then
14: At ← At−1

15: bt ← bt−1

16: else
17: At ← At−1 + zt−1,at−1z

T
t−1,at−1

18: bt ← bt−1 + πt−1,at−1zt−1,at−1

19: end if
20: θt

z ← A−1
t bt

21: for y ∈ [K] do
22: vt,y ← β‖zt,y‖A−1

t

23: r̂t,y ← 〈θt
z, zt,y〉

24: ucbt,y ← r̂t,y + vt,y
25: end for
26: choose the arm at ← argmaxy∈[K] ucbt,y (break

ties arbitrarily)
27: observe the reward πt,at

28: end for

ally sub-Gaussian associated with the reduced dimension m.
Then, we derive a practical upper regret bound for CBRAP.

Incurred sub-Gaussian errors in CBRAP
We focus on the errors due to dimensionality reduction

in CBRAP. The following theorem shows that the incurred
errors are sub-Gaussian, which can be combined with the
original independent noise of ηt to be a new sub-Gaussian
random noise.
Theorem 1. Considering a linear stochastic payoff model
as πt = 〈xt,θ

∗〉 + ηt, where xt ∈ R
n, θ∗ ∈ R

n and
ηt is conditionally R-sub-Gaussian with the σ-algebra as
Ft = σ({xi}i∈[t], {ηi}i∈[t−1]), we can design a random
matrix M ∈ R

m×n such that πt = 〈zt,θ∗
z〉 + ηt + ρt and

∀λ ∈ R

E[exp(λ(ηt + ρt))|F ′
t] ≤ exp(

λ2(
√
4/m+R)2

2
),

(7)
where F ′

t = σ({xi}i∈[t], {ηi}i∈[t−1], {ρi}i∈[t−1]) is σ-
algebra, zt = Mxt and θ∗

z ∈ R
m is the unknown parameter

in m-dimensional space. In other words, with the designed
random matrix M, ηt + ρt is conditionally (

√
4/m + R)-

sub-Gaussian.

Proof. Without loss of generality, we assume that ‖x‖2 ≤ 1
and ‖θ∗‖2 ≤ 1. Otherwise, we can conduct normalization.

Given a random matrix M ∈ R
m×n with normal distribu-

tion as N ∼ (0, σ̂2), the mapping from n-dimension to m-
dimension for θ ∈ R

n is denoted by

θz = Mθ, (8)

where θz ∈ R
m.

Since the random noise ηt is conditionally R-sub-
Gaussian with Ft = σ({xi}i∈[t], {ηi}i∈[t−1]), we are ready
to have E[ηt|Ft] = 0, and E[ηt|F ′

t] = 0. Besides, we have

E[〈xt,θ
∗〉+ ηt|Ft] = E[〈zt,θ∗

z〉+ ηt + ρt|F ′
t]. (9)

Due to the mean preservation of inner product for random
projection, which has been shown in Lemma 4 of (Shi et al.
2012), we have E[〈xt,θ

∗〉|Ft] = E[〈zt,θ∗
z〉|F ′

t]. Thus,

E[ρt|F ′
t] = 0. (10)

Based on (Kabán 2015), given ε ∈ (0, 1), we have

Pr{zTθz < xTθmσ̂2 − εmσ̂2‖x‖2‖θ‖2} < exp(−mε2

8
),

Pr{zTθz > xTθmσ̂2 + εmσ̂2‖x‖2‖θ‖2} < exp(−mε2

8
).

We focus on the error bounds of zTθz − xθ. In practice,
we can set mσ̂2 = 1. Note that ‖x‖2 ≤ 1 and ‖θ‖2 ≤ 1.
Thus, we have

Pr{zTθz < xTθ − ε} < exp(−mε2

8
), (11)

Pr{zTθz > xTθ + ε} < exp(−mε2

8
). (12)

Note that ρt = 〈xt,θ
∗〉−〈zt,θ∗

z〉 = xTθ∗−zTMθ∗. Thus,
with high probability of 1−2 exp(−mε2

8 ), we have |ρt| ≤ ε.
Since we can adopt the σ-algebra F ′

t in Eqs. (11) and (12),

Pr{|ρt| > ε|F ′
t} ≤ 2 exp(−mε2

8
). (13)

Based on Eqs. (10) and (13), and Theorem 3.1 in (Rivas-
plata 2012), we have E[exp(λρt)|F ′

t] ≤ exp(2λ2/m) for all
λ ∈ R. In light of the definition of sub-Gaussian, we have
that ρt is conditionally

√
4/m-sub-Gaussian.

Now we know ηt and ρt are both conditionally sub-
Gaussian. Thus, in light of Theorem 2.7 in (Rivasplata
2012), we have E[exp(λ(ηt+ ρt))|F ′

t] ≤ exp(λ2(
√
4/m+

R)2/2) for all λ ∈ R, which means that ηt+ρt is condition-
ally (

√
4/m+R)-sub-Gaussian.

Upper regret bound for CBRAP
In this subsection, we derive an upper regret bound for the
proposed CBRAP algorithm.
Theorem 2. If CBRAP is run, then with probability at least
(1− δ)(1− 2 exp(−mε2

8 )), the upper bound of regret of the
algorithm is

Regret(T ) ≤ 2

√
mT log(1 +

TL2
2

γm
)
√
β2
T (δ) + βT (δ)ε,

where βT (δ) = (
√

4/m+R)

√
m log(

1+TL2
2/γ

δ )+γ1/2L1,
with L1 and L2 being parameters associated with the re-
duced dimension.
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Table 1: Statistics of used datasets.
dataset name #items #users #dim. {(#feedback; sparsity)} rewards

synthetic 1 s1 100 10 1,000 {(200;0.10),(201;0.30),(194;0.50),(333;0.70),(238;0.90)} {0,1}
synthetic 2 s2 200 20 2,000 {(1,098;0.50)} {0,1}
synthetic 3 s3 200 20 5,000 {(1,282;0.50)} {0,1}
synthetic 4 s4 100 30 10,000 {(592;0.50)} {0,1}
Movielens ML 668 10,329 9,689 {(105,339;0.99)} {0,1,2,3,4,5}

Jester JR 24,983 100 1,458 {(1,810,455;0.98)} [0,10]

Table 2: Time complexity for bandit algorithms.
CBRAP SLUCB BallExp LinUCB

O(m3KT ) O(n2KT ) O(n2KT ) O(n3KT )

Proof. We provide a sketch of the proof here. The detailed
proof can be found in the appendix.

First, we adopt the theoretical result in (Abbasi-Yadkori,
Pál, and Szepesvári 2011) for the unknown parameter in the
reduced m-dimension with a confidence bound.

Second, we divide the regret between payoffs of m-
dimension and optimal payoffs into two parts. The first is
the error resulting from the dimension reduction. The sec-
ond is the error due to adopting the confidence bound.

Third, by adding the errors together, we can obtain the
final regret of the algorithm in the m-dimension space.

Time Complexity Analysis

We analyze the time complexity for the CBRAP algorithm,
and the three benchmarks, which is shown in Table 2. Note
that, in the CBRAP algorithm and the LinUCB algorithm,
the most time-consuming operation is the inverse of matrix
At. For SLUCB and BallExp, the analysis of time com-
plexity can be found in (Dani, Hayes, and Kakade 2008).
From the table, we know that the proposed CBRAP algo-
rithm is time efficient, especially for the case of m � n.

Experiments

In this section, we conduct experiments based on the pro-
posed CBRAP algorithm, and three benchmarks of LinUCB,
BallExp and SLUCB. Note that, in the CBRAP algorithm,
by designing different random matrices, we have two vari-
ants of CBRAP.SG and CBRAP.RS. Our algorithm and
used datasets are all publicly available1.

Datasets

For verifications, we adopt six datasets in the experiments,
of which statistics are shown in Table 1. Specifically, we
first construct four synthetic datasets with different dimen-
sions and sparsity, which are named from s1 to s4. Then, we
conduct experiments on two real-world datasets, i.e., Movie-
lens2 and Jester3. In Table 1, the sparsity is defined as the

1https://github.com/Aaronyxt/CBRAP
2http://grouplens.org/datasets/movielens/
3http://www.ieor.berkeley.edu/∼goldberg/jester-data/

percentage of zero components divided by the total number
of contextual dimension. For example, given a 0.10 sparsity
of s1, the zero components in contextual vectors should be
1000 × 0.10 = 100. For non-zero components in s1, we
generate values from a standard Gaussian distribution. Note
that, for the sparsity of the real-world datasets, we count the
percentage of zero components divided by the number of di-
mension for each feature vector, and then show the average
percentage among the whole contextual vectors.

For comparisons, all the datasets are repeated for 10 times
in the experiments. Besides, the performance metric of ban-
dit algorithms is the cumulative payoffs with T=1000.

Setting

We conduct all experiments on a server installed with
Ubuntu 12.04.5 LTS, which contains 24 processors of each
core being Intel CPU@2.60GHz, and has a total memory of
200GB. In experiments, we investigate cumulative payoffs
for the CBRAP algorithm with different values of n and m.

With three benchmarks of LinUCB, BallExp and
SLUCB, we evaluate CBRAP.SG and CBRAP.RS via the
following three questions.
1) Given a fixed high-dimensional space n, do different val-

ues of m affect the performance of CBRAP?
2) What is the performance of CBRAP when the sparsity of

contextual data increases?
3) What is the performance of CBRAP when it is compared

with the three benchmarks?

Results

For the first question, we set the reduced dimension (RD)
as m = 10, 20, 30, 40, 50 in synthetic datasets. We show
the cumulative payoffs for dataset of s1 in Figure 1. From
the figure, we find the proposed CBRAP algorithm is flexible
with different RD, especially for CBRAP.SG. Similar results
of other datasets can be obtained via the source codes1.

For the second question, we investigate the performance
of CBRAP algorithm via the synthetic dataset of s1. The
experimental results are shown in Figure 2. We find that
CBRAP is stable, which means the sparsity assumption in
the previous work can be relaxed.

For the third question, we show the results in Tables 3
and 4. From the table, we know that, when the dimension
is high, the proposed CBRAP algorithm outperforms other
three benchmarks. Due to space limitation, we just show the
results with m = 20, 50. For the real-world datasets, we find
that the CBRAP algorithm greatly outperforms the SLUCB
and BallExp, and slightly better than the LinUCB.
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Figure 1: Cumulative payoffs with different reduced dimen-
sions in s1 by adopting CBRAP.SG and CBRAP.RS.

Figure 2: Cumulative payoffs with reduced dimension m =
10 and different sparsity in s1.

Besides, we show comparisons of the average of time con-
sumption in experiments in Table 5. From the table, we find
that the CBRAP algorithm is the most time-efficient.

Overall, the proposed CBRAP algorithm is suitable and
flexible for bandits with high-dimensional contextual data.

Conclusion

In this paper, we have investigated contextual bandits with
linear payoffs by adopting the technique of random projec-
tion. There are two main challenges in the most of the cur-
rent bandit algorithms due to the curse of dimensionality
in the big data era. The first is high time-complexity; and
the second is increasing upper regret bounds. To solve these
two challenges, we proposed an algorithm named CBRAP
for contextual bandits with linear payoffs. We adopted the
technique of random projection in CBRAP. For theoretical
results, we have derived a practical upper regret bound for
CBRAP. Finally, experimental results have demonstrated the
improved payoffs of CBRAP, as well as its time-efficiency.
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Appendix

In this appendix, we show the proof of Theorem 2, and dis-
cuss the lower regret bound of the proposed algorithm.

Proof of Theorem 2

Before we show the proof of Theorem 2, we show the
following lemma, which is directly adopted from (Abbasi-
Yadkori, Pál, and Szepesvári 2011).
Lemma 1. Let πt = zT

t,at
θ∗
z + ηt + ρt, where ηt + ρt

is (
√

4/m + R)-sub-Gaussian. Assume ‖θ∗
z‖2 ≤ L1 and

‖zt,at
‖2 ≤ L2. By defining At = γIm×m+

∑t
i=1 zi,ai

zT
i,ai

,
bt =

∑t
i=1 πtzi,ai

and θ̂t
z = A−1

t bt, with probability at
least 1− δ, for all rounds t ≥ 0, we have

‖θ̂t
z−θ∗

z‖At ≤ (
√

4/m+R)

√
m log(

1 + tL2
2/γ

δ
)+γ1/2L1. (14)

Now we provide the proof of Theorem 2.

Proof. Consider random projection of the contextual vector
and the unknown weight vector as

zt,a = Mxt,a, (15)
θ∗
z = Mθ∗, (16)

where zt,a ∈ R
m, xt,a ∈ R

n, θ∗
z ∈ R

m and θ∗ ∈ R
n.

For each round, we focus on the error bound for πt,a −
xT
t,at

θ∗. By adding a term in m-dimension space, we have

rt = πt,a − xT
t,at

θ∗

= πt,a − zT
t,at

θ∗
z + zT

t,at
θ∗
z − xT

t,at
θ∗

≤ ‖πt,a − zT
t,at

θ∗
z + zT

t,at
θ∗
z − xT

t,at
θ∗‖2

≤ ‖πt,a − zT
t,at

θ∗
z‖2 + ‖zT

t,at
θ∗
z − xT

t,at
θ∗‖2,

where we adopt the Cauchy-Schwarz inequality.
Now we investigate ‖πt,a − zT

t,at
θ∗
z‖2 and ‖zT

t,at
θ∗
z −

xT
t,at

θ∗‖2 separately.

Since θt
z is optimistic based on F ′

t , we have

πt,a − zT
t,at

θ∗
z

≤ 〈zt,at , θ̃
t
z〉 − 〈zt,at ,θ

∗
z〉

= 〈zt,at , θ̃
t
z − θ∗

z〉
= 〈zt,at θ̂

t−1
z − θ∗

z〉+ 〈zt,at , θ̃
t
z − θ̂t−1

z 〉
≤ ‖zt,at

‖A−1
t
(‖θ̂t−1

z − θ∗
z‖A−1

t
+ ‖θ̃t

z − θ̂t−1
z ‖A−1

t
)

≤ 2βt(δ)‖zt,at
‖A−1

t
,

where βt(δ) = (
√

4/m+R)

√
m log(

1+tL2
2/γ

δ ) + γ1/2L1,

θ̃t
z is the optimal parameter for zt,at with the condition of

‖θ̃t
z‖2 ≤ L1. Note that the first inequality follows the fact

that 〈zt,at , θ̃
t
z〉 is the optimal reward in round t. The last

inequality follows Lemma 1.
For zT

t,at
θ∗
z − xT

t,at
θ∗, based on (Kabán 2015), we have

Pr{zTθz < xTθ − ε} < exp(−mε2

8
), (17)

Pr{zTθz > xTθ + ε} < exp(−mε2

8
), (18)

which implies that, with high probability of 1 −
2 exp(−mε2

8 ),
‖zTθz − xTθ‖2 ≤ ε. (19)

Thus, for each round t, with probability of (1 − δ)(1 −
2 exp(−mε2

8 )), we have

rt ≤ 2βt(δ)‖zt,at‖A−1
t

+ ε. (20)

Finally, with probability of (1− δ)(1− 2 exp(−mε2

8 )),

Regret(T ) ≤

√√√√T

T∑
t=1

r2t

≤

√√√√T

T∑
t=1

(2βt(δ)‖zt,at‖A−1
t

+ ε)2

≤

√√√√4Tβ2
T
(δ)

T∑
t=1

‖zt,at‖2
A

−1
t

+ T2ε2 + 4TεβT (δ)

T∑
t=1

‖zt,at‖A−1
t

≈ 2

√
mT log(1 +

TL2
2

γm
)

√
β2
T
(δ) + βT (δ)ε,

where βT (δ) = (
√
4/m+R)

√
m log(

1+TL2
2/γ

δ ) +

γ1/2L1.

Remarks. Based on the work in (Kabán 2015), we know
that the parameters L1 and L2 are associated with the re-
duced dimension m. Thus, the regret bound for CBRAP has
non-liner relationship with m.

For the lower bound of CBRAP, based on (Chu et al.
2011), we can roughly obtain the relationship as

Regret(T ) ≥ γ
√
mT,

where γ > 0 is a constant.
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