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Abstract. This paper proposes two methods which take advantage of k -mean 
clustering algorithm to decrease the number of support vectors (SVs) for the 

training of support vector machine (SVM). The first method uses k -mean 
clustering to construct a dataset of much smaller size than the original one as 
the actual input dataset to train SVM. The second method aims at reducing the 
number of SVs by which the decision function of the SVM classifier is spanned 

through k -mean clustering. Finally, Experimental results show that this 
improved algorithm has better performance than the standard Sequential 
Minimal Optimization (SMO) algorithm. 

1   Introduction 

Support Vector Machine (SVM) [1] is a new class of approaches for classification and 
regression problems. Currently, SVMs are gaining popularity due to attractive 
features and have been successfully applied to various fields. Unlike previous 
machine learning algorithms such as traditional neural network models [2, 3, 4, 5], the 
SVM developed by Vapnik is derived from statistical learning theory and employs the 
structural risk minimization (SRM) principle [1], which can significantly enhance 
SVM’s generalization capability. With a clear geometrical interpretation, the training 
of the SVM is guaranteed to find the global minimum of the cost function.  

In general, training an SVM requires the solution of a very large quadratic 
programming (QP) optimization problem. The large size of the training sets typically 
used in applications is a formidable obstacle to a direct use of standard quadratic 
programming techniques [6]. Recently, many algorithms have been developed to 
solve the problem [7, 8, 9]. The most typical one is John Platt’s Sequential Minimal 
Optimization (SMO) [10], which breaks a large QP problem into a series of smallest 
possible QP problems. SMO is generally fast and efficient for linear SVMs and sparse 
data sets. However, the number of support vectors (SVs) that SMO produces is too 
large in proportion to the size of the input dataset for training SVM. It is shown that if 
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the training vectors are separated without errors the expectation value of the 
probability of committing an error on a test example is bounded by the ratio between 
the expectation value of the number of support vectors and the number of training 
vectors: 

[ ]
[Pr( )]

E number of support vectors
E error

number of training vectors

   ≤
    

. (1) 

From inequality (1), it can be drawn that a small number of support vectors can 
lead to a small testing error and also a SVM with a better generalization capability.  

In this paper k -mean clustering [11, 13] provides two methods to suppress the 
number of support vectors based on SMO algorithm in the training of SVM. For the 
first method, k -mean clustering method helps pick a set smaller than the original 
dataset to train SVM, which dramatically reduce the number of SVs without reducing 
the training correctness. It also can be concluded that with the decrease in the number 
of training examples the computational time that SMO requires greatly falls. The 
other application of k -mean clustering aims at finding less support vectors to 
describe the normal vector of the optimal hyperplane of SVM. The normal vector is 
spanned by a number of the mapping of SVs from input space into feature space 
where the kernel trick plays an essential role [6, 12]. k - mean clustering can help find 
a certain number of support vectors whose feature space image would well 
approximate the expansion. The two methods can suppress the number of SVs and 
result in a SVM with significant efficiency and outstanding generalization ability.  

The paper is organized as follows. Section 2 gives a brief introduction to the 
theoretical background with reference to classification principles of SVM. Section 3 
describes the two methods for the decrease in the number of SVs. Experimental 
results is demonstrated in Section 4 to illustrate the efficiency and effectiveness of 
our algorithm. Conclusions are included in Section 5. 

2   Support Vector Machine 

Consider the problem of separating the set of N  training vectors belonging to two 

classes, where n
ix R∈  is the i th input data and iy R∈  is the i th output data 

     ( ) ( ) { }1 1, ,..., , , 1, 1n
N Nx y x y R Y Y∈ ×           = − +   (2) 

with a hyperplane 

H:       , 0w x b〈      〉  +      =     (3) 

where w is normal to the hyperplane and / || ||b w  is the perpendicular distance from 

the hyperplane to the origin. The hyperplane is regarded as optimal if all the training 
vectors are separated without error and the margin (i.e. the distance from the closest 
vector to the hyperplane) is maximal. Without loss of generality, it is appropriate to 
consider a canonical hyperplane, acquired by rescaling w and b  so that the vectors 

( 1,..., )ix i N =  closest to the hyperplane satisfy: 
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      | , 1iw x b〈     〉 +  |  = . (4) 

Hence, the margin is 2 / || ||w . Thus the hyperplane ,w b< >  is given by the 

solution to the following optimization problem: 
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(5) 

The training vectors for which the equation (4) holds are termed as support vectors 
(SV).The equivalent dual problem to equation (5) can be written as: 
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(6) 

where the iα  are the Lagrange multipliers and constrained to be non-negative.     

The linear SVM classifier can be denoted as: 

( ) ( )sgn ,f x w x b= +  . (7) 

With respect to the case of nonlinearly separable datasets, SVM employs a kernel 
function K to implement the dot product between the functions ( )ixφ  which can map 

the data from input space to a high dimensional feature space H , i.e.: 

( ) ( ) ( ), ,i j i jK x x x xφ φ=  . (8) 

The theory of functional analysis suggests that an inner product in feature space 
correspond to an equivalent kernel operator in input space provided that K  satisfies 
Mercer’s condition.  

Furthermore, variables iξ ( )1, 2, ...,i N= are introduced to allow the margin 

constraints to be violated while C determines the tradeoff between error and margin. 
Then a quadratic optimization problem is introduced as follows: 

( )( )

2

1

1
    min    

2
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l
T

i
i

T
i i i
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+ ≥ −
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(9) 

The decision function of the nonlinear classifier is:      
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( ) ( )
1
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i

f x y K x x bα
=
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⎝ ⎠
∑  . 

(10) 

3   Reducing the Number of Support Vectors via  
     k -Mean Clustering  

3.1   The First Method Using k -Mean to Reduce the Number of SVs   

The first method used to modify the conventional SMO is to employ the k -mean 
clustering to choose a set which reflects the general features of the full input dataset 
but has much fewer data points. The approach is based on the observation that in 
many cases a large proportion of the original input dataset is redundant for training 
SVM. A good SVM classifier could be generated from a small portion of the input 
dataset provided they outline the whole dataset approximately. The advantages of the 
approach lies in the fact that the smaller the input dataset is, the fewer SVs would be 
yielded and that it would require less CPU time and memory .Hence, k -mean 

clustering is introduced to choose the actual training set. k -mean clustering is applied 
respectively to the two groups into which the input datasets are divided according to 

the values of the output data iy  in order to generate two sets of centers. Centers are 

chosen such that the points are mutually farthest apart, which would well reflect the 
relative position of point-clusters of input dataset and thus characterize the outline of 
the full dataset. To achieve an optimal k , i.e. the number of centers, which would 
describe the full input dataset well, a portion of data will be removed as tuning set to 
adjust the number of centers to reach the best training precision.  

As a result, the procedures for determining k and the set of smaller size can be 
summarized as follows: 

Step 1. Remove a certain portion of an input set as the tuning set and divide   

the input dataset into two groups according to their labels iy .  

Step 2. Start with a small k , which is around 5% of the whole input set. 

Step 3. Apply k -mean algorithm to the two groups respectively to produce a 
center set as the real dataset to train SVM.   

Step 4. Apply the standard SMO algorithm to the training set in order to 
produce a classifier. 

Step 5. Compute the correctness of the classifier on the tuning set  
Step 6. If the correct rate of the tuning set is small enough, terminate the loop. 

Otherwise, increase k and continue from Step 3. 

3.2   The Second Method Using k -Mean to Reduce the Number of SVs in the  
Decision Function of SVM Classifier 

The second modification to the standard SMO aims at simplifying the decision 
function of the SVM classifier to strength its generalization capability. It has been 
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noted that the number of SVs that nonlinear separable datasets generate makes up a 
large proportion of the input set, which would result in a high risk of poor 
performance on testing examples thus weak generalization capability according to 
inequality (1). To avoid problems mentioned above, k -mean clustering is employed 
after the training phase of SVM to suppress the number of SVs. 

In the decision function of the SVM classifier, the normal vector of the optimal 
hyperplane is described by the kernel expansion. 

( ) ( )
1 1

N N

i i i i i
i i

w y x xα φ λ φ
= =

= =∑ ∑  . (11) 

Now we wish to find a new solution: 

( )
1

*
m

i i
i

w sβ φ
=

= ∑  , (12) 

so that the kernel expansion would be shorter, i.e. 1 m N≤ << and well approximate 
the original expansion. 

To simplify the problem, set both m  and β  as 1 and the problem of finding the 

new expansion of the normal vector can be formulated as the following optimization 
task: 

( ) ( )

( ) ( )

2
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(13) 

For Gaussian radial basis function (RBF) as shown in the equation below: 

( ) ( )( )2 2, exp || || / 2K x y x y σ= − −  , 
(14) 

optimization task (13) leads to: 

2 2

' 1

arg max exp( || || / )
N

i i
s i

s x sλ σ
=

= − −∑  . 
(15) 

For 1m ≥ , the problem described by Equation (12) with RBF kernel can be 
converted into m  optimization tasks of (15) which aims at finding an input vector s  
of the input dataset . 

To solve the optimization task (15), k -mean is again used to cluster the points of 
the input dataset. And the algorithm of finding a shorter kernel expansion can be 
summarized as follows: 
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Step 1. Start with a small k , around 5% of the size of the input dataset. 

Step 2. Apply the k -mean algorithm to yield k  centers. 

Step 3. Employ the set of these k  centers as the actual input dataset and pick  up 
the center which solve the optimization task (15) 

Step 4. Compute the deviation between the two expansions of normal vector of the 
hyperplane  

Step 5. If the standard deviation is small enough, terminate the loop. Otherwise 
increase k  and start from Step 2. 

4   Experimental Results 

To verify the effectiveness and efficiency of the novel SMO combined with k -mean 
clustering, we use Riply’s training dataset [14], which contains 250 points, and 
checkerboard’s dataset [15] of 1000 points to test the proposed algorithms. All 
experiments are conducted on a platform of a machine with a Pentium 4 2.6GHz 
processor and 265 megabytes of memory. 

4.1   Experiments of Combing the First Method with Standard SMO Algorithm  

The first experiment on Riply’s dataset uses Gaussian radial basis function (RBF) as 
the kernel function. Figure 1 depicts the decision boundaries of standard SMO with 
the red solid line and the novel SMO using k -mean with the blue line. The 
comparison of the novel SMO with the original one is demonstrated by Table 1. 
Parameter setting for standard SMO is C  =30 in Equation (9) andσ = 1 in Equation 

(14) after model selection. For the SMO using k -mean, C =5 and σ =1 in Figure 1. 

 

 
Fig. 1. Decision boundaries built from two SMO algorithms with 8 points ( k =4) 

Figure 1 illustrates two decision boundaries which bear several similarities to each 
other. However, the SMO using k -mean clustering shown in Figure 1 only employs 
5 SVs while the standard SMO 94 SVs according to Table 1. It shows that the training 
of SVM has been sped up with the combination of k -mean clustering.  

The second experiment, using Gaussian RBF kernel, is to classify the checkerboard 
dataset. Figure 2 illustrate the training results of the SMO using k -mean with the 
training set of only 16 points. 
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Table 1. Performance comparison between the two SMO algorithms 1=standard SMO ; 2 

=SMO using k -mean 

 k  Training 
Error 

Testing 
Error 

Number of 
SVs 

Time  
(CPU sec) 

1  0.128 0.096 91 1.178 
4 0.148 0.094 5 0.016 
8 0.192 0.166 10 0.016 

16 0.140 0.099 22 0.031 
32 0.148 0.099 31 0.031 

 
 
2

  
64 0.128 0.095 57 0.063 

 

 

Fig. 2. Performance of SMO using k -mean on checkerboard with 16 training points ( k =8) 

with the parameter setting: C =20 and σ =8    

From Table 2, it can be drawn that the classifier in Figures 2 which gives pretty 
good a representation of the checkerboard dataset are built on only 1.6% input data  

 

Table 2. Performance comparison between the two SMO algorithms 1=standard SMO; 2 

=SMO using k -mean  

 
 
 
 
 
 
 
 
 

 k  Training 
Error 

Number of 
SVs 

Time  
(CPU sec) 

1  0.000  285 226.2 
8 0.034 16 0. 11 
16 0.105   32 0. 15 
32 0.112 61 0. 67 
64 0.044 118 0.75 

 
 
2 

128 0.030  192 0.92 
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and 96.6% input data are classified correctly. A deeper comprehension of the 
advantages of the SMO using k -mean over the standard SMO can be also seen from 
the computational time. 

4.2   Experiments of Combing the Second Method with Standard SMO 
Algorithm 

The first experiment to verify the effectiveness of the second approach is 
implemented on Riply’s dataset uses Gaussian radial basis function (RBF) as the 
kernel function with parameters: C =20 and σ =1. 

 

 
Fig. 3. Decision boundaries built from two SMO algorithms ( k =8) 

With Figure 3, it is shown that the decision boundaries built from two SMO 
algorithms are very similar to each other. However, the SVM classifier built with the 
second method to suppress the number of SVs only employs 8 SVs while the 
classifier built with standard SMO has 88 SVs.  

The second experiment is to classify the checkerboard dataset using Gaussian RBF 
kernel. After the second method is applied, the normal vector of the hyperlane is 
spanned with 91 SVs while the original expansion of the normal vector has 273 SVs. 
The employment of the second method to reduce the number of SVs decreases the 
expectation value of the probability of committing an error on a test example and 
enhances SVM’s generalization capability. Figure 4 illustrates the training results of 
the SVM using the second method with k =91. 

5   Conclusions 

This paper proposes and implements two methods which are intensely involved with 
k -mean clustering algorithm to suppress the number of SVs. It is shown with 

experiments that the first method of integrating k -mean clustering into the standard 
SMO algorithm significantly speeds up the training process and greatly decrease the  
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Fig. 4. Performance of the SMO using the second method ( k =91) 
 
number of SVs and the second method of combining k -mean clustering with 
standard SMO makes the number of SVs which span the decision function of the 
SVM classifier smaller and improves SVM’s generalization capability. Future works 
involves applying the two methods to more real-world problems and modifying k -
mean clustering algorithm so that the optimum value for the number of centers can be 
found. 
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