
Appendix

1 Proof of Lemma 2

Proof. According to the definition, each column vector
in the scaled sampling matrix S ∈ Rq×m is sampled
without replacement from {si =

√
m
q eTi }mi=1 ∈ R1×m

uniformly. Note that

E[XTSTSX] = E[XT

q∑
i=1

si
T
siX] (1)

= XT

q∑
i=1

E[si
T
si]X. (2)

Without loss of generality, we assume that we sample
and determine the value of {si}qi=1 in the order of the
smallest to the largest index. Then, due to that

P(si =

√
m

q
eTk ) (3)

= P(si =

√
m

q
eTk |sj 6=

√
m

q
eTk ,∀j ∈ [i− 1])

∗ P(sj 6=
√
m

q
eTk ,∀j ∈ [i− 1]) (4)

=
1

m− (i− 1)

m− (i− 1)

m− (i− 2)
· · · m− 1

m
=

1

m
, (5)

we have

E[si
T
si] =

m∑
k=1

P(si =

√
m

q
eTk )

m

q
eke

T
k (6)

=

m∑
k=1

1

m

m

q
eke

T
k =

1

q
Im. (7)

Thus, substituting Eq. (7) into Eq. (2) concludes the
proof.

2 More Comparisons with Batch Solutions

We also compare OSH and our FROSH against two lead-
ing batch methods SGH [3] and OCH [7]. Based on the
literature [3, 7, 9], we know that SGH maintains a supe-
rior tradeoff between the learning accuracy and the scala-
bility, and OCH is the state-of-the-art regarding the accu-
racy performance compared with the other unsupervised
hashing methods such as SpH [11], AGH [10], IsoH [4],
DGH [9], and OEH [8].

Distinguished with the bath methods, OSH and FROSH
are able to adapt the hash functions to the new com-
ing data. Besides, FROSH enjoys superior training ef-
ficiency, i.e., single pass, lowest costs of space (O(`d))
and time, while the unsupervised batch methods such as
SGH and OCH require either O(nd) space or multiple
passes over the data to load all data into memory or both.
Regarding the space cost, OSH and FROSH can throw
away the used data and update only on the newly coming
data via O(`d) space while SGH and OCH should main-
tain a large extern storage to keep all observed data and
the newly coming data. Moreover, given the 19GB data
FLICKR-25600 that is merely a small subset of the entire
FLICKR image collection, if avoiding multiple passes is
required, both the SGH and OCH methods have to main-
tain the entire FLICKR-25600 data in the memory and
keep the intermediate computational results (can be sev-
eral times larger than FLICKR-25600 itself) in the mem-
ory as well, which is infeasible for common computers.

In Table 2, we also provide the empirical time compar-
isons because it is not clear enough to directly compare
the associated time complexities when all methods have
different parameters. Note that the released OCH codes
have been highly optimized by the authors in contrast to
the version used in its original paper [7]. We report the
accumulated time after all rounds for OSH and FROSH
and provide the time consumptions of training SGH and
OCH only on all observed data. Overall, our FROSH
offers about 10 ∼ 70 times speed-up than the other com-



Table 2: Comparisons of the training time (in sec.). We
report the accumulated time after all rounds for OSH and
FROSH and provide the time consumptions of training
SGH and OCH only on all observed data.

Dataset Method 32bits 64bits 128bits

CIFAR-10

SGH 7.83 11.35 19.49
OCH 26.89 26.95 27.49
OSH 7.78 11.88 22.09

FROSH 0.63 0.94 2.11

MNIST

SGH 10.47 14.59 23.47
OCH 40.45 40.49 41.10
OSH 13.25 18.93 30.75

FROSH 1.17 1.49 2.56

GIST-1M

SGH 231 275 290
OCH 1042 1089 1192
OSH 228 331 520

FROSH 21 27 45
SGH 3032 3541 4903

FLICKR- OCH 4981 5300 5441
25600 OSH 679 1283 2570

FROSH 72 92 134

pared solutions. If considering the case where batch-
learners should repeatedly do batch learning on both the
newly coming data and the currently observed data, SGH
and OCH would require significantly more training time
than that in Table 2.

3 Approximation for the Projection
Matrix W

In this part, we offer more details to show how the project
matrix WT ∈ Rr×d can be approximated. We let
m = Θ(d), and assume n = Ω(`3/2d3/2) for simplic-
ity, then the error bound of Eq. (5) in Theorem 2 of the
main text becomes Õ( 1

` ‖(A − µµµ)‖2F ). Based on it, we
give Theorem 3.

Theorem 3. Given data A ∈ Rn×d with its row mean
vector µµµ ∈ R1×d, let the sketching matrix B`×d be
generated by FROSH in Algorithm 4. Let m = Θ(d),
and assume n = Ω(`3/2d3/2) for simplicity. Given
(A − µµµ) ∈ Rn×d that means subtracting each row of
A by µµµ, let h = ‖(A − µµµ)‖2F /‖(A − µµµ)‖22 and σi be
the i-th largest singular value of (A − µµµ). If the sketch-
ing size ` = Ω(

hσ2
1

εσ2
r+1

), then with probability defined in
Theorem 1 we have

‖(A−µµµ)− (A−µµµ)WBWT
B‖22

≤ (1 + ε)‖(A−µµµ)− (A−µµµ)WWT ‖22, (8)

where 0 < ε < 1, WT
B ∈ Rr×d contains the top r right

singular vectors of B`×d, and WT ∈ Rr×d contains the
top r right singular vectors of (A−µµµ) ∈ Rn×d.

Remark. The bound on ‖(A−µµµ)− (A−µµµ)WBWT
B‖22

shows the similarity between WBWT
B and WWT . If

ε = 0, we will have WBWT
B = WWT . However, it

cannot characterize the similarity between WB ∈ Rd×r
and W ∈ Rd×r, because Eq. (8) of Theorem 3 may also
indicate that WB approximates WΥ, where Υ ∈ Rr×r
is an arbitrary unitary matrix with ΥΥT = Ir and Ir
being an identity matrix so that WΥΥTWT = WWT .
Fortunately, due to that ΥΥT = Ir (i.e., Υ ∈ Rr×r is an
orthogonal rotation), WΥ will still retain all information
of W and even empirically get better hashing accuracy,
which has been mentioned in Remark 1 of the main text.
Therefore, Theorem 3 shows how WB approximates W
or WΥ, which can be used to show the effectiveness of
the related hashing algorithm.

Here, we restate Remark 1 of the main text: To address
the problem that most of the information can be con-
tained by only a small number of significant singular vec-
tors in W ∈ Rd×r, OSH [5] also empirically applies a
random orthogonal rotation Υ ∈ Rr×r (the orthonor-
mal bases of an r × r random Gaussian matrix) to all
singular vectors W ∈ Rd×r returned by Algorithm 1
via WΥ. This step resembles Iterative Quantization [2]
but runs much more efficiently with streaming settings
maintained and negligible computational cost incurred.
Thus, following OSH, our method FROSH also applies
Υ ∈ Rr×r to the obtained top r right singular vectors of
B`×d.

3.1 Proof of Theorem 3

The proof follows by combining our proposed Theorem
2 and Section 1.4 of [6].

Proof. Since WT
B ∈ Rr×d contains the top r right sin-

gular vectors of B`×d, we have WBWT
B ∈ Rd×d as the

projection matrix of B`×d. Via Lemma 4 in [1], we have

‖(A−µµµ)− (A−µµµ)WBWT
B‖22

≤ σ2
r+1 + 2‖(A−µµµ)T (A−µµµ)−BTB‖2, (9)

where σi is the i-th largest singular value of (A−µµµ).

For simplicity, when m = Θ(d) and n = Ω(`3/2d3/2),
the error bound of Eq. (5) in Theorem 2 of the main text
will become Õ( 1

` ‖(A − µµµ)‖2F ), which is then incorpo-
rated into Eq. (9) to get that

‖(A−µµµ)− (A−µµµ)WBWT
B‖22

≤ σ2
r+1 + Õ(

1

`
‖(A−µµµ)‖2F ). (10)



Let h = ‖(A − µµµ)‖2F /‖(A − µµµ)‖22 be the numeric rank
of (A − µµµ) ∈ Rn×d, which could be much smaller than
d for a low-rank matrix (A−µµµ) ∈ Rn×d with d < n. If
` = Ω(

hσ2
1

εσ2
r+1

), then from Eq. (10) we have

‖(A−µµµ)− (A−µµµ)WBWT
B‖22 ≤ (1 + ε)σ2

r+1

= (1 + ε)‖(A−µµµ)− (A−µµµ)WWT ‖22, (11)

where σ2
1 = ‖(A−µµµ)‖22 and σ2

r+1 = ‖(A−µµµ)− (A−
µµµ)WWT ‖22 according to the definition.

References

[1] P. Drineas and R. Kannan. Pass efficient algorithms for approxi-
mating large matrices. In SODA, volume 3, pages 223–232, 2003.

[2] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin. Iterative
quantization: A procrustean approach to learning binary codes for
large-scale image retrieval. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 35(12):2916–2929, 2013.

[3] Q.-Y. Jiang and W.-J. Li. Scalable graph hashing with feature
transformation. In IJCAI, pages 2248–2254, 2015.

[4] W. Kong and W.-J. Li. Isotropic hashing. In Advances in Neural
Information Processing Systems, pages 1646–1654, 2012.

[5] C. Leng, J. Wu, J. Cheng, X. Bai, and H. Lu. Online sketching
hashing. In Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pages 2503–2511, 2015.

[6] E. Liberty. Simple and deterministic matrix sketching. In Pro-
ceedings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 581–588. ACM,
2013.

[7] H. Liu, R. Ji, Y. Wu, and F. Huang. Ordinal constrained binary
code learning for nearest neighbor search. In AAAI, 2017.

[8] H. Liu, R. Ji, Y. Wu, and W. Liu. Towards optimal binary code
learning via ordinal embedding. In AAAI, pages 1258–1265, 2016.

[9] W. Liu, C. Mu, S. Kumar, and S.-F. Chang. Discrete graph hash-
ing. In Advances in Neural Information Processing Systems, pages
3419–3427, 2014.

[10] W. Liu, J. Wang, S. Kumar, and S.-F. Chang. Hashing with graphs.
In Proceedings of the 28th international conference on machine
learning (ICML-11), pages 1–8, 2011.

[11] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In Ad-
vances in neural information processing systems, pages 1753–
1760, 2009.


