Covariance Estimator. The unbiased estimator for the covariance \(C = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^T \) can be recovered as:

\[
\hat{C}_r = C - C_0, \\
\hat{C}_g = \frac{1}{m} \sum_{i=1}^{m} (S_i S_i^T)^{1/2} (S_i S_i^T)^{-1/2} d_i, \\
\hat{C}_l = \frac{1}{m} \sum_{i=1}^{m} (S_i S_i^T)^{-1/2} x_i x_i^T (S_i S_i^T)^{-1/2} d_i,
\]

where \(E[C] = C_0 \), \(C_g \), and \(C_l \) with \(b_{1:k} = \frac{1}{m+1} \).

Remark. In the recovery stage, at most m entries of \(S_i \) and \(d_i \) have to be calculated respectively.

Error Analysis. Let the estimator \(\hat{C}_r \) be defined as in Eq.(1) with the sampling probabilities \(p_{1:k} = P_{1:k} + (1-a) x_i \). Then, with probability at least \(1 - \eta - \delta \) we have

\[
||C - \hat{C}_r||_F \leq \left(\frac{2\sigma^2 + a\log (2m)}{m} \right)^{1/2},
\]

where \(a \) and \(\sigma \) are as in Eq. (1), \(\eta \) is the desired estimation accuracy for \(C \), and \(\delta \) is the probability of failure when one or more entries of \(S_i \) are not sampled.

Remark. Both \(\eta \) and \(\delta \) decrease when the data size \(n \) increases, and a smaller \(\eta \) and \(\delta \) favor the accuracy of \(\hat{C}_r \). Also, \(\sigma \) should lie between 0 and 1 in order to achieve the smallest error bound.

Accuracy Comparisons

- \(X_1: \eta = 0.81, \eta \geq 0.55 \) (\(\eta = 0.55, \eta \geq 0.55 \)) for \(\hat{C}_g \) and \(\hat{C}_l \)
- \(X_2: \eta = 0.81, \eta \geq 0.55 \) (\(\eta = 0.55, \eta \geq 0.55 \)) for \(\hat{C}_g \) and \(\hat{C}_l \)
- \(X_3: \eta = 0.81, \eta \geq 0.55 \) (\(\eta = 0.55, \eta \geq 0.55 \)) for \(\hat{C}_g \) and \(\hat{C}_l \)

References