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Abstract. Community detection provides a way to unravel complicated
structures in complex networks. Overlapping community detection allows
nodes to be associated with multiple communities. Matrix Factoriza-
tion (MF) is one of the standard tools to solve overlapping community
detection problems from a global view. Existing MF-based methods only
exploit link information revealed by the adjacency matrix, but ignore
other critical information. In fact, compared with the existence of a link,
the number of mutual friends between two nodes can better reflect their
similarity regarding community membership. In this paper, based on the
concept of mutual friend, we incorporate Mutual Density as a new indica-
tor to infer the similarity of community membership between two nodes
in the MF framework for overlapping community detection. We conduct
data observation on real-world networks with ground-truth communities
to validate an intuition that mutual density between two nodes is cor-
related with their community membership cosine similarity. According
to this observation, we propose a Mutual Density based Non-negative
Matrix Factorization (MD-NMF) model by maximizing the likelihood
that node pairs with larger mutual density are more similar in commu-
nity memberships. Our model employs stochastic gradient descent with
sampling as the learning algorithm. We conduct experiments on various
real-world networks and compare our model with other baseline meth-
ods. The results show that our MD-NMF model outperforms the other
state-of-the-art models on multiple metrics in these benchmark datasets.

Keywords: Complex networks · Overlapping community detection ·
Matrix factorization

1 Introduction

In complex networks, there usually exist groups inside which nodes are connected
more densely with one another than with the nodes outside. These groups of
nodes are called communities [13]. In reality, these groups usually have physical
meanings such as members of the same organization, scientists with publica-
tions in the same area, or proteins sharing the same function. Thus, uncovering
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such latent communities in complex networks has attracted great research inter-
ests in the past decade [11]. Classic methods assume communities are mutually
exclusive, i.e., each node of a network belongs to one and only one community.
However, in real-world complex networks like social networks and biological net-
works, such community membership restriction does not apply because a node
may have multiple characteristics and thus belongs to multiple communities. As
a result, a more challenging problem named overlapping community detection
has been introduced in recent years [31].

Matrix Factorization (MF), as one of the standard framework to solve the
problem of overlapping community detection, detects communities from a global
view [31]. Taking the adjacency matrix G of the given network as input, MF-
based models assign the number of communities in advance, and seek out a
node-community weight matrix F , which matches the information revealed by
the input as accurately as possible. Early work [23,29] simply aims to approx-
imate G entry by entry with FFT , which only makes use of the mathematical
representation of adjacency matrix, but ignores its physical meaning. The most
obvious information an adjacency matrix provides is the link information. Thus,
recent work [32,35] assumes that nodes sharing more communities have a higher
probability to be linked and formulates the problem with a generative objective
function. In other words, a link can be regarded as an indicator to reflect the
similarity of community membership between two nodes.

However, a link is not a perfect indicator for two major reasons. First, it is
common that two nodes sharing several communities do not have a link between
them, or two nodes with no common community are connected. A survey con-
ducted on Facebook [9] shows that edges between two individuals from different
communities outnumber edges connecting users in the same community. For
example, a salesperson may make connections with many strangers to sell his
products, and the establishment of links between salespeople and customers does
not indicate any similarity between their community memberships. In cases like
these, links become noise instead of evidence. Second, a link is a binary indicator
in an unweighted network. Given two linked node pairs with no other information
at all, it is impossible to distinguish which one is more similar.

Inspired by the definition of tie strength [12], we incorporate a more pow-
erful indicator, which is the number of mutual friends between two nodes, to
reflect their community membership similarity. The definition of tie strength
reveals that the stronger tie the two nodes own, the larger overlap in their
friendship circles they will have. This idea can be incorporated into our matrix
factorization framework for overlapping community detection, which meets the
common sense that the more communities two nodes share, the more mutual
friends they will have. For example, if two individuals attended the same class
in high school, joined the same basketball team, and work in the same com-
pany now, they should know many mutual friends in different communities, i.e.,
their ego-networks (friend circles) are densely overlapped. Compared to a link,
the number of mutual friends is no longer a binary indicator and it provides
more confidence to predict the similarity of community membership between
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two nodes. However, it still suffers from several issues: the lack of friends of two
nodes may limit the number of mutual friends between them, and communi-
ties with different sizes may contribute different numbers of mutual friends to
each node pair. To handle these limitations, we incorporate Mutual Density as
a more consistent indicator, which is defined as the Jaccard similarity of two
nodes’ ego-networks. Under the general description of “neighborhood similar-
ity”, the concept of mutual density has been applied in community detection
under different assumptions [1,3,21,26,28]. However, none of these methods are
based on matrix factorization and none of them use mutual density to measure
the similarity of community membership between two nodes.

In this paper, we introduce mutual density and the number of mutual friends
as the new indicators instead of links themselves for inferring community mem-
bership similarity in the matrix factorization framework. We conduct data obser-
vation on real-world networks with ground-truth communities to validate that
mutual density is more consistent with community memberships similarity than
the other two indicators. Thus, we formulate our Mutual Density based Non-
negative Matrix Factorization (MD-NMF) model, which incorporates mutual
density as the community similarity indicator and employs a novel objective
function to ensure that a node pair with higher mutual density is more likely to
have a higher community membership similarity. From a node’s perspective, we
ensure that it is more likely to join the same communities with its acquaintances
than with its strangers. To solve the optimization problem, we apply projected
stochastic gradient descent with sampling. By applying our model to real-world
and open-source network datasets, we find that our new MD-NMF model out-
performs several state-of-the-art methods on either modularity or F1 score.

The main contributions of this paper are:
1. We incorporate Mutual Density as a new indicator to reflect the community

membership similarity between two nodes in substitution for a link within
the matrix factorization framework for overlapping community detection.

2. We find that there is consistency between the mutual density of two nodes and
their community memberships similarity by empirically studying real-world
networks with ground-truth communities.

3. We propose a novel Mutual Density based Non-negative Matrix Factoriza-
tion (MD-NMF) model for overlapping community detection by formulating
mutual density properly in the matrix factorization framework. Our model
outperforms state-of-the-art baselines.

2 Definition and Data Observation

2.1 Problem Definition

Definition 1 (Community Detection). Given an unweighted and undirected
graph G(V,E), community detection aims to find a communities set S =
{Ci|Ci �= ∅, Ci �= Cj , 1 ≤ i, j ≤ p} where Ci represents a community consist-
ing a set of nodes, to maximizes a particular objective function f , i.e.,

max f(G,S), (1)

where p is the number of communities.



From Mutual Friends to Overlapping Community Detection 183

Different from the traditional community detection problem, an overlapping
community detection problem allows communities to overlap with each other.
This relaxation enables the Matrix Factorization approach to be employed.
In MF-based methods, the graph is represented by its adjacency matrix G ∈
{0, 1}n×n, whose (i, j) entry indicates whether node i and node j are connected
or not. The goal is to find a node-community weight matrix F , with its entry Fu,c

representing the weight of node u in community c, and apply F to approximate
the adjacency matrix.

2.2 Indicator Definitions

To infer the community membership similarity between two nodes, we have
mentioned three indicators in Introduction. They are link existence l(u, v), the
number of mutual friends m(u, v) and mutual density d(u, v), where u and v are
both nodes in V . We formally define each of them as follows.

Definition 2 (LinkExistence).Given a graphG(V,E) and two nodes u, v ∈ V ,
the link existence between u and v is

l(u, v) =
{

1 if Guv = 1,
0 else

. (2)

Definition 3 (The Number of Mutual Friends). Given a graph G(V,E)
and two nodes u, v ∈ V , the number of mutual friends between u and v is

m(u, v) = | {i|(u, i) ∈ E and (v, i) ∈ E} | . (3)

Definition 4 (Mutual Density). Given a graph G(V,E) and two nodes
u, v ∈ V , the mutual density between u and v is

d(u, v) =
| {i|(u, i) ∈ E and (v, i) ∈ E} |
| {j|(u, j) ∈ E or (v, j) ∈ E} | . (4)

2.3 Data Observation

To validate (1) the number of mutual friends is better than a link in inferring
community membership similarity, and (2) mutual density is more stable com-
pared with the number of mutual friends, we conduct two experiments on two

Table 1. Dataset statistics. |V |: number of nodes, |E|: number of edges, |C|: number
of ground-truth communities, D: average degree of nodes, M : average number of nodes
per community, A average number of joined communities per node.

Dataset |V| |E| |C| D M A

Amazon 335k 926k 49k 3.38 100.0 14.83

DBLP 317k 1.0M 2.5k 4.93 429.8 2.57
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large real-world networks with ground-truth communities [33]. Table 1 shows the
statistics of these two networks, which are Amazon and DBLP.1

To quantify the community membership similarity between two nodes, we
use cosine similarity as our measurement, which is defined as follows.

Definition 5 (Cosine Similarity of Community Membership). Given a
graph with p ground-truth communities {Ci|i = 1, 2, · · · , p}, the cosine similarity
of community membership s(u, v) between u and v is

s(u, v) =
u · vT

‖u‖2‖v‖2 , (5)

where u ∈ Rp is the community membership vector of node u and ui represents
the weight u belongs to community Ci.

(a) Amazon (b) DBLP

Fig. 1. The number of sampled node pairs having a same value of cosine similarity

First, we randomly sample 100,000 node pairs with links as well as 100,000
node pairs with at least two or four mutual friends and compute the cosine sim-
ilarity of community membership for each node pair. Figure 1 plots the number
of 3 different types of node pairs with the same value of cosine similarity. We
expect all three types of node pairs to share at least one community and thus to
have non-zero cosine similarity. However, nearly 14,000 node pairs with links do
not share any communities. The error rate is about 14%. On the other side, less
than 8% of the node pairs with at least two mutual friends and only about 1%
of the node pairs with at least four mutual friends are out of our expectation.
When the value of cosine similarity is non-zero, all three types are pretty similar,
and the number of node pairs with four mutual friends is slightly greater than
the other types. Thus, the number of mutual friends is a more accurate and more
flexible indicator compared to the existence of links.

Second, we compare the stability of indicator between the number of mutual
friends and mutual density. A stable indicator is expected to be monotonic while
community membership similarity increases. We sample 10,000 node pairs each

1 http://snap.stanford.edu/data/.

http://snap.stanford.edu/data/
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(a) the number of mutual friends (b) mutual density

Fig. 2. Averaged value of each indicator as a function of cosine similarity in community
membership

time with a certain value of cosine similarity and calculate the average number
of mutual friends and average mutual density of these node pairs. The result
is shown in Fig. 2. We can see that on the DBLP data, the average number of
mutual friends vibrates up and down while average mutual density is almost
monotonic as cosine similarity increases. Thus, mutual density is a more stable
indicator than the number of mutual friends to infer community membership
similarity.

In summary, mutual density is the best indicator among all three indicators
we mentioned with highest accuracy and stability.

3 Mutual Density Based NMF Model

3.1 Model Assumption

From the data observation, we can see that the cosine similarity of community
membership between two nodes is correlated with their mutual density. It leads
to the intuition of our model that two nodes with larger mutual density are more
likely to have higher cosine similarity of community membership.

To formally illustrate our model assumption, we need to define two rela-
tionships between two nodes in the first place: α-acquaintance and β-stranger.

Definition 6 (α-acquaintance). Given α ∈ [0, 1], for two nodes u, v ∈ V , v
is u’s α-acquaintance if and only if

d(u, v) ≥ α.

By the symmetry of d(u, v), u is also v’s α-acquaintance.

Definition 7 (β-stranger). Given β ∈ [0, 1], for two nodes u, v ∈ V , v is u’s
β-stranger if and only if

d(u, v) ≤ β.

By the symmetry of d(u, v), u is also v’s β-stranger.
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In both definitions, d(u, v) is the mutual density between u and v defined in
Eq. (4). Moreover, for a node u, we define its set of α-acquaintances as A(u, α) =
{i|d(u, i) ≥ α} and its set of β-strangers as B(u, β) = {j|d(u, j) ≤ β}.

Following our intuition, our model assumption can be formally defined as

s(u, i) > s(u, j),
if i ∈ A(u, α), j ∈ B(u, β), and α > β,

(6)

where s(u, i) is the cosine similarity of community memberships between u and i.
In other words, we expect that the cosine similarity between u and any of its

α-acquaintances should be greater than the cosine similarity between u and any
of its β-strangers. Adjusting α and β for different graphs enables us to make sure
that the difference of cosine similarity is significant. If α is only slightly greater
than β, we are not confident enough to make such assumption.

3.2 Model Formulation

In the MD-NMF model, we aim to find the node-community weight matrix F
which maximizes the likelihood that every node in the graph has higher cosine
similarity in community membership with all its α-acquaintances than with all
its β-strangers. For each node u, we want to maximize

P(>
u

|F, α, β) =
∏

i∈A(u,α)

∏
j∈B(u,β)

P(s(u, i) > s(u, j)|F ). (7)

Given any two nodes u, v ∈ V , we can obtain their node-community weight
vectors Fu, Fv from F . From the observation that the higher cosine similarity of
community membership vectors between two nodes, the greater mutual density
they will have, we define the probability that s(u, i) > s(u, j) given the node-
community membership matrix as

P(s(u, i) > s(u, j)|F ) = σ(
FuFT

i

‖Fu‖2‖Fi‖2 − FuFT
j

‖Fu‖2‖Fj‖2 ), (8)

where σ is the sigmoid function σ(x) = 1
1+e−x . For simplicity, we define φ(i, j) =

FiF
T
j

‖Fi‖‖Fj‖ , so we have

P(s(u, i) > s(u, j)|F ) = σ(φ(u, i) − φ(u, j)). (9)

Since the sigmoid function maps any real value into (0, 1), this probability
approaches to 1 when φ(u, i) � φ(u, j) and approaches to 0 when φ(u, i) 	
φ(u, j).
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By multiplying Eq. (7) for each node and combining Eqs. (8) and (9), we can
derive the final learning objective of the MD-NMF model, which is

l(F ) = max
F∈Rn×p

+

log
∏
u∈V

P(>
u

|F, α, β) − λ · reg(F )

= max
F∈Rn×p

+

∑
u∈V

∑
i∈A(u,α)

∑
j∈B(u,β)

log P(s(u, i) > s(u, j)|F )

− λ · reg(F )

= max
F∈Rn×p

+

∑
u∈V

∑
i∈A(u,α)

∑
j∈B(u,β)

log σ(φ(u, i) − φ(u, j))

− λ · reg(F ),

(10)

where reg(F ) is a regularization term in order to prevent overfitting of F , and
λ is the regularization parameter. For the simplicity of differentiation, we set
reg(F ) = ‖F‖2F , which is the Frobenius norm of F .

3.3 Parameter Learning

To make our model scalable to large datasets, we employ the widely used para-
digm of Stochastic Gradient Descent (SGD) as our learning algorithm. Also con-
sidering the non-negativity constraint, we apply a projected gradient method [18]
which maps the vector with negative parameters back to the nearest point in the
projected space. Following the learning objective l, we update the matrix F by

Θt+1 = max{Θt + δ
∂l

∂Θ
, 0} , (11)

where δ is the learning rate and Θ can be any entry of matrix F .
Algorithm 1 describes the whole iterative process of parameter learning. In

each iteration, the time complexity is O(|E|p), where |E| is the number of edges
and p the number of communities. Because we need to save the whole node-
community weight matrix F in memory, the space complexity of the algorithm
is O(|V |p), where V is the number of nodes. When V becomes too large, the
algorithm needs huge memory to store the whole matrix F , which is the limi-
tation of the algorithm. To scale this algorithm to billions of nodes, distributed
storage and update of F should be considered.

Choosing the Number of Communities. Before running Algorithm 1, we
need to set the number of communities p in advance. After conducting some
experiments on small datasets, we find that if we set p to be larger than the
intended p and learn the parameters accordingly, our detected communities con-
tain the results we obtain with the intended p as well as some duplicated com-
munities or trivial communities with few nodes. Thus, our strategy is to pick a
relatively large p based on the number of nodes and edges in the network and
further refine our results via merging or deletion.
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Algorithm 1. Overlapping community detection using MD-NMF
Require: G, the adjacency matrix of original graph; α, the acquaintance threshold;

β, the stranger threshold
Ensure: F , the node-community weight matrix
1: initialize F
2: compute initial loss
3: repeat
4: for num samples = 1 to |E| do
5: sample node u from V uniformly at random
6: sample node i from u’s α-acquaintances set A(u, α) uniformly at random
7: sample node j from u’s β-strangers set B(u, β) uniformly at random
8: for each entry Θ in Fi, Fj and Fk do
9: update Θ according to Equation (11)

10: end for
11: end for
12: compute loss
13: until convergence or max iter is reached

Acquaintances and Strangers Sampling. For node u ∈ V and any of its
α-acquaintances i, if α > 0, it is guaranteed that u and i have mutual friends.
To find i, we first do a breadth-first search and group all u’s neighbors as well
as friends of these neighbors into a set. Then we filter out any node k with
d(u, k) < α in this set and sample i from the remaining nodes uniformly at
random. If u does not have any α-acquaintance, we sample another u and repeat
the above process until we get a valid u. To sample the β-stranger of u, we simply
sample a random node from graph until we get the β-stranger. From Table 1 we
can see that in each graph, the average degree of nodes is much smaller than
the number of edges. Thus the time complexity sampling acquaintances and
strangers of a node remains constant.

Setting Membership Threshold. For each node, to determine whether it
belongs to a particular community, our strategy is to set a membership threshold
t for the node-community membership matrix, i.e., if Fu,k ≥ t, we say that node
u is associated with community k. t is a hyper-parameter which is tuned via
experimental results.

4 Experiments

4.1 Dataset

The real-world datasets we use include the two large networks we have described
in the data observation section, as well as six benchmark networks collected by
Newman2. Table 2 lists the basic information of the six benchmark datasets.
They are relatively small compared to the two large networks and have no
ground-truth communities.
2 http://www-personal.umich.edu/mejn/netdata.

http://www-personal.umich.edu/mejn/netdata


From Mutual Friends to Overlapping Community Detection 189

Table 2. Statistics of six Newman’s datasets. |V |: number of nodes, |E|: number of
edges.

Dataset |V| |E|
Dolphins 62 159

Books about US politics (Books) 105 441

American college football (Football) 115 613

Network science 1,589 2742

Power grid 4,941 6,594

High-energy theory (High-energy) 8,361 15,751

4.2 Comparison Methods

For comparison, we select the following six baseline approaches, namely Sequen-
tial Clique Percolation (SCP) [16], Demon [8], Bayesian Non-negative Matrix
Factorization (BNMF) [23], Bounded Non-negative Matrix Tri-Factorization
(BNMTF) [36], BigCLAM [34], and Preference-based Non-negative Matrix Fac-
torization (PNMF) [35]. Notice that the latter four approaches are also based
on matrix factorization.

4.3 Evaluation Metrics

We use modularity as the evaluation metric for small datasets without
ground-truth communities and F1 score for large datasets with ground truth
communities.

Modularity. The classic modularity is defined as

Q =
1

2|E|
∑

u,v∈V

(Gu,v − d(u)d(v)
2|E| )Iu,v,

where d(u) is the degree of node u, Gu,v is the (u, v) entry of the adjacency
matrix G, and Iu,v = 1 if u, v are in the same community otherwise 0 [20].

In the overlapping scenario, since a node pair may share more than one
communities, a minor modification has been made by replacing Iu,v with |Cu ∩
Cv|, i.e., the number of overlapped community between u and v:

Q̂ =
1

2|E|
∑

u,v∈V

(Gu,v − d(u)d(v)
2|E| )|Cu ∩ Cv|.

From the definition, we can see that greater value of modularity reveals denser
connectivity within the detected communities because only linked node pairs
sharing common communities contribute positively to the value. This metric
has also been frequently used in previous MF-based works [34,35].
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F1 Score. The F1 score of a detected community Si is defined as the harmonic
mean of

precision(Si) = max
j

S
′
j ∩ Si

|Si|
and

recall(Si) = max
j

S
′
j ∩ Si

|S′
j |

,

i.e.,

F1 =
precision(Si) · recall(Si)
precision(Si) + recall(Si)

,

where S
′
j is one of the given ground-truth communities. The overall F1 score of

the result of detected communities is the average F1 score of all communities in
the detected communities set.

4.4 Results

For the small networks, we set the learning rate θ as 0.5 and p ranging from
10 to 50. We assume each node joins at most 3 to 10 communities and set the
threshold based on this assumption. For the large network datasets, we set θ
much greater because the normalized term in cosine similarity limits the altered
amount of weight in each gradient descent iteration. We set p ranging from
1,000 to 5,000 and assume that each node joins at most 100 communities. The
maximum number of iteration is set to be 100, while in most cases F converges
before reaching the iteration limit.

Table 3. Comparison of experiment results in terms of modularity.

Dataset SCP Demon BNMF BNMTF BigCLAM PNMF MD-NMF

Dolphins 0.305 0.680 0.507 0.507 0.423 0.979 1.019

Books 0.496 0.432 0.461 0.492 0.592 0.864 0.987

Football 0.605 0.540 0.558 0.573 0.518 1.049 1.163

Network science 0.729 0.642 0.661 0.741 0.503 1.657 1.695

Power grid 0.044 0.195 0.342 0.368 1.010 1.105 1.228

High-energy 0.543 0.962 0.565 0.600 0.964 0.973 1.031

Table 3 shows the results in terms of modularity on six small benchmark
networks without ground-truth communities. We can see that our MD-NMF
model outperforms all baseline methods on all datasets on modularity, including
LC that leverages the general concept of “neighborhood similarity” as well and
PNMF that is also based on a pairwise objective function but employs links as
the indicator.
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Table 4. Comparison of experiment results in terms of F1 score.

Dataset SCP BigCLAM PNMF MD-NMF

Amazon 0.0315 0.0441 0.0419 0.0961

DBLP 0.0967 0.0390 0.0985 0.1013

Table 4 shows the results on two large benchmark networks with ground-
truth communities. We can see that only three of our comparison methods are
able to scale to networks of such size. On both Amazon and DBLP dataset, our
MD-NMF model prevails on the metric F1 score.

5 Related Work

5.1 Community Detection

Community detection has been an important line of research in physics and
computer science for a long period, and many different classes of approaches
are proposed to solve this problem [11]. Apart from tradition graph parti-
tioning/clustering approaches [15], modularity-based methods are particularly
designed for community detection tasks [20]. As the most well-known quality
function by far, modularity can be directly optimized. Since optimizing modu-
larity has been proven to be an NP-complete problem [6], many heuristics are
proposed to solve it in polynomial time [7,10,19]. However, these classic com-
munity detection algorithms have a severe limitation that a node belongs to one
and only one community.

Until recently, major attention has been focused on the case where com-
munities are allowed to be overlapped [31]. According to the general strategy,
overlapping community detection methods can be classified into local methods
and global methods. Local methods adopt divide-and-conquer which discovers
communities in small subgraphs before merging small communities into larger
ones based on some criteria [8,17,30]. Global methods employ stochastic block
models [2,14] or community affiliation models [32] which aim to figure out the
relationship between nodes and communities in a macro view. As one of the
major frameworks, Matrix Factorization (MF) introduces a node-community
membership matrix to match the adjacency matrix according to some optimiza-
tion function [23,29,34,36].

5.2 Mutual Friends

Mutual friend as a strong factor to indicate the closeness between two nodes has
been investigated in many social-related tasks. Friend recommender systems pro-
vide the potential friends list through discovering the latent information behind
network topology and friends in common [4,25]. Link prediction models in com-
plex networks use common neighbors to evaluate the probabilities of link estab-
lishments [5]. Online social rating networks make use of the co-commenting and
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co-rating behaviors of users to recommend products and predict new rating [27].
In community detection problem, mutual friends have also been employed to
measure the strength of connections between nodes. Newman defines connection
strength as the normalized term of mutual friends and uses it to cluster nodes
[21]. Tang and Liu directly interpret Jaccard similarity as node similarity to fit
into K-means algorithm for community detection [28]. Steinhaeuser and Chawla
exam Jaccard coefficient as an edge weighting method and employ it in commu-
nity detection. However, this algorithm fails to detect any community structure
without the addition of node attribute [26]. Alvari et al. regard neighborhood
similarity, i.e., the number of common neighbors, as a similarity measure and
incorporate it into a game theory framework [3]. Ahn et al. explicitly give the
definition of link similarity and hierarchically cluster links accordingly [1].

In this paper, mutual density has the same mathematical form as Jaccard
similarity or link similarity but is used for measuring the community member-
ship similarity. Thus, we can still calculate mutual density between two nodes
even if they are not linked. Also, our model is built on the matrix factorization
framework instead of link clustering.

5.3 Bayesian Personalized Ranking

The pairwise objective function of our model is based on the Bayesian Person-
alized Ranking [24]. This method and its extensions are originally proposed to
solve the ranking problem in recommender systems [22,37]. Zhang et al. employ
this model on the overlapping community detection problem [35]. They focus
on the link indicator and assume that each node shares more common commu-
nities with its neighbors than its non-neighbors, which is more realistic both
conceptually and experimentally.

6 Conclusion

In this paper, we propose a Mutual Density based Non-negative Matrix Factoriza-
tion model for overlapping community detection. We introduce mutual density
as a more consistent indicator of community membership similarity than links in
traditional methods. The formulation of our model is based on empirical findings
that mutual density correlates with the cosine similarity of community member-
ship. Our learning objective maximizes the likelihood that each node has a more
similar community membership with its acquaintances than its strangers. Exper-
iment results show that our new model outperforms the other baseline methods
as well as the link-based PNMF model in real-world datasets.
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