
FROSH: FasteR Online Sketching Hashing

Xixian Chen1,2, Irwin King1,2, Michael R. Lyu1,2

1Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
2Department of Computer Science and Engineering,

The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
{xxchen, king, lyu}@cse.cuhk.edu.hk

Abstract

Many hashing methods, especially those that
are in the data-dependent category with good
learning accuracy, are still inefficient when
dealing with three critical problems in mod-
ern data analysis. First, data usually come
in a streaming fashion, but most of the exist-
ing hashing methods are batch-based models.
Second, when data become huge, the exten-
sive computational time, large space require-
ment, and multiple passes to load the data into
memory will be prohibitive. Third, data often
lack sufficient label information. Although the
recently proposed Online Sketching Hashing
(OSH) is promising to alleviate all three issues
mentioned above, its training procedure still
suffers from a high time complexity. In this
paper, we propose a FasteR Online Sketching
Hashing (FROSH) method to make the train-
ing process faster. Compared with OSH, we
leverage fast transform to sketch data more
compactly. Particularly, we derive indepen-
dent transformations to guarantee the sketch-
ing accuracy, and design a novel implemen-
tation to make such transformations applica-
ble to online data sketching without increas-
ing the space cost. We rigorously prove that
our method can yield a comparable learning
accuracy with a lower time complexity and an
equal space cost compared with OSH. Finally,
extensive experiments on synthetic and real-
world datasets demonstrate the excellent per-
formance of our method.

1 INTRODUCTION

Hashing is an efficient method to conduct an approxi-
mate nearest neighbor search, which is critical for ma-

chine learning and applications such as clustering, re-
trieval and matching [43]. It transforms data into a low-
dimensional representation, i.e., a short hash code con-
sisting of a sequence of bits in Hamming space. The data
distance in original space then is approximated by the
Hamming distance that can be calculated extremely fast
in modern CPU. Thus, the approximate nearest neigh-
bor search can be accomplished with less time and space
costs. Current hashing methods can be categorized
broadly as data-independent and data-dependent tech-
niques. Locality Sensitive Hashing (LSH) methods [3,
8, 12, 15, 39] are prime examples of data-independent
techniques, which are also unsupervised. They con-
struct hash functions based on random projection, which
are typically very fast and theoretically guaranteed, but
are developed only for certain distance functions and
often require long code length to achieve acceptable
search accuracy because of ignoring the data distribu-
tion. Compared with data-independent methods, data-
dependent hashing techniques achieve better accuracy
performance with shorter binary codes, while usually in-
curring a larger computational cost to train the hashing
functions. These data-dependent methods can be catego-
rized as unsupervised and (semi-)supervised techniques.
In unsupervised studies [13,17,22,27–29,33,37,44,49],
hash functions are learned from data distribution rather
than being randomly generated by preserving a metric in-
duced distance in the Hamming space. Supervised meth-
ods [19, 23, 24, 26, 35, 38, 42] additionally leverage the
label information, and thus often outperform those unsu-
pervised ones.

Although data-dependent hashing methods have
achieved a promising learning accuracy, yet they suffer
from some critical problems when confronted with the
data such as web images, videos, stocks, genomes and
web documents in the big data era. First, data often
become available continuously in a streaming fashion,
and each data point or data chunk can be processed
only once [22, 25]. Hence, batch learning strategies

are not allowed. Moreover, with batch-learners, it is
unclear how to adapt the hash functions as the dataset
continues to grow and new variations appear over time.
Second, the data size n and dimension d can be large
with 1 � d � n [10], so that the high time complexity
and O(nd) space cost [22, 25] are prohibitive. In
particular, advanced batch-based unsupervised hashing
solutions such as SGH [17] and OCH [27] can avoid
the O(nd) space cost merely by performing multiple
passes over the data, while the disk IO overhead for
loading all data into memory multiple times will be the
major performance bottleneck [47]. Third, labels are
commonly missing, noisy, and scarce in today’s big data
situation, and labeling streaming data is also expensive
and infeasible [40, 46, 48].

To tackle the above challenges, we focus on the most
recently proposed online hashing, i.e., online sketching
hashing (OSH) [22], which is data-dependent, space-
efficient, unsupervised, and in a single pass. Note
that there have been several other investigations in on-
line hashing. Such hashing methods include online
kernel-based hashing (OKH) [14], adaptive online hash-
ing (AOH) [5], and [6] but they all belong to the super-
vised category, which require extra label information.

However, given O(d`) space to store and perform calcu-
lation on the streaming data, the OSH method retains a
training time of O(nd`+d`2) to yield r ≤ O(`) hashing
bits, where n is the data size, d is the data dimension, and
` denotes the sketching size satisfying ` < d� n. Such
training time is still expensive since 1� d� n [10]. In
this paper, we attempt to reduce the running time further.
Our contributions are summarized as follows:

• First, we propose a FasteR Online Sketching Hash-
ing (FROSH) method by improving the data sketch-
ing procedure in the OSH method. Specifically, we
employ a fast transform to reduce the data size, in
which independent transformations are applied for
different small data chunks to make the sketching
compact and accurate.

• Second, we design a more efficient way to im-
plement the fast transform in our FROSH. Com-
pared with the standard way, our strategy reduces
the space burden incurred by the fast transform
for sketching streaming data while maintaining the
same time efficiency.

• Third, we analyze the accuracy of our FROSH, and
give an error bound comparable with OSH. More-
over, our FROSH has a smaller time complexity of
Õ(n`2 + nd) with an equal space usage. Exten-
sive experiments demonstrate the computational ef-
ficiency with a competitive learning accuracy.

The remainder of this paper is organized as follows. In
Section 2, we review the prior work and techniques. In
Section 3, we present our method along with theoreti-
cal analysis, and emphasize its advantages from various
aspects. In Section 4, we provide extensive empirical re-
sults, and Section 5 concludes the whole work.

Notation. Let [k] denote a set of integers {1, 2, . . . , k}.
Given a matrix A ∈ Rn×d, for i ∈ [n], j ∈ [d], we
let ai ∈ R1×d denote the i-th row of A, aj ∈ Rn de-
note the j-th column of A, and aij denote the (i, j)-
th element of A or j-th element of ai. Let {At}kt=1

denote a set of matrices {A1,A2, . . . ,Ak}. Let at,ij
and at,i denote the (i, j)-th element and i-th column of
matrix At, respectively. Let AT denote the transpose
of A, and Tr(A) denote its trace. Let |a| denote the
absolute value of a. Let ‖A‖2 and ‖A‖F denote the
spectral norm and Frobenius norm of A, respectively.
Let ‖a‖q = (

∑d
j=1 |aj |q)1/q for q ≥ 1 be the `q-

norm of a ∈ Rd. We denote the SVD of A by A =

UΣVT =
∑ρ
i=1 σiuiv

T
i = UkΣkV

T
k + U⊥k Σ⊥k V⊥k

T ,
where rank(A) = ρ, Ak = UkΣkV

T
k represents the

best rank k approximation to A, and σi(A) denotes the
i-th largest singular value of A. Finally, A � B means
that B−A is positive semi-definite.

2 RELATED WORK

In this section, we describe the properties of the
OSH method. Then, we outline and discuss the
fast transforms, especially the Subsampled Randomized
Hadamard Transform (SRHT).

2.1 ONLINE SKETCHING HASHING

We rephrase the background and details of the OSH
method [22]. Given data A ∈ Rn×d and the unknown
projection matrix W ∈ Rd×r, the k-th hashing function
for a data point ai ∈ R1×d is defined as

hk(ai) = sgn((ai −µµµ)wk), (1)

where µµµ = Ā = 1
n

∑n
i=1 ai. By dropping the non-

differentiable function sgn(·) for the binary codes [42],
the objective can be reformulated as the same as that of
Principal Component Analysis (PCA)

max
W∈Rd×r

Tr(WT (A−µµµ)T (A−µµµ)W)

s.t. WTW = Ir, (2)

where (A−µµµ) denotes a matrix [a1−µµµ; a2−µµµ; . . . ; an−
µµµ].

The solution to W ∈ Rd×r in Eq. (2) is the top r right
eigenvectors of the covariance matrix (A−µµµ)T (A−µµµ).

Algorithm 1 Online Sketching Hashing (OSH) [22]
Input: Data A = {Aj ∈ Rhj×d}sj=1, sketching size

` < d, positive integer η, hashing bits r
1: Initialize sketching matrix by B = 0`×d

2: Set µµµ1 as the row mean vector of A1

3: Let ϕϕϕ = µµµ1, τ = h1, ξ = 0
4: Sketch G1 = (A1 −µµµ1) ∈ Rh1×d into B ∈ R`×d
5: for j = 2 : s do
6: Set µµµj as the row mean vector of Aj

7: Set ςςς =
√

τhj

τ+hj
(µµµj −ϕϕϕ) ∈ R1×d

8: Sketch Gj = [(Aj − µµµj); ςςς] ∈ R(hj+1)×d into
B ∈ R`×d

9: Set ϕϕϕ = τϕϕϕ
τ+hj

+
hjµµµj

τ+hj
Update the mean vector

10: Set τ = τ + hj # Update the data size
11: Set ξ = ξ + 1
12: if ξ == η then
13: Compute the SVD of B ∈ R`×d, and assign the

top r right singular vectors as WT ∈ Rr×d
14: Set ξ = 0
15: return W

For d < n, it takesO(nd2) time andO(nd) space, which
is infeasible for large n and d [18].

To tackle above computational issues, sketching the data
before the training is a promising way. Specifically, a
sketch of a data matrix is another matrix that is signifi-
cantly smaller than the original but still approximates it
well and preserves the properties of interest. It implies
that the storing and the computing on the sketch will be
much easier than with the original large matrix, and the
downstream learning algorithms on the sketch can still
guarantee the learning accuracy [4, 9, 25, 32, 45].

Leveraging the effectiveness of sketching in the learning,
OSH is proposed, and its details are presented in Algo-
rithm 1. It aims at efficiently achieving a small matrix
B ∈ R`×d for the centered data (A − µµµ), then comput-
ing the SVD on B only takes O(d`2) time and O(d`)
space for ` < d. The difficulty lies in that sketching
cannot be directly applied in each centered data chunk
(Aj − µµµ), since µµµ can only be obtained after observing
all data points in A.

Then, the online centering procedure in steps 3 to 10 are
to ensure that (A[j] − µ̂µµj)T (A[j] − µ̂µµj) = GT

[j]G[j] af-
ter the j-th iteration, where A[j] = [A1; A2; · · · ; Aj]
by stacking all observed Aj vertically, G[j] follows a
similar definition, and µ̂µµj is the row mean vector of A[j].
Steps 4 and 8 are to get a smaller matrix B via an efficient
sketching such that BTB ≈ GT

[j]G[j] after the j-th iter-
ation. After all iterations, OSH guarantees that BTB ≈
GT

[s]G[s] = (A[s]−µ̂µµs)T (A[s]−µ̂µµs) = (A−µµµ)T (A−µµµ).

If
∑s
j=1 hj = O(n), the sketching steps in OSH will

take O(nd`) time and O(d`) space. The SVD in step 13
runs for about ξ/η times. As ξ/η can be manually set to
be a small constant, step 13 takesO(d`2) time andO(d`)
space in total. The computational cost of the online data
centering procedure is negligible. In conclusion, OSH
consumes O(nd`+ d`2) time and O(d`) space.

Remark 1. To address the problem that most of the in-
formation can be contained by only a small number of
significant singular vectors in W ∈ Rd×r, OSH also em-
pirically applies a random orthogonal rotation Υ ∈ Rr×r
(the orthonormal bases of an r× r random Gaussian ma-
trix) to all singular vectors W ∈ Rd×r in Algorithm 1
via WΥ. This step resembles Iterative Quantization [13]
but runs much more efficiently with streaming settings
maintained and negligible computational cost incurred.

2.2 FREQUENT DIRECTIONS FOR
SKETCHING

Algorithm 2 Frequent Directions (FD) [25]
Input: Data A ∈ Rn×d, sketching matrix B ∈ R`×d
1: if B not exists then
2: Set B = 0`×d

3: for i ∈ [n] do
4: Insert ai ∈ R1×d into a zero valued row of B
5: if B has no zero valued rows then
6: [U,Σ,V] = SVD(B)

7: Σ̂ =
√

max(Σ2 − σ2
`/2Il, 0)

8: Set B = Σ̂VT

OSH employs the Frequent Directions (FD) as a black-
box to sketch streaming data, which is summarized in
Algorithm 2. It operates by keeping collecting row vec-
tors from the data source. Once the sketching matrix
B ∈ R`×d has ` non-zero rows, the shrinking procedure
as shown in steps 5 to 8 will reduce the size of the matrix
B ∈ R`×d by a half, which repeats throughout the entire
streaming data.

In this part, we assume that FD will process n data
points. The computational cost of the FD algorithm is
dominated by the shrinking procedure that involves com-
puting an exact SVD on B ∈ R`×d, which takes O(d`2)
time and O(d`) space for ` < d. Since the shrinking
procedure is operated once nearly every `/2 iterations of
the main loop, the time complexity is O(d`2 × n/`) =
O(nd`) with O(d`) space burden.

Recently, the Sparse FD (SFD) algorithm [11] is pro-
posed to take advantage of the sparsity of A by apply-
ing a powerful randomized SVD [34] instead of an exact
SVD in each shrinking procedure. SFD still takes O(d`)

space but only requires Õ(nnz(A)`+n`2) running time,
where nnz(A) means the number of non-zero entries in
A. This time cost is much smaller than O(nd`) if `� d
and A ∈ Rn×d is extremely sparse.
Remark 2. FD works well for streaming data. For in-
stance, given two (or more) data chunks like G1 ∈
Rh1×d and G2 ∈ R(h2+1)×d in Algorithm 1, we in-
voke FD and run it on G1 to yield a sketching matrix
B = B1 ∈ R`×d. Based on the current B = B1, we
then run FD on G2 to update B and get B = B2 ∈ R`×d.
Such procedures are obviously equivalent to that we di-
rectly invoke FD for once and run it on [G1; G2] ∈
R(h1+h2+1)×d, which also gets an identical B = B2.

2.3 FAST TRANSFORM

Given a vector a ∈ Rm, its compressed representation
b ∈ Rq can be obtained by performing the matrix-vector
multiplication like Φa, where q < m and Φ ∈ Rq×m
is a random projection matrix (e.g., a Gaussian random
matrix). Generally, computing Φa takes O(qm) time. It
can be a computational bottleneck of fast implementing
numerous learning tasks that involve data compression.

Fast transforms, which are based on the structured pro-
jection matrix like Hadamard matrix or Fourier matrix,
then are employed to overcome the shortcomings of the
classical transformation methods. For Hadamard matrix
Hm ∈ Rm×m, its entry is defined as

Hij = (−1)〈i−1,j−1〉, (3)

where 〈i−1, j−1〉 is the dot-product of the b-bit vectors
of integers i − 1 and j − 1 expressed in binary, and b ≤
max(dlog(i+ 1)e , dlog(j + 1)e). It can also be defined
recursively as

Hm =

[
Hm/2 Hm/2

Hm/2 −Hm/2

]
and H2 =

[
1 1
1 −1

]
.

The normalized Hadamard matrix is defined by H =√
1
mHm, and by exploring the recursive structure of H,

computing Ha only takes O(m logm) time with O(m)
space [1].

To compress data, we perform the Subsampled Random-
ized Hadamard Transform (SRHT), i.e., data is trans-
formed via a randomized Hadamard matrix and then uni-
formly sampled in the resulting entries. For a q × m
SRHT matrix, it is defined as the form Φ = SHD,
where D ∈ Rm×m is a diagonal matrix with its diag-
onal elements being i.i.d. Rademacher random variables
(i.e., 1 or −1 with equal probability), S ∈ Rq×m is a
scaled sampling matrix with each row uniformly sam-
pled without replacement from m rows of the identity
matrix Im ∈ Rm×m multiplied by

√
m
q .

Differently, computing Φa only takes O(m log q) time
with O(m) space [1, 31].

3 FASTER ONLINE SKETCHING
HASHING

In this section, we motivate and present FROSH, whose
sketching relies on our Faster FD (FFD). To make
FROSH maintain an equal space efficiency with that of
OSH, we also derive a new implementation of fast trans-
form in FFD for sketching streaming data. The analysis
guarantees the performance of our solution.

3.1 MOTIVATION, METHOD AND RESULTS

The computational cost of OSH is dominated by its
sketching method FD. This sketching requires O(nd`)
time to obtain B ∈ R`×d from the data A ∈ Rn×d,
which is computationally expensive for 1� d� n [10].
Even regarding SFD, its Õ(nnz(A)`+nl2) time cost still
tends to be Õ(nd`+ n`2) since the centered data A−µµµ
are dense.

We first present an FFD sketching method as stated in
Algorithm 3 to tackle above issues. In steps 5 to 8, after
collecting m data points into F ∈ Rm×d, a new SRHT
matrix is generated to compress F with its size reduced
to `/2. Then, the newly compressed data and previously
shrunken data form the B ∈ R`×d. Steps 9 to 10 employ
a shrinking procedure that is similar to that in FD.

Algorithm 3 Faster Frequent Directions (FFD)
Input: Data A ∈ Rn×d, sketching matrix B ∈ R`×d
1: if B not exists then
2: Set t = 1, B = 0`×d

3: Set F = 0m×d with m = Θ(d) # Only needed for
notation

4: for i ∈ [n] do
5: Insert ai into a zero valued row of F
6: if F has no zero valued rows then
7: Generate a fast transform Φt = StHDt ∈

R(`/2)×m in the t-th trial
8: Insert ΦtF ∈ R(`/2)×d into the last `

2 rows of
B

9: [U,Σ,V] = SVD(B)

10: Σ̂ =
√

max(Σ2 − σ2
`/2Il, 0)

11: Set B = Σ̂VT

12: Let Bt = B, Ct = ΦtF # Only needed for
proof notations

13: Set F = 0m×d, t = t+ 1

However, there may exist one problem in each iteration
of step 8, i.e., computing ΦtF in the standard way has

to take O(md log `) time but with O(md) space to col-
lect all m data points. For a big m = Θ(d), the space
cost of O(md) = O(d2) is practically prohibitive since
space can be severely limited [25], which is also infe-
rior to FD method whose advantages includes that only
O(d`) space is employed.

Fortunately, we do not have to keep a matrix F ∈ Rm×d
explicitly to store m data points. Instead, F ∈ Rm×d
here is simply used for easily presenting the algorithm.
Furthermore, as data come sequentially, we only take
O(d`) space to handle O(`) data points, save and com-
bine intermediate results. We repeat such procedures
until that we have sequentially processed m data points
denoted by F ∈ Rm×d, which finally still only takes
O(md log `) time in total to achieve ΦtF. The detailed
implementation is deferred to the subsequent section.

Moreover, we adopt an independent and distinct Φt in
each iteration of step 8, which benefits the sketching ac-
curacy by controlling the variance in all sketchings. Be-
low, we formally characterize the properties of our pro-
posed FFD.
Theorem 1 (FFD). Given data A ∈ Rn×d and the
sketching size ` ≤ k = min(m, d), let the small sketch
B ∈ R`×d be constructed by FFD. Then, with probabil-
ity at least 1− pβ − (2p+ 1)δ − 2n

ek
we have

‖ATA−BTB‖2 ≤ Õ
(1

`
+ Γ(`, p, k)

)
‖A‖2F (4)

where Γ(`, p, k) =
√

k
`p2 +

√
1+
√
k/`

p with p = n
m , and

Õ(·) hides logarithmic factors on (β, δ, k, d,m) as given
in Eqs. (12)(16)(30).

The running time of the algorithm is Õ(nl2 dm + nd) and
its space cost is O(d`) before taking m = Θ(d).
Remark 3. For a fixed n, a smaller m improves the
sketching accuracy while taking more time burden. We
choose m = Θ(d) such that the time consumption of
FFD is Õ(n`2 + nd). If ` � d, it is superior to O(nd`)

time cost in FD and Õ(nd`+n`2) time usage in SFD for
dense centered data.

When data keep coming (i.e., n increases) and/or m
decreases, p will get larger, which makes the bound
in Eq. (4) tighter. If p = Ω(`3/2k1/2), i.e., n =
Ω(`3/2d3/2) when m = Θ(d), then the error bound of
FFD becomes Õ(1

` ‖A‖
2
F), which is asymptotically com-

parable with the bounds 2
` ‖A‖

2
F of FD and Õ(1

` ‖A‖
2
F)

of SFD.

Thus, FFD is more applicable to the big data situation
1 � d � n with computational cost reduced and accu-
racy guaranteed. Competitive empirical results suggest
there is an opportunity to further tighten our error bound.

Algorithm 4 FasteR Online Sketching Hashing
(FROSH)
Input: Data A = {Aj ∈ Rhj×d}sj=1, sketching size

` < d, positive integer η, hashing bits r
1: Run steps 1 to 3 of Algorithm 1
2: Run steps 4 to 10 of Algorithm 1 with FFD to sketch

the centered data into B ∈ R`×d
3: Run steps 11 to 15 of Algorithm 1 and return W ∈

Rd×r

Based on FFD and OSH, our FROSH is straightforward
given in Algorithm 4. Its step 2 contains the online data
centering procedure, which is equivalent to that in OSH.
Then, combining Theorem 1 and the properties of the
online data centering procedure yields the next result.

Theorem 2 (FROSH). Given data A ∈ Rn×d with its
row mean vector µµµ ∈ R1×d, let the sketch B`×d be gen-
erated by FROSH in Algorithm 4. Then, with probability
defined in Theorem 1 we have

‖(A−µµµ)T (A−µµµ)−BTB‖2

≤ Õ
(1

`
+ Γ(`, p, k)

)
‖A−µµµ‖2F , (5)

where (A − µµµ) ∈ Rn×d means subtracting each row of
A by µµµ, Γ(`, p, k) is from Theorem 1, and the top r right
singular vectors of B`×d are used for hashing projec-
tions WT ∈ Rr×d in Remark 1.

The algorithm takes Õ(n`2 + nd+ d`2) time and O(d`)
space cost after takingm = Θ(d) in the FFD of FROSH.

Remark 4. This primary analysis resembles that of
OSH [22], which follows the conception that accurate
sketching does not harm the learning accuracy [4, 9, 22,
25, 32, 45]. Hence, the W from B is expected to well
approximate that from A − µµµ (more illustrations on the
approximation for W are deferred into the appendix),
and we use this sketching error for the centered data
A − µµµ to justify if the sketching-based hashing works
properly [22]. Thus, the accuracy comparisons between
OSH and FROSH resemble Remark 3. Compared with
Õ(nd` + d`2) time and O(d`) space cost in OSH, we
improve a lot if 1 < `� d� n.

3.2 IMPLEMENTATION OF THE FAST
TRANSFORM IN FFD

Define q = `/2, then we show how to simply adopt
O(qd) space and perform a single pass through F ∈
Rm×d to achieve ΦF withO(md log q) time, given Φ =
SHD ∈ Rq×m, q ≤ m, and logm ≤ O(d log q).

To clarify, we choose an m such that m = 2b for a pos-
itive integer b. We can always find a q/2 ≤ p ≤ q to
define positive integers c and p such that m = 2cp.

Figure 1: Space-efficient implementation of ΦF =
SHDF. We set m/p = 2c with c = 2 for clarity.

As shown in Figure 1, we divide data matrix F ∈ Rm×d
into 2c blocks as {Fi ∈ Rp×d}2ci=1, and the diagonal
matrix D ∈ Rm×m into 2c square blocks as {Di ∈
Rp×d}2ci=1. Hadamard matrix H ∈ Rm×m can also be di-
vided into (2c)2 = 4c square blocks {Hij ∈ Rp×p}2ci,j=1.

We take O(pd) space to receive streaming data from
F1 ∈ Rp×d. Then, perform the matrix multiplication
through S[H11; H21; · · · ; H2c1]D1F1 ∈ Rq×d. We first
run H11D1F1 ∈ Rp×d, taking O(pd log p) time and
O(pd) space. We then only have to get at most q result-
ing rows from {Hi1F1}2

c

i≥2 since S ∈ Rq×m only selects
q rows. Fortunately, H11 = +Hi1 or H11 = −Hi1

holds for any i ∈ [2c], and the ± sign can be deter-
mined by calculating the first entry of each Hi1 based
on Eq. (3) whose running time is at most O(logm).
Hence, the ultimate time complexity is O(pd log p) +
O(qd) + O(q logm). It is also straightforward to check
that O(pd + qd) space suffices for all calculations and
saving the compressed data.

Then, we remove F1, receive data from F2, do the sim-
ilar calculations, and update current result based on the
previous compressed data from F1. The time and space
costs on F2 still keep asymptotically unchanged.

Finally, the space usage of computing ΦF is O(pd) =
O(qd), and its time cost is 2c[O(pd log p) + O(qd) +
O(q logm)] = O(md log q) given q/2 ≤ p ≤ q, m =
2cp, and logm ≤ O(d log q).

3.3 ERROR ANALYSIS

In our analysis, we turn to series of existing theoretical
tools. We use the Matrix Bernstein inequality on the sum
of zero-mean random matrices given as below.
Theorem 3 ([41]). Let {Ai}Li=1 ∈ Rn×d be indepen-
dent random matrices with E [Ai] = 0n×d and ‖Ai‖2 ≤
R for all i ∈ [L]. Define a variance parameter as σ2 =

max{‖
∑L
i=1 E

[
AiA

T
i

]
‖2, ‖

∑L
i=1 E

[
AT
i Ai

]
‖2}.

Then, for all ε ≥ 0 we have

P(‖
L∑
i=1

Ai‖2 ≥ ε) ≤ (d+ n) exp(
−ε2/2

σ2 +Rε/3
). (6)

It is also helpful to provide the next result that character-

izes the property of compressed data via SRHT matrix.

Theorem 4 ([31]). Given A ∈ Rm×d, let rank(A) ≤
k ≤ min(m, d) and Φ ∈ Rq×m be the SRHT matrix.
Then, with probability at least 1− (δ + m

ek
) we have

(1−∆)ATA � ATΦTΦA � (1 + ∆)ATA, (7)

where ∆ = Θ(
√

k log(2k/δ)
q).

With Corollary 3 of [2], it is straightforward to have the
next norm bound for compressed data vectors.

Lemma 1. Give data matrix A ∈ Rm×d, and the SRHT
matrix Φ ∈ Rq×m. Then, with probability at least 1−β,
we have

‖Φai‖2 ≤

√
2 log(

2md

β
)‖ai‖2, for all i ∈ [d]. (8)

Before proceeding, we first give the following Lemma
together with its proof.

Lemma 2. Given data matrix X ∈ Rm×d, and the
scaled sampling matrix S ∈ Rq×m in SRHT. Then, we
have

E[XTSTSX] = XTX. (9)

Proof of Lemma 2. It is related to sampling without re-
placement, and we defer the proof in the appendix.

We are now ready to prove our main results: Theorem 1
and Theorem 2.

Proof of Theorem 1. To clarify, we let q = `/2, define p
as the times that steps 6 to 11 in Algorithm 3 have been
executed, and assume p = n

m without loss of general-
ity for the input A = [A1; A2; · · · ; Ap] ∈ Rn×d with
{At ∈ Rm×d}pt=1. By the triangle inequality, we have

‖ATA−BTB‖2 ≤ ‖ATA−CTC‖2
+ ‖CTC−BTB‖2, (10)

where C = [C1; C2; · · · ; Cp] ∈ Rpq×d is from com-
pressing each At by Φt = StHDt in Algorithm 3 such
that Ct = ΦtAt. Since B results from running standard
FD on C, then with probability at least 1− pβ, we have

‖CTC−BTB‖2 ≤
2

`
‖C‖2F (11)

≤ 4

`
log(

2md

β
)‖A‖2F , (12)

where Eq. (11) directly follows from the error bound
of FD [25], and Eq. (12) holds by combing ‖C‖2F =

∑p
t=1 ‖Ct‖2F =

∑p
t=1

∑d
i=1 ‖ct,i‖22 with Lemma 1 and

the union bound.

We next bound ‖ATA−CTC‖2. Define Xt = HDtAt,
then it follows that

‖ATA−CTC‖2 = ‖
p∑
t=1

(AT
t At −CT

t Ct)‖2 (13)

= ‖
p∑
t=1

(AT
t At −XT

t STt StXt)‖2. (14)

Let Zt = AT
t At−XT

t STt StXt, then obviously {Zt}pt=1

are independent random variables. By Lemma 2, we per-
form the expectation w.r.t. St and Dt to obtain that

E[XT
t STt StXt] = EDt

ESt
[XT

t STt StXt|Dt] (15)

= EDt [X
T
t Xt] = EDt [A

T
t DT

t HTHDtAt] = AT
t At,

where the second equality follows from Lemma 2 with
Dt fixed, and the last equality holds because H and Dt

are the unitary matrices. Thus, {Zt}pt=1 satisfy the set-
ting of the Matrix Bernstein inequality in Theorem 3.

Hence, due to that ‖Zt‖2 ≤ ∆t‖AT
t At‖2 = ∆t‖At‖22

resulted from Theorem 4, we first achieve

R = max
t∈[p]

∆t‖At‖22 (16)

with probability at least 1 − (pδ +
∑p
t=1

m
ekt

) after ap-

plying union bound, where ∆t = Θ(
√

kt log(2kt/δ)
q) and

rank(At) ≤ kt ≤ min(m, d).

Regarding σ2, due to the symmetry of each matrix Zt,
σ2 = ‖

∑p
t=1 E[(Zt)

2]‖2 holds. Next, we have

0d×d � E[(Zt)
2] (17)

= E[(XT
t STt StXt)

2]− (AT
t At)

2 (18)

� E[‖StXt‖22XT
t STt StXt]− (AT

t At)
2 (19)

� E[(1 + ∆t)‖At‖22XT
t STt StXt]− (AT

t At)
2 (20)

= (1 + ∆t)‖At‖22AT
t At − (AT

t At)
2 (21)

with probability at least 1−(δ+ m
ekt

), where Eqs. (18)(21)
hold because E(XT

t STt StXt) = AT
t At, Eq. (20) fol-

lows from Theorem 4, and Eq. (19) holds because of

0d×d � (XT
t STt StXt)

2 � ‖StXt‖22XT
t STt StXt,

which results from that for any y ∈ Rd,

yT (XT
t STt StXt)

2y = ‖yTXT
t STt StXt‖22

≤ ‖yTXT
t STt ‖22‖StXt‖22 = ‖StXt‖22yTXT

t STt StXty.

Then, we have

‖
p∑
t=1

E[(Zt)
2]‖2 ≤

p∑
t=1

‖E[(Zt)
2]‖2 (22)

≤
p∑
t=1

∥∥∥(1 + ∆t)‖At‖22AT
t At − (AT

t At)
2
∥∥∥
2

(23)

=

p∑
t=1

∥∥∥(1 + ∆t)‖At‖22UtΣ
2
tUt −UtΣ

4
tUt

∥∥∥
2

(24)

=

p∑
t=1

∥∥∥(1 + ∆t)‖At‖22Σ2
t −Σ4

t

∥∥∥
2

(25)

=

p∑
t=1

max
j∈[d]
|(1 + ∆t)σ

2
t1σ

2
tj − σ4

tj | (26)

≤
p∑
t=1

(1 + ∆t)σ
4
t1 =

p∑
t=1

(1 + ∆t)‖At‖42 (27)

≤ max
t∈[p]

p(1 + ∆t)‖At‖42. (28)

where Eq. (23) establishes due to Eq. (21), and Ut in
Eq. (24) is from the SVD of At with At = UtΣtV

T
t

and the eigenvalues σtj , σt,jj listed in the descending
order in Σt. By Theorem 3, we have

P(‖
p∑
t=1

Zt‖2 ≥ ε) ≤ 2d exp(
−ε2/2

σ2 +Rε/3
). (29)

Denote the RHS of Eq. (29) by δ, we then obtain that

ε = log(
2d

δ
)
(R

3
+

√
(
R

3
)2 +

2σ2

log(2d/δ)

)
(30)

≤ log(
2d

δ
)
2R

3
+

√
2σ2 log(

2d

δ
) (31)

≤ max
t∈[p]

Õ
(

∆t‖At‖22
)

+ max
t∈[p]

Õ
(√

p(1 + ∆t)‖At‖22
)

(32)

≤ max
t∈[p]

Õ
(

(

√
k

`p2
+

√
1 +

√
k/`

p
)
‖At‖22
‖At‖2F

)
‖A‖2F

(33)

≤ Õ
(

(

√
k

`p2
+

√
1 +

√
k/`

p
)
)
‖A‖2F . (34)

To derive Eq. (33) from Eq. (32), we first substitute

∆t = Θ(
√

kt log(2kt/δ)
q) into Eq. (32) and set k = kt =

min(m, d), which allows Eq. (32) to become the max-
imum of the sum of two functions. Then, we leverage
the definition q = `/2 and apply a common practical as-
sumption of that pλ1 ≤ ‖A‖2F =

∑p
t=1 ‖At‖2F ≤ pλ2

with each ‖At‖2F bounded between λ1 and λ2 that are
very close to each other [2, 36].

Combing Eq. (34) with Eqs. (10)(12) by the union bound
achieves the desired result with probability at least 1 −
pβ − (2p+ 1)δ − 2pm

ek
.

The computational analysis is straightforward based on
Sections 2.2 and 3.2.

Proof of Theorem 2. This proof directly follows from
that in Section 2.1 and OSH [22] since FROSH differs
OSH merely in the sketching techniques. Then, leverag-
ing Theorem 1 immediately yields the desired results.

4 EXPERIMENTS

In this section, we conduct three sets of experiments
to empirically verify the properties and demonstrate the
superiority of our proposed FROSH. The experiments
are conducted in MATLAB R2015a and run on a stan-
dard workstation with Intel CPU@2.90GHz and 128GB
RAM. The MATLAB is set in single thread mode to
fairly test time. All results are averaged over 10 inde-
pendent runs.

4.1 NUMERICAL STUDIES ON SKETCHING

First of all, it is necessary to verify the sketching proper-
ties of FD and FFD, which dominate the performance of
OSH and FROSH, respectively. We aim to demonstrate
that FFD can achieve a comparable sketching accuracy
with a faster running speed in comparison with FD.

To make an insightful comparison, we run both algo-
rithms on the synthetic data A ∈ Rn×d, which is gener-
ated as [25] to verify the sketching methods. Specifically,
A ∈ Rn×d is formally defined as A = GFU + W/γ,
where G ∈ Rn×k is the signal coefficient with gij ∼
N (0, 1), the square diagonal matrix F ∈ Rk×k contains
the diagonal entries fii = 1 − (i − 1)/k that gives lin-
early diminishing signal singular values, U ∈ Rk×d de-
fines the signal row space with UUT = Ik (k � d), and
W ∈ Rn×d consists of noise wij ∼ N (0, 1).The param-
eter γ determines if the noise can dominate the signal.
Following [25], we set k = 10 and γ = 10.

In the experiments, we vary the sketching size ` along
(16, 32, 64, 100, 128, 200, 256). We also vary the data
size n and dimension d of A ∈ Rn×d, and the param-
eter m in FFD. Such variables can impact the sketching
performance in different degrees.

Sketching Size

0 100 200 300

E
rr

o
r

0

0.02

0.04

0.06

0.08
A1, n=200000 d=500

FD

FFD m/d=1

FFD m/d=2

FFD m/d=4

FFD m/d=8

Sketching Size

0 100 200 300

E
rr

o
r

0

0.02

0.04

0.06

0.08
A2, n=1000000 d=500

FD

FFD m/d=1

FFD m/d=2

FFD m/d=4

FFD m/d=8

Sketching Size

0 100 200 300

E
rr

o
r

0

0.02

0.04

0.06

0.08
A3, n=200000 d=256

FD

FFD m/d=1

FFD m/d=2

FFD m/d=4

FFD m/d=8

Figure 2: Accuracy comparisons of sketching methods.

We plot the relative error ‖ATA −BTB‖2/‖A‖2F ver-
sus the sketching size ` in Figure 2 and compare the run-
ning time given in Figure 3. It can be seen that, for data
A1, FFD displays comparable accuracy while enjoying a
much lower time cost compared with FD. Besides, when
m increases, the sketching accuracy of FFD slightly de-
creases, but its running speed increases especially for a
larger `. Data A2 differs A1 only on n, and we observe
that a larger n improves the sketching accuracy of FFD.
Finally, we decrease the dimension d in A3, and we find
that the improvement of running speed for FFD becomes
smaller than that in A1. All these observations are con-
sistent with the proved results in Theorem 1.

Sketching Size

0 100 200 300

T
im

e
 (

s
e
c
.)

0

20

40

60

80
A1, n=200000 d=500

FD

FFD m/d=1

FFD m/d=2

FFD m/d=4

FFD m/d=8

Sketching Size

0 100 200 300

T
im

e
 (

s
e
c
.)

0

100

200

300

400
A2, n=1000000 d=500

FD

FFD m/d=1

FFD m/d=2

FFD m/d=4

FFD m/d=8

Sketching Size

0 100 200 300

T
im

e
 (

s
e
c
.)

0

15

30

45

60
A3, n=200000 d=256

FD

FFD m/d=1

FFD m/d=2

FFD m/d=4

FFD m/d=8

Figure 3: Time comparisons of sketching methods.

All the results indicate that our proposed FFD has the
potential to benefit the sketching-based online hashing.

4.2 COMPARISONS WITH LSH AND OSH

In this part, we compare against online unsupervised
hashing methods including LSH [8] and OSH. We em-
ploy four datasets: CIFAR-10 [21], MNIST [7], GIST-
1M [16], and FLICKR-25600 [49]. For CIFAR-10, it
consists of 60,000 images in 10 classes with 6000 images
per class. We extract 512-dimensional GIST descriptor
to represent each image. MNIST contains 70,000 im-
ages with 784-dimensional features. GIST-1M consists
of one million 960-dimensional GIST descriptors. The
FLICKR-25600 dataset contains 100,000 images sam-
pled from a noisy Internet image collection, and each im-
age is represented by a 25,600-dimensional vector nor-
malized to be of unit norm. Following the common set-
ting, we take the top 2% nearest neighbors in Euclidean
space as the ground truth for all datasets.

In both OSH and FROSH, we set the sketching size
` = 2r, where r is the code length assigned from
{32, 64, 128}. We train both algorithms in a streaming
fashion by evenly dividing each dataset into 10 parts, and
evaluate the mean average precision (MAP) score after
each round. We also empirically set m = 4d in FROSH
during the training. For LSH, it does not require training,
and we simply report its MAP at the final round [22].

Figure 4 shows the MAP scores at different rounds on
four datasets with 32, 64 and 128 bits codes. On all
datasets, it is apparent that our proposed FROSH per-
forms as accurately as OSH and outperforms LSH with

a large margin. In addition, both OSH and FROSH sta-
bly improve the MAP scores when receiving more data,
which demonstrates that a successful adaption to the data
variations has been achieved.

Rounds

0 2 4 6 8 10

M
A

P

0.09

0.15

0.21

0.27

0.33
CIFAR-10, 32bits

LSH

OSH

FROSH

Rounds

0 2 4 6 8 10

M
A

P

0.24

0.36

0.48

0.6

0.72
MNIST, 32bits

LSH

OSH

FROSH

Rounds

0 2 4 6 8 10

M
A

P

0.1

0.14

0.18

0.22

0.26
GIST-1M, 32bits

LSH

OSH

FROSH

Rounds

0 2 4 6 8 10

M
A

P

0

0.09

0.18

0.27

0.36
FLICKR-25600, 32bits

LSH

OSH

FROSH

Rounds

0 2 4 6 8 10

M
A

P

0.09

0.15

0.21

0.27

0.33
CIFAR-10, 64bits

LSH

OSH

FROSH

Rounds

0 2 4 6 8 10

M
A

P

0.24

0.36

0.48

0.6

0.72
MNIST, 64bits

LSH

OSH

FROSH

Rounds

0 2 4 6 8 10

M
A

P

0.1

0.14

0.18

0.22

0.26
GIST-1M, 64bits

LSH

OSH

FROSH

Rounds

0 2 4 6 8 10

M
A

P

0

0.09

0.18

0.27

0.36
FLICKR-25600, 64bits

LSH

OSH

FROSH

Rounds

0 2 4 6 8 10

M
A

P

0.09

0.15

0.21

0.27

0.33
CIFAR-10, 128bits

LSH

OSH

FROSH

Rounds

0 2 4 6 8 10

M
A

P

0.24

0.36

0.48

0.6

0.72
MNIST, 128bits

LSH

OSH

FROSH

Rounds

0 2 4 6 8 10

M
A

P

0.1

0.14

0.18

0.22

0.26
GIST-1M, 128bits

LSH

OSH

FROSH

Rounds

0 2 4 6 8 10

M
A

P

0

0.09

0.18

0.27

0.36
FLICKR-25600, 128bits

LSH

OSH

FROSH

Figure 4: MAP at each round with 32, 64, and 128 bits.

Table 1 provides the accumulated training time of OSH
and FROSH with 32, 64, 128 bits codes, respectively.
FROSH consistently has the lower training time for each
comparison, which achieves about 10 ∼ 20 times speed-
up than OSH. Thus, our method is highly efficient.

Table 1: Accumulated training time of OSH and FROSH
after all rounds (in sec.).

Dataset Method 32bits 64bits 128bits

CIFAR-10 OSH 7.78 11.88 22.09
FROSH 0.63 0.94 2.11

MNIST OSH 13.25 18.93 30.75
FROSH 1.17 1.49 2.56

GIST-1M OSH 228 331 520
FROSH 21 27 45

FLICKR- OSH 679 1283 2570
25600 FROSH 72 92 134

4.3 COMPARISONS WITH BATCH SOLUTIONS

We also compare OSH and our FROSH against two lead-
ing batch methods SGH [17] and OCH [27]. Based on
the literature [17, 27, 29], we know that SGH maintains
a superior tradeoff between the learning accuracy and
the scalability, and OCH is the state-of-the-art regarding
the accuracy performance compared with the other unsu-

pervised hashing methods such as SpH [44], AGH [30],
IsoH [20], DGH [29], and OEH [28].

In Figure 5, we clearly observe that FROSH achieves
comparable or even better accuracy in comparison with
the two leading batch solutions, which suggests that not
only does the online sketching maintain sufficient infor-
mation necessary for the hash function training but also it
owns a good learning ability. In conclusion, considering
the properties that FROSH can adapt the hash functions
to the new coming data and enjoy superior training effi-
ciency (single pass, lowest costs of space and time), our
proposed method is more appropriate for hashing learn-
ing on the big streaming unlabeled data. Note that we
defer the time comparisons in the appendix.

Bits

32 64 128

M
A

P

0

0.09

0.18

0.27

0.36
CIFAR-10

SGH

OCH

OSH

FROSH

Bits

32 64 128

M
A

P

0

0.09

0.18

0.27

0.36
GIST-1M

SGH

OCH

OSH

FROSH

Bits

32 64 128

M
A

P

0

0.2

0.4

0.6

0.8
MNIST

SGH

OCH

OSH

FROSH

Bits

32 64 128

M
A

P

0

0.09

0.18

0.27

0.36
FLICKR-25600

SGH

OCH

OSH

FROSH

Figure 5: MAP comparisons at different code lengths.

5 CONCLUSION

In this paper, we propose an effective hashing method
for streaming unlabeled data. Its basic idea is to reduce
the sketching time that is the dominated cost in the OSH
method. The analysis shows better time efficiency with
accuracy guaranteed. The simulations on both synthetic
and real-world datasets support our theoretical findings
and demonstrate the practicability of our method.

The sketching designed in this work also provides an in-
sightful view for accelerating general streaming matrix
multiplications, which then may be helpful for deriving
an online version of OCH. Such extensions can be ex-
plored in the future work.

Acknowledgments

We thank the reviewers for their insightful comments to
improve the paper quality. We also truly thank Cong
Leng for the fruitful discussions and suggestions. This
work was fully supported by the National Natural Sci-
ence Foundation of China (Project No. 61332010), the
Research Grants Council of the Hong Kong Special Ad-
ministrative Region, China ((No. CUHK 14208815 and
No. CUHK 14234416 of the General Research Fund),
and 2015 Microsoft Research Asia Collaborative Re-
search Program (Project No. FY16-RES-THEME-005).

References

[1] N. Ailon and E. Liberty. Fast dimension reduction using
rademacher series on dual bch codes. In Proceedings of the
nineteenth annual ACM-SIAM symposium on Discrete algorithms,
2008.

[2] F. Anaraki and S. Becker. Preconditioned data sparsification for
big data with applications to pca and k-means. arXiv preprint
arXiv:1511.00152, 2015.

[3] A. Andoni, P. Indyk, T. Laarhoven, I. Razenshteyn, and
L. Schmidt. Practical and optimal lsh for angular distance. In
Advances in Neural Information Processing Systems, 2015.

[4] H. Avron, H. Nguyen, and D. Woodruff. Subspace embeddings
for the polynomial kernel. In Advances in Neural Information
Processing Systems, 2014.

[5] F. Cakir and S. Sclaroff. Adaptive hashing for fast similarity
search. In Proceedings of the IEEE International Conference on
Computer Vision, pages 1044–1052, 2015.

[6] F. Cakir and S. Sclaroff. Online supervised hashing. In Image
Processing (ICIP), 2015 IEEE International Conference on, pages
2606–2610. IEEE, 2015.

[7] C.-C. Chang and C.-J. Lin. Libsvm: a library for support vector
machines. ACM Transactions on Intelligent Systems and Technol-
ogy, 2011.

[8] M. S. Charikar. Similarity estimation techniques from rounding
algorithms. In Proceedings of the thiry-fourth annual ACM sym-
posium on Theory of computing, pages 380–388. ACM, 2002.

[9] A. Choromanska, K. Choromanski, M. Bojarski, T. Jebara, S. Ku-
mar, and Y. LeCun. Binary embeddings with structured hashed
projections. In ICML, 2016.

[10] P. Dhillon, Y. Lu, D. P. Foster, and L. Ungar. New subsampling
algorithms for fast least squares regression. In Advances in Neural
Information Processing Systems, pages 360–368, 2013.

[11] M. Ghashami, E. Liberty, and J. M. Phillips. Efficient frequent di-
rections algorithm for sparse matrices. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, pages 845–854. ACM, 2016.

[12] A. Gionis, P. Indyk, R. Motwani, et al. Similarity search in high
dimensions via hashing. In VLDB, 1999.

[13] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin. Iterative
quantization: A procrustean approach to learning binary codes for
large-scale image retrieval. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 2013.

[14] L.-K. Huang, Q. Yang, and W.-S. Zheng. Online hashing. In
IJCAI. Citeseer, 2013.

[15] P. Indyk and R. Motwani. Approximate nearest neighbors: to-
wards removing the curse of dimensionality. In Proceedings of the
thirtieth annual ACM symposium on Theory of computing, 1998.

[16] H. Jegou, M. Douze, and C. Schmid. Product quantization for
nearest neighbor search. IEEE transactions on pattern analysis
and machine intelligence, 2011.

[17] Q.-Y. Jiang and W.-J. Li. Scalable graph hashing with feature
transformation. In IJCAI, pages 2248–2254, 2015.

[18] I. Jolliffe. Principal component analysis. Wiley Online Library,
2002.

[19] W.-C. Kang, W.-J. Li, and Z.-H. Zhou. Column sampling based
discrete supervised hashing. In Thirtieth AAAI Conference on Ar-
tificial Intelligence, 2016.

[20] W. Kong and W.-J. Li. Isotropic hashing. In Advances in Neural
Information Processing Systems, 2012.

[21] A. Krizhevsky. Learning multiple layers of features from tiny im-
ages. 2009.

[22] C. Leng, J. Wu, J. Cheng, X. Bai, and H. Lu. Online sketching
hashing. In Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pages 2503–2511, 2015.

[23] W.-J. Li, S. Wang, and W.-C. Kang. Feature learning based deep
supervised hashing with pairwise labels. In IJCAI, 2016.

[24] Y. Li, R. Wang, H. Liu, H. Jiang, S. Shan, and X. Chen. Two
birds, one stone: Jointly learning binary code for large-scale face
image retrieval and attributes prediction. In Proceedings of the
IEEE International Conference on Computer Vision, 2015.

[25] E. Liberty. Simple and deterministic matrix sketching. In Pro-
ceedings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2013.

[26] G. Lin, C. Shen, Q. Shi, A. van den Hengel, and D. Suter. Fast
supervised hashing with decision trees for high-dimensional data.
In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2014.

[27] H. Liu, R. Ji, Y. Wu, and F. Huang. Ordinal constrained binary
code learning for nearest neighbor search. In AAAI, 2017.

[28] H. Liu, R. Ji, Y. Wu, and W. Liu. Towards optimal binary code
learning via ordinal embedding. In AAAI, 2016.

[29] W. Liu, C. Mu, S. Kumar, and S.-F. Chang. Discrete graph hash-
ing. In Advances in Neural Information Processing Systems, pages
3419–3427, 2014.

[30] W. Liu, J. Wang, S. Kumar, and S.-F. Chang. Hashing with graphs.
In Proceedings of the 28th international conference on machine
learning, 2011.

[31] Y. Lu, P. Dhillon, D. P. Foster, and L. Ungar. Faster ridge re-
gression via the subsampled randomized hadamard transform. In
Advances in neural information processing systems, 2013.

[32] H. Luo, A. Agarwal, N. Cesa-Bianchi, and J. Langford. Efficient
second order online learning by sketching. In Advances in Neural
Information Processing Systems, 2016.

[33] L. Mukherjee, S. N. Ravi, V. K. Ithapu, T. Holmes, and V. Singh.
An nmf perspective on binary hashing. In Proceedings of the IEEE
International Conference on Computer Vision, 2015.

[34] C. Musco and C. Musco. Randomized block krylov methods for
stronger and faster approximate singular value decomposition. In
Advances in Neural Information Processing Systems, pages 1396–
1404, 2015.

[35] B. Neyshabur, N. Srebro, R. R. Salakhutdinov, Y. Makarychev,
and P. Yadollahpour. The power of asymmetry in binary hashing.
In Advances in Neural Information Processing Systems, 2013.

[36] J. Pennington, F. Yu, and S. Kumar. Spherical random features for
polynomial kernels. In Advances in Neural Information Process-
ing Systems, pages 1846–1854, 2015.

[37] F. Shen, W. Liu, S. Zhang, Y. Yang, and H. T. Shen. Learning
binary codes for maximum inner product search. In International
Conference on Computer Vision. IEEE, 2015.

[38] F. Shen, C. Shen, W. Liu, and H. Tao Shen. Supervised discrete
hashing. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2015.

[39] A. Shrivastava and P. Li. Asymmetric lsh (alsh) for sublinear time
maximum inner product search (mips). In Advances in Neural
Information Processing Systems, pages 2321–2329, 2014.

[40] J. Song, L. Gao, Y. Yan, D. Zhang, and N. Sebe. Supervised
hashing with pseudo labels for scalable multimedia retrieval. In
Proceedings of the 23rd ACM international conference on Multi-
media, pages 827–830. ACM, 2015.

[41] J. A. Tropp. An introduction to matrix concentration inequalities.
Foundations and Trends in Machine Learning, 2015.

[42] J. Wang, S. Kumar, and S.-F. Chang. Semi-supervised hashing for
scalable image retrieval. In Computer Vision and Pattern Recog-
nition, 2010 IEEE Conference on, pages 3424–3431. IEEE, 2010.

[43] J. Wang, T. Zhang, J. Song, N. Sebe, and H. T. Shen. A survey on
learning to hash. arXiv preprint arXiv:1606.00185, 2016.

[44] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In Ad-
vances in neural information processing systems, 2009.

[45] D. P. Woodruff et al. Sketching as a tool for numerical linear alge-
bra. Foundations and Trends R© in Theoretical Computer Science,
2014.

[46] C. Woolam, M. M. Masud, and L. Khan. Lacking labels in the
stream: classifying evolving stream data with few labels. In In-
ternational Symposium on Methodologies for Intelligent Systems,
pages 552–562. Springer, 2009.

[47] S. Wu, S. Bhojanapalli, S. Sanghavi, and A. G. Dimakis. Single
pass pca of matrix products. In Advances in Neural Information
Processing Systems, 2016.

[48] L. Xie, L. Zhu, and G. Chen. Unsupervised multi-graph cross-
modal hashing for large-scale multimedia retrieval. Multimedia
Tools and Applications, pages 1–20, 2016.

[49] F. X. Yu, S. Kumar, Y. Gong, and S.-F. Chang. Circulant binary
embedding. In ICML, 2014.

