
Performance and Effectiveness Analysis of Checkpointing in Mobile
Environments

Xinyu Chen and Michael R. Lyu
Department of Computer Science and Engineering

The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
fxychen, lyug@cse.cuhk.edu.hk

Abstract

Many mathematical models have been proposed to eval-
uate the execution performance of an application with and
without checkpointing in the presence of failures. They as-
sume that the total program execution time without fail-
ure is known in advance, under which condition the opti-
mal checkpointing interval can be determined. In mobile
environments, application components are distributed and
tasks are computed by sending and receiving computational
and control messages. The total execution time includes
communication time and depends on multiple factors, such
as heterogeneous processing speeds, link bandwidth, etc.,
making it unpredictable during different executions. How-
ever, the number of total computational messages received
is usually unchanged within an application. Another special
factor that should be considered for checkpointing purpose
is handoff, which often happens in mobile networks. With
these observations, we analyze application execution per-
formance and average effectiveness, and introduce an equi-
number checkpointing strategy. We show how checkpoint-
ing and handoff affect performance and effectiveness met-
rics, determine the conditions when checkpointing is bene-
ficial, and calculate the optimal checkpointing interval for
minimizing the total execution time and maximizing the av-
erage effectiveness in mobile environments.

Keywords: Performance analysis, Equi-number check-
pointing, Optimal checkpointing interval, Mobile environ-
ments, Handoff

1. Introduction

According to advances of wireless networking tech-
nologies, many portable information appliances are widely
available, bringing about a computing paradigm shift in the
direction of nomadic computing [2]. Nomadic computing
enables users to access and exchange information while

they roam around in mobile environments. This flexibil-
ity, however, causes more probable physical damage to mo-
bile hosts (MHs) [15]. In addition, MHs have low battery
power and wireless links suffer limited bandwidth and long
transfer delay, making transient failures more likely. Thus,
nomadic computing requires techniques to provide fault tol-
erance for continuing services despite of such failures.

Checkpointing and rollback is among the best-known
techniques to minimize loss of computation in the presence
of failures by periodically saving the programs’ states on
stable storage during failure-free execution. Each of the
saved states is called a checkpoint [8], and the saving pro-
cess of such states is called checkpointing. After a fail-
ure, there is a repair process which brings the failed device
back to normal operation. Following the repair, the pro-
cess of reloading the program status saved at the most re-
cent checkpoint is often called a rollback. The reprocessing
of the program, starting from the most recent checkpoint
until the point just before the failure, is called a recovery
process [16].

If we engage the checkpointing and rollback techniques
in mobile environments, how would the performance be
changed and what benefit would we get? Checkpointing
avoids the failed program to rollback to its beginning. How-
ever, the benefit of checkpointing comes with a price. Ex-
cessive checkpointing would result in performance degra-
dation, while deficient checkpointing would still incur an
expensive recovery overhead [14]. Therefore, a trade-off
exists. Many mathematical models have been proposed to
evaluate the execution performance and to derive the opti-
mal checkpointing interval [7, 16, 20, 23]. But these models
assume that the total program execution time with no fail-
ure is known in advance. In mobile environments, appli-
cation components are distributed and tasks are completed
by sending and receiving computational and control mes-
sages. The total execution time is dependent on multiple
factors, such as heterogeneous components and processing
powers. Moreover, as part of the total application execution
time, messages passing time is affected by link bandwidth,

Proceedings of the 22nd International Symposium on Reliable Distributed Systems (SRDS’03)
1060-9857/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 02:33:41 UTC from IEEE Xplore. Restrictions apply.

which varies during different executions. However, the
number of total computational messages received is usually
not changed for an application. Furthermore, we need to
consider handoff situation, which often happens in mobile
networks. In this paper, we use these observations to ana-
lyze the application execution performance and the average
effectiveness. We then introduce an equi-number check-
pointing strategy. We derive the metrics for expected pro-
gram execution time and average effectiveness under some
assumptions. We show the influence of checkpointing and
handoff to these two metrics, and determine the conditions
when checkpointing is beneficial. In addition, we derive
the optimal checkpointing interval for minimizing the to-
tal program execution time and maximizing the average ef-
fectiveness. Finally we show the results of simulations and
the comparisons between the performance and effectiveness
of programs with and without checkpointing and draw our
conclusions. Note throughout the paper we use the word
“failure” to mean component or program failure. It could
be termed as “fault” as it does not represent system failure.

2. Related Work

Many researchers have studied the problem of optimiz-
ing the checkpointing interval that reduces the overhead
caused by rollbacks. Young [23] presents a first-order ap-
proximation to the optimal time interval between check-
points. He assumes that (1) a failure is detected as soon
as it occurs; (2) the checkpointing interval is fixed; (3)
the inter-failure time is exponentially distributed; (4) the
checkpointing time is constant; and (5) no failures occur
during error recovery [20]. In our approach, we also as-
sume instant failure detection but the checkpointing time
is a random variable with general distribution. Tantawi
and Ruschitzka [20] consider general failure distributions
and allow failures to occur during checkpointing and er-
ror recovery. They introduce an equi-cost strategy which
is a failure-dependent yet reprocessing-independent check-
pointing strategy. This paper will only consider that the
inter-failure time is exponentially distributed. However,
we improve over [20] by taking general handoff distribu-
tions and failures during checkpointing and handoff into
consideration besides handoffs during checkpointing and
rollback. Duda [7] derives the distribution and expecta-
tion of program execution time with and without check-
pointing. Nicola [16] analyzes program execution time
with different checkpointing strategies: equi-distant check-
pointing, checkpointing in modular programs, and random
checkpointing. In [7] and [16], they point out that the ex-
pected elapse time of programs without checkpointing in-
creases as an exponential function of the execution time,
whereas the use of checkpointing causes a linear increase.
Chandy [3] discusses costs of rollback and recovery with

several assumptions: the checkpointing time is fixed, the
time required to reprocess the logged transactions is pro-
portional to the number of transactions recorded since the
last checkpoint, and the checkpoint itself is always correct.
In [4], Chandy et al. propose algorithms which make use
of estimates made by the programmers on the maximum
amount of processing time to minimize the maximum or
expected time spent in checkpointing. These algorithms
need some a priori knowledge about the processing time.
In [12], Krishna et al. point out that the optimization cri-
teria for checkpoint placement is to trade the benefits de-
rived from checkpointing with the overhead imposed. Ziv
and Bruck [24] present an online algorithm for placement of
checkpoints. The algorithm keeps track of the state size of a
program, and looks for points in the program where check-
point placement is the most beneficiary. Gelenbe [10] uti-
lizes the queueing process related to the requests for trans-
action processing arriving at a database system and shows
that the optimal checkpointing interval is a function of the
load of the database system. We will utilize the received
computational message number for checkpoint placement
and derive an approximation to the optimal message num-
ber interval between checkpoints. Tsai et al. [22] prove that
there is no optimal checkpointing strategy with rollback-
dependency trackability for all possible communication pat-
terns. We will also point out informally that different check-
pointing strategies should be employed for suiting different
computing environments.

Neves and Fuchs [15] propose a coordinated checkpoint
protocol for distributed systems in mobile environments.
Checkpoints are saved remotely on stable storage, or lo-
cally in MHs. Chen and Lyu [5] present a message logging
and recovery strategy in Wireless CORBA, in which check-
points are also saved remotely on stable storage. In this
paper, we also assume that checkpoints are saved remotely.
Pradhan et al. [19] discuss the design and trade-off in recov-
erable mobile environments. They choose the Mobile Sup-
port Station (MSS) as stable storage for an MH. They iden-
tify the trade-off parameters for recovery strategy, which in-
clude failure rate of an MH, communication/mobility ratio,
wireless network factor, etc. They analyze the costs of the
proposed recovery schemes, but they do not analyze the ex-
pected program execution time and effectiveness. We will
discuss how the checkpointing and handoff rate influence
these two metrics.

3. Mobile Architecture

Distributed mobile computing environments have been
addressed in hardware entities by many papers in the litera-
ture [1, 15]. In mobile distributed computing, much of the
action takes place in the middleware level. Therefore, we
regard that describing the mobile architecture using middle-

Proceedings of the 22nd International Symposium on Reliable Distributed Systems (SRDS’03)
1060-9857/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 02:33:41 UTC from IEEE Xplore. Restrictions apply.

ware entities would be more suitable. We borrow a mobile
architecture from Telecom Wireless CORBA (Common Ob-
ject Request Broker Architecture) [17], which is standard-
ized by Object Management Group (OMG). This architec-
ture is shown in Figure 1.

Home Domain

Home
Location
Agent

Terminal
Bridge

Terminal
Domain

Access
Bridge

Visited Domain

Access
Bridge

Access
Bridge

GIOP
Tunnel

Static
Host

Static
Host

mh1

Terminal
Bridge

Terminal
Domain

mh1

Access
Bridge

ab1

ab2

Handoff

Figure 1. Wireless CORBA architecture

In Figure 1, wireless CORBA identifies three different
domains: Terminal Domain, Visited Domain and Home
Domain [17]. The Terminal Domain is an MH which can
move around while maintaining network connections by a
wireless interface. The MH hosts a Terminal Bridge (TB)
through which the objects on the MH can communicate
with other objects in wired or wireless networks. The Vis-
ited Domain contains several Access Bridges (ABs) to pro-
vide communications with objects on MHs. It also con-
tains some static hosts. All communications in the Visited
Domain are via wired links. An MSS contains necessary
wireless facilities to communicate with MHs and includes
wired interfaces to communicate with static hosts and other
MSSs. The Home Domain is composed of the Home Loca-
tion Agent which keeps track of the ABs that the MH has
associated with when it moves around.

Each AB covers a geographical area within which it can
communicate with the corresponding MHs directly, which
is plotted as dashed circle in Figure 1. When an MH moves
across the border of a geographical area, a handoff occurs
between the new AB and the old AB.

All hosts communicate with each other by messages
only. The GIOP (General Inter-ORB Protocol) tunnel is
the communication channel, through which the GTP (GIOP
Tunnel Protocol) messages are transmitted between an AB
and a TB. The GTP messages can be classified into two cat-
egories: control message and computational message. No
messages can be exchanged among TBs directly. All mes-
sages to and from an MH are relayed by its currently associ-
ated ABs. During the handoff, no computational messages
can be transmitted between the ABs and the MH.

4. Program Execution without Checkpointing

As mentioned before, GTP messages are transmitted
through GIOP tunnels via wireless links during a program
execution. These messages can be classified into two cate-
gories: control message and computational message. Dur-
ing different runs of an application, an MH will receive a
given number of computational messages, but the number
of control messages received may vary as failures and hand-
offs, when occurring, are random events. We consider the
execution time of a program in an MH with a given num-
ber of computational messages in the presence of random
failures and handoffs.

4.1. Model Description

Let us first introduce the notations that will be used in
this paper. Let Z, a random variable, be the continuously
processing time requirement of a task in the absence of fail-
ures, handoffs and checkpointings. During a task execu-
tion, three events may occur: failures, handoffs and check-
pointings, denoted as f� h, and c respectively. We define
that Z�e� represents the task execution time in the pres-
ence of event e, e � f� h� c, with the time requirement Z.
Multiple event types may occur during task execution, e.g.,
Z�f�h� is the task execution time in the presence of failures
and handoffs. The general cumulative distribution function
(c.d.f.) of the random variable Z is GZ�t�. We denote
the Laplace-Stieltjes Transform (LST) of the c.d.f. of Z as
�Z�s� �

R
�

t��
e�stdGZ�t� � E�e�sZ�. Let �Z be a random

variable which has the same probability distribution withZ,
then � �Z�s� � �Z�s�.

Now we turn to describe the program execution model
in the absence of checkpointing. Let n denote the number
of computational messages that a program in an MH should
receive. The messages arrive according to a Poisson pro-
cess at rate �. X�n� is the program execution time with the
required computational message number n. The instants
of the occurrences of failures form a homogeneous Poisson
process of parameter � and time between two successive
handoff events is modelled as an exponential distribution
with parameter �. The program has three states during its
execution, denoted as State 0, 1, and 2 shown in Figure 21,
respectively. State 0 is the normal (operational) state, in
which messages can be received. If a handoff occurs, the
program transits to State 2. The handoff time H is a ran-
dom variable with general distribution. The program will
enter State 1 if a failure occurs when the program is in State
0 or 2. A repair process will be conducted instantly when
entering State 1. The repair time requirement R is also re-
garded as a random variable with general distribution. The

1In state transition diagrams, we only show the transition rates which
have been given explicitly in our assumption.

Proceedings of the 22nd International Symposium on Reliable Distributed Systems (SRDS’03)
1060-9857/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 02:33:41 UTC from IEEE Xplore. Restrictions apply.

restarting time is assumed to be much smaller than R, so we
ignore it here. During State 1, failures may still occur, af-
ter which the repair is repeated [13], but handoffs cannot be
made as the MH does not work in this state. Eventually the
program returns to State 0. We assume a failure is detected
as soon as it occurs.

λ
0

2 1

ρ

γ

γ

γ

Figure 2. State transition in program execu-
tion without checkpointing

Without checkpointing, the program should be restarted
from its beginning after a failure, as all the computation
from the beginning to the failure epoch is lost. This com-
putation is denoted as wasted computation [18]. The pro-
gram will terminate successfully if it receives n messages
continuously before the next failure. During a handoff, no
computational message is distributed to the MH. Only after
the completion of a handoff, computational messages can
be transmitted continuously. Without loss of generality, we
assume that the program starts at State 0.

4.2. Execution Time and Average Effectiveness
without Checkpointing

If a program enters State 1, it must complete a repair
task with the time requirement R, after which it returns to
State 0. We may calculate the sojourn time in State 1 in-
dependently. So the State 1 is plotted with dashed circle in
Figure 2.

Lemma 1. The LST of the c.d.f. of R�f�, the repair time
in the presence of failures with the time requirement R, i.e.,
the sojourn time in State 1, is given by

�R�f� �s� �
�s � ���R�s � ��

s � ��R�s � ��
� (1)

and the expectation of R�f� is

E�R�f�� �
�� �R���

��R���
� (2)

Proof 2: Let Y be the time to the first failure after starting

2The proof follows similar approaches in [9, 16].

repair, then we have

R�f� �

�
R � if R � Y

Y � �R�f� � if R � Y�

If R � Y , then a repair will be successful completed with-
out failures, so the repair time is R. If R � Y , a failure
occurs after which another repair is simply repeated, de-
noted as �R�f�. Thus the repair time is Y � �R�f� in this case.
Taking conditional expectation of R�f�, we get

E�e�sR
�f�

jR� Y � �

�
e�sR � if R � Y

e�sYE�e�s
�R�f�

� � if R � Y�

as Y should be independent of �R�f�. Unconditioning on Y ,
we have

E�e�sR
�f�

jR�

�

Z
�

y��
E�e�sR

�f�

jR� Y � y� � �e��ydy

� e��s���R �
�E�e�s

�R�f�

�

s � �

h
�� e��s���R

i
�

Removing the condition on R, the result is

�R�f� �s� � �R�s����
��R�f� �s�

s� �
��� �R�s � ��� � (3)

Rearranging the above equation yields Equation (1). After
engaging the moment generating property of the Laplace
transform [6], E�R�f�� � �d�R�f� �s��dsjs��, the ex-
pected repair time in the presence of failures is given by
Equation (2). �

Theorem 1. Let

Q�s� �
�

s � � � � � � � ��H �s � ��
(4)

and

q �
� � � � �� ��H ���

�
� (5)

then the LST of the c.d.f. of the program execution time
X�f�h��n� contains the form

�X�f�h� �s� n� �
�s � ��Qn�s�

s � � � ��R�f� �s���� Qn�s��
� (6)

and the expectation of X�f�h��n� is

E�X�f�h��n�� �

�
�

�
� E�R�f��

�
�qn � ��� (7)

Proof: Under the assumptions stated in Section 4.1, the ran-
dom variable X�n� inherits an N-stage Erlang distribution
with parameter � [21]. Let K, K � 	� ��
� � � �, be the num-
ber of transitions from State 0 to State 2, i.e., the number

Proceedings of the 22nd International Symposium on Reliable Distributed Systems (SRDS’03)
1060-9857/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 02:33:41 UTC from IEEE Xplore. Restrictions apply.

of handoffs during a normal execution. So the total time re-
quirement is X�n� �

PK

j��Hj. Let Y be the time to the
first failure event after starting program execution. Then we
have

X�f�h��n� �

�����
����

X�n� �
PK

j��Hj

� if X�n� �
PK

j��Hj � Y

Y �R�f� � �X�f�h��n�

� if X�n� �
PK

j��Hj � Y�

If X�n� �
PK

j��Hj � Y , the program will make K
handoffs before it receives n messages without failures. In
this case, the total handoff time is

PK

j��Hj and the to-

tal program execution time is X�n� �
PK

j��Hj. Hj� j �
�� � � � �K, are independent and identically distributed (i.i.d.)
random variables. If X�n��

PK

j��Hj � y, a failure occurs
before the program receives nmessages and makesK hand-
offs. In this case, there is a repair time R�f� after which the
program execution is restarted from its beginning, which
means that the program is required to receive n messages
without failure interruptions again [16]. Following similar
steps in the proof of Lemma 1, the theorem is proofed. �

Equation (7) shows that the expectation of program exe-
cution time is an exponential function of the number of mes-
sages n. It also depends on failure rate �, message arrival
rate � and handoff rate �. In Equation (7), �����E�R�f���
corresponds to the expectation of inter-failure time and the
following repair time. Moreover, the second term, �qn���,
denotes the expected number of failure occurrences when
the program is in State 0 and 2.

Remark 1. With no failures during program execution,
i.e., � tends to 	, then

lim
���

E�X�f�h��n�� �
n

�
�� � �E�H�� � (8)

Average effectiveness can be defined as how much of
the time an MH performs effective computation towards its
completion during an execution. An execution of a program
in an MH may be decomposed into wasted and effective in-
tervals [18]. If a program produces useful work towards its
completion then it is in effective interval, while a wasted in-
terval is one in which the program does not produce useful
work. The times when the MH is in repair or in handoff are
considered as wasted times. If the MH is functional but the
program is not producing useful computation, as mentioned
as wasted computation before, the time interval is also re-
garded as a wasted interval. According to these definitions
of effective interval and wasted interval, the effective time
during an execution can be calculated by the expected ex-
ecution time of a program without failures and handoffs,
which is n��, as the program has to receive nmessages suc-
cessfully. The sum of the wasted time and effective time, on
the other hand, can be computed by the expected execution

time of a program in the presence of failures and handoffs,
which is E�X�f�h��n��. Consequently the average effec-
tiveness of a program execution without checkpointing, de-
noted as A�n�, is

A�n� �
n

� �E�X�f�h��n��
� (9)

A�n� decreases as message number n or handoff arrival rate
� increases and as message arrival rate � decreases. From
the above analysis, we know that most execution time is
wasted due to failures. So we need some techniques to cut
down the wasted computation time and increase the average
effectiveness. Checkpointing and rollback are such tech-
niques suitable to achieve this object.

5. Equi-number Checkpointing

Equi-number checkpointing means checkpoints are
equally placed with respect to the number of received mes-
sages n. It can be treated in two ways: one is to fix the mes-
sage number in each checkpointing interval, and the other
is to fix the total checkpoint interval number. We denote
both of them as equi-number checkpointing. The former is
with respect to message number, and the latter is with re-
spect to checkpoint number. The first one is very naturally
derived from the equi-distant checkpointing strategy [16] as
we change the required program execution time to the re-
quired total message number.

5.1. Model Description

The number of messages n is divided intom equal inter-
vals (supposing n could be divided exactly by m), so each
interval has a � n�m messages. Despite of n, the check-
pointingstrategy is equi-number checkpointing with respect
to checkpoint number if m is fixed, and it is equi-number
checkpointing with respect to message number if a is fixed.
As these two approaches have the same mathematical ex-
pression of the expected execution time and average effec-
tiveness, we will only consider equi-number checkpointing
with respect to message number. For simplicity, when a
program finishes we also take a checkpoint, so there is al-
ways a checkpoint at the end of each interval, forming a
total of m checkpoints. The execution times of the m in-
tervals, Xi�a�� i � ��
� � � � �m, are assumed as i.i.d. ran-
dom variables. In each interval, the execution is the same
as the execution without checkpointing except that the pro-
gram restarts from its most recent checkpoint.

Figure 3(a) shows the state transition during execution
with equi-number checkpointing in the ith� i � ��
� � � �� n�
interval. There are two composite states 3 and 4, whose de-
tailed representations are showed in Figure 3(b) and 3(c).
State 3 corresponds to the composite repair and rollback

Proceedings of the 22nd International Symposium on Reliable Distributed Systems (SRDS’03)
1060-9857/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 02:33:41 UTC from IEEE Xplore. Restrictions apply.

λ
0

2 3

ρ

γ

γ

γ

4λ /a

(a)

4 8 9ρ

γ γ

(c)

5 6

(b)

3 7

ρ

γ

γ

γ

Figure 3. State transition in program execu-
tion with equi-number checkpointing

state, in which State 5, 6, and 7 denote repair, rollback,
and handoff, respectively. After undergoing a successful
repair process in State 5, the program enters rollback state
instantly. State 4 is the composite checkpoint creation state,
in which State 8 denotes the checkpoint creation state and
State 9 denotes the handoff state during checkpointing. Let
C, a general distributed random variable, denote the check-
point creation time. Therefore C is the execution time re-
quirement in State 8. We know C contains two parts of
time: the time to take a checkpoint and the time to save
the checkpoint on stable storage. In our mobile network
model [5], the MH is not safe to be treated as stable stor-
age. Checkpoints should be transmitted through a wireless
link, which may suffer low bandwidth and long transfer de-
lay, before being saved on the stable storage of the currently
associated AB. Therefore, the checkpointing saving part is
the more significant one. After a failure, a recent checkpoint
should be reloaded into the MH through a wireless link. For
the same reason, the main part of the rollback time is con-

sumed by checkpoint transmission. So we let the rollback
time also be C, which follows that the sojourn time in State
3 is �R�C�h���f�, denoted as R�.

5.2. Execution Time and Average Effectiveness with
Checkpointing

The dashed rectangle with State 3 in Figure 3 denotes
that a program must complete a repair and rollback task be-
fore it enters State 0. We first calculate the sojourn time in
State 3.

Lemma 2. Let

B�s� � �C �s� � � � � ��H �s � ���� (10)

then the LST of the c.d.f. of R�, the sojourn time is State 3,
is given by

�R��s� �
�s� ���R�s � ��B�s�

s� ��R�s� ��B�s�
� (11)

and the expectation of E�R�� is

E�R�� �
�� �R����C �� � � � ��H ����

��R����C �� � � � ��H ���
� (12)

Proof: The time requirement of repair and rollback in the
presence of failures and handoffs is R � C �

PK

j��Hj,
where K, K � 	� ��
� � � �, is the number of occurrences of
handoffs during rollback. Note that the checkpoint creation
time C is a random variable; however, it is fixed for a given
repair and rollback process [16]. Following similar steps in
Lemma 1 we can obtain the Equation (11) and (12). �

After getting the sojourn time in State 3, we now analyze
the program execution with checkpointing in the presence
of failures and handoffs.

Theorem 2. Let X�n� a� denote the total execution time
of a program which is divided into n�a (assumed as an in-
teger) checkpointing intervals, and each interval should re-
ceive a messages continuously without failure. The LST of
the c.d.f. of X�c�f�h��n� a� is given by

�X�c�f�h� �s� n� a�

�

�
�s � ��B�s�Qa�s�

s � � � ��R� �s� ���B�s�Qa�s��

�n
a

� (13)

and the expectation of program execution time is

E�X�c�f�h��n� a��

�
n

a

�
�

�
�E�R��

� �
qa

�C�� � � � ��H����
� �

�
�(14)

Proof: First we only consider the program execution time
in the ith interval. Ki and Yi are the number of transitions

Proceedings of the 22nd International Symposium on Reliable Distributed Systems (SRDS’03)
1060-9857/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 02:33:41 UTC from IEEE Xplore. Restrictions apply.

from State 0 to State 2 and the time to the first failure in the
ith interval, respectively. Then we have

X
�c�f�h�
i �a� �

�����
����

Xi�a� �
PKi

j��Hj � C

� if Xi�a� �
PKi

j��Hj � C � Yi

Yi � R� � �X�c�f�h�
i �a�

� if Xi�a� �
PKi

j��Hj � C � Yi�

Following similar steps, we have �
X

�c�f�h�
i

�s� a� and

E�X
�c�f�h�
i �a��. The total execution time X�c�f�h��n� a� is

the sum of n�a i.i.d. random variables X�c�f�h�
i �a�, so the

LST of X�c�f�h��n� a� is

�X�c�f�h� �s� n� a� � ��
X

�c�f�h�
i

�s� a��
n
a �

and
E�X�c�f�h��n� a�� �

n

a
E�X

�c�f�h�
i �a���

Finally, we obtain Equation (13) and (14). �

Equation (14) shows that E�X�c�f�h��n� a�� is a linear
function of the number of messages n and an exponential
function of the number of messages a in each checkpointing
interval. In Equation (14), n�a corresponds to the number
of checkpoints during an execution. The other term has a
similar expression with Equation (7) except that it has one
more factor ���C�� � � � ��H���� which is contributed
by the fact that the time requirement in each interval adds a
checkpoint creation time. Note that with checkpointing, the
expectation of program execution time decreases dramati-
cally: in Equation (7) it is an exponential relationship with
n, while in Equation (14) it reduces to a linear relationship
with n.

Remark 2. With no failures during program execution,
i.e., � tends to 	, then

lim
���

E�X�c�f�h��n� a�� �
n

a

ha
�
�E�C�

i
�� � �E�H���

(15)
In the program execution utilizing checkpointing, if we

treat the checkpoint creation time and the time to rollback
to the most recent checkpoint also as wasted time, then the
average effectiveness A�n� a� can be computed from

A�n� a� �
n

� �E�X�c�f�h��n� a��
� (16)

which has the same form as Equation (9). With equi-
number checkpointing with respect to message number,
A�n� a� is a constant and does not vary with n. But it will
vary with n in equi-number checkpointing with respect to
checkpointing number, which has the same curve shape as
A�n�.

We know that the benefit of checkpointing comes with
a price. During failure-free execution, checkpointing de-
lays the message delivery. After a failure, time is required

to reload the program status stored in a checkpoint. There
usually exists an optimal checkpointing interval which min-
imizes the total program execution time or maximizes the
average effectiveness. Numerically, E�X�c�f�h��n� a�� or
A�n� a� are observed to be convex functions of a, although
it is difficult to prove them analytically. So the opti-
mal checkpointing interval �a can be obtained by solving
�	�	a��E�X�c�f�h��n� a��� � 	 or �	�	a��A�n� a�� � 	 .
The derived equation is

qa ��� a ln q� � �C�� � �� ��H����� (17)

Using the Maclaurin expansion of qa as far as the second
degree term, the approximate solution of the Equation (17)
is

�a ��

�p

��� �C�� � � � ��H �����

ln q

�
� (18)

from which we know that �a is independent of the required
message number n, but it depends not only on the failure
rate �, the message arrival rate � and the handoff rate �, but
also on the distribution of checkpoint duration and hand-
off duration. The optimal checkpoint count is �m � bn��ac.
We denote the minimal value of the expected program ex-
ecution time and the maximal value of the average effec-
tiveness as E��X�c�f�h��n� a�� and A��n� a�, respectively,
when a � �a. Compared with the execution without check-
pointing, the execution with equi-number checkpointing
is beneficial only if E�X�c�f�h��n� a�� � E�X�f�h��n��,
which can be approximated by

n �

�
qa

�C�������H ���� � �

a �ln q��
�

�

ln q

�
� (19)

6. Simulations and Comparisons

In this section, we will conduct simulations to verify our
analytical results and evaluate the effects of parameters’ se-
lection on average effectiveness.

6.1. Simulation Results

To verify the correctness of the expected execution time
with and without checkpointing we derived, we perform
two software simulations. In these two simulations, we con-
sider the following parameter values:

� mean message arrival rate � � �	�� and mean handoff
rate � � �	��;

� mean failure arrival rate � � �	��� �	�	� �	�
;

� checkpoint creation time C, repair time R, and hand-
off time H are exponentially distributed and E�C� �
E�R� �
	� E�H� � �	;

Proceedings of the 22nd International Symposium on Reliable Distributed Systems (SRDS’03)
1060-9857/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 02:33:41 UTC from IEEE Xplore. Restrictions apply.

10
2

10
3

10
4

10
5

0

200

400

600

800

1000

Message Number

E
xe

cu
tio

n
T

im
e

R
at

io

10
1

10
2

10
3

10
4

0

200

400

600

800

1000
E

xe
cu

tio
n

T
im

e
R

at
io

n/λ
E(X(f,h)(n))

(a) without checkpointing

E(X(c,f,h)(n,a))
n/λ

(b) checkpointing with respect to checkpoint number

n

n

γ = 10−3
γ = 10−4
γ = 10−5

λ = 10−2

ρ = 10−3
E(R) = 20
E(C) = 20
E(H) = 10

Message Number

Figure 4. Simulation result without check-
pointing and with checkpointing

� checkpoint count m is fixed and is 10.

We run each simulation 50 times with different failure ar-
rival rates and the results of the mean execution time are
shown in Figure 43. These two figures show that the simu-
lations (denoted by discrete marks in the figures) match the
curves of derived expected execution time. To see how the
failure rate influences the program execution time, we de-
pict Y axis as the ratio of the expectation of execution time
with failures to the expectation without failures. In each
case, the curves increase exponentially and have the sim-
ilar shapes as the number of required messages increases.
Figure 4(a) and 4(b) are similar, except for the labels of X
axis. The difference between them is the number of check-
pointing intervals m. We know that in each checkpointing
interval, the execution process is similar with the process
without checkpointing. From another point of view, check-
pointing decreases the failure arrival rate to ��m of the fail-

3The expected execution time and the average effectiveness are discrete
functions of the message number n, but for clarity we plot the figures in
continuous curves.

ure arrival rate without checkpointing .

6.2. Analytical Results Comparisons

Figure 5 shows the result of average effectiveness as we
change the value of checkpoint count m. The extremal
situation is that there is a checkpoint after each received
message. Therefore with equi-number checkpointing with
respect to checkpoint number, n should start with m, as
shown in Figure 5. From this figure, we see that for the
given message arrival rate �, failure arrival rate �, and
handoff rate �, there is a descend of average effectiveness
when the required message count decreases to a certain
value. There also are intersections between curves rep-
resenting different checkpoint counts, which means more
checkpoints may bring more overhead when the message
number is low. Certainly, as the required message number
increases, more checkpoints will be more beneficial. The
dashed curve represents the average effectiveness without
checkpointing, which decreases monotonically as the re-
quired message number increases. The less the message
number is, the higher the effectiveness is. Eventually it
achieves higher effectiveness than taking checkpoints dur-
ing execution. This confirms the general knowledge that
checkpointing is not always beneficial to the program exe-
cution time or the average effectiveness. We will also see
this effect in Figure 6. The curve with m � � is always
below the dashed curve for with m � � a program has a
checkpoint creation period additionally.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Message Number

A
ve

ra
ge

 E
ffe

ct
iv

en
es

s

with checkpointing without checkpointing

γ = 10−3
λ = 10−2
ρ = 10−3
E(R) = 20
E(C) = 20
E(H) = 10

m = 10
m = 20

m = 5 m = 1

Figure 5. Equi-number checkpointing with re-
spect to checkpoint number

To illustrate whether the checkpointing can be used to
reduce the overall execution time or increase the average
effectiveness, we compare the average effectiveness with
and without checkpointing from another viewpoint. This
time we utilize equi-number checkpointing with respect to

Proceedings of the 22nd International Symposium on Reliable Distributed Systems (SRDS’03)
1060-9857/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 02:33:41 UTC from IEEE Xplore. Restrictions apply.

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Message Number

A
ve

ra
ge

 E
ffe

ct
iv

en
es

s

γ = 10−3
γ = 10−4

λ = 10−2

ρ = 10−3
E(R) = 20
E(C) = 20
E(H) = 10

a=10
a=25

a=10

a=25

without
checkpointing

Figure 6. Equi-number checkpointing with re-
spect to message number

message number, i.e., the number of required messages a
is a constant in each checkpointing interval, under which
the average effectiveness is a constant, shown as horizontal
lines in Figure 6. The average effectiveness increases as a
decreases, which means more checkpoints are to be taken
in execution. However, excessive checkpointing may de-
crease the effectiveness, as shown later in Figure 7. These
horizontal lines have intersections with those curves which
represent no checkpoint is taken during execution. If the
required program message number is below these intersec-
tions, a program can run more economically by not taking
checkpoints and by rerunning from the beginning of the pro-
gram [11].

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Message Number

A
ve

ra
ge

 E
ffe

ct
iv

en
es

s

with checkpointing
m = 5

without checkpointing
with checkpointing

γ = 10−3
λ = 10−2
ρ = 10−3
E(R) = 20
E(C) = 20
E(H) = 10

a = 1

a = 2

a = 20

Figure 7. Comparison between checkpointing
and without checkpointing

Figure 7 shows that when we engage equi-number
checkpointing, there exists an optimized �a maximizing the
average effectiveness. The approximate solution of �a is ex-

pressed in Equation (18). Under the parameters provided in
this figure, �a �
 and A��n� a� � 	����. With equi-number
checkpointing with respect to checkpoint number m and
m � , the effectiveness gets maximal value as n � �	.
For n � �, checkpointing cannot gain any benefit on the
effectiveness.

10
−4

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0
0

0.2

0.4

0.6

0.8

1

Message Arrival RateHandoff Rate

A
ve

ra
ge

 E
ffe

ct
iv

en
es

s

γ = 10−3
E(R) = 20
E(C) = 20
E(H) = 10
n = 30
m = 5

without checkpointing

with checkpointing

Figure 8. Average effectiveness vs. message
arrival rate and handoff rate

Figure 8 demonstrates the variation of average effective-
ness with message arrival rate � and handoff rate � when
without checkpointing or engaging checkpointing with re-
spect to checkpoint number. The average effectiveness de-
creases as � increases, despite engaging checkpointing or
not. The effectiveness increases as � increases when the
program executes without checkpointing. But for check-
pointing with respect to checkpoint number, the effective-
ness increases first and then decreases. When the message
arrival rate is low, checkpointing increases the effectiveness.
But when the message arrival rate is high, the program will
be completed by experiencing less failures, and most of the
checkpoints do not contribute to the effectiveness. Conse-
quently, checkpointing incurs more overheads. Under this
condition, we should take checkpoints less frequently to re-
duce these overheads.

Figure 5– 8 demonstrate that there are several factors to
be weighted before determining whether and how check-
point is worth taking [11]. These factors include failure
arrival rate, message arrival rate, handoff rate, checkpoint
creation cost, message number, etc. Besides those factors
mentioned above, other factors, such as power consump-
tion, and so on, should also be evaluated. In summary, if
we can adaptively adjust the checkpointing parameters and
choose among various checkpointing strategies, we will get
more performance and effectiveness improvement.

Proceedings of the 22nd International Symposium on Reliable Distributed Systems (SRDS’03)
1060-9857/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 02:33:41 UTC from IEEE Xplore. Restrictions apply.

7. Conclusions

In this paper, we perform the analysis of program execu-
tion time and average effectiveness with and without check-
pointing in mobile environments, under the assumption that
the number of totally received computational messages n
is not changed during a required program execution, and
the inter-failure arrival time, the inter-message arrival time
and the inter-handoff time are exponentially distributed. We
consider a general mobile network architecture, and de-
scribe an equi-number checkpointing strategy in this archi-
tecture. Analytical results show that the program execution
time is an exponential function of n without checkpoint-
ing and is a linear function of n with checkpointing. We
confirm our analytical results with simulations. We also
demonstrate the trade-offs between checkpointing versus
non-checkpointing, and compare them quantitatively in dif-
ferent conditions. The impact of various parameters in mo-
bile network environments is evaluated regarding whether
and how checkpointing should be taken for program perfor-
mance and effectiveness improvements.

Acknowledgement

The work described in this paper was fully supported by
a grant from the Research Grants Council of the Hong
Kong Special Administrative Region, China (Project No.
CUHK4360/02E).

References

[1] A. Acharya and B. R. Badrinath. Checkpointing distributed
applications on mobile computers. The 3rd International
Conference on Parallel and Distributed Information Sys-
tems, pages 73–80, September 1994.

[2] R. Bagrodia, W. W. Chu, L. Kleinrock, and G. Popek. Vi-
sion, issues, and architecture for nomadic computing. IEEE
Personal Communications, 2(6):14 –27, December 1995.

[3] K. M. Chandy. A survey of analytic models of rollback and
recovery strategies. Computer, 8(5):40–47, May 1975.

[4] K. M. Chandy and C. V. Ramamoorthy. Rollback and recov-
ery strategies for computer programs. IEEE Transactions on
Computers, 21(6):546–556, June 1972.

[5] X. Chen and M. R. Lyu. Message logging and recovery in
wireless CORBA using access bridge. The 6th International
Symposium on Autonomous Decentralized Systems, pages
107–114, April 2003.

[6] D. R. Cox. Renewal Theory. Methuen & Co Ltd., London,
1962.

[7] A. Duda. The effects of checkpointing on program execu-
tion time. Information Processing Letters, 16:221–229, June
1983.

[8] M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson.
A survey of rollback-recovery protocols in message-passing
systems. ACM Computing Surveys, 34(3):375–408, Septem-
ber 2002.

[9] D. P. Gaver Jr. A waiting line with interrupted service, in-
cluding priorities. Journal of the Royal Statistical Society,
Series B, 24:73–90, 1962.

[10] E. Gelenbe. On the optimum checkpoint interval. Journal
of ACM, 26(2):259–270, April 1979.

[11] D. P. Jasper. A discussion of checkpoint/restart. Software
Age, 3(10):9–14, October 1969.

[12] C. M. Krishna, K. G. Shin, and Y.-H. Lee. Optimization
criteria for checkpoint placement. Communications of the
ACM, 27(10):1008–1012, October 1984.

[13] V. G. Kulkarni, V. F. Nicola, and K. S. Trivedi. Effects of
checkpointing and queueing on program performance. Com-
munications in Statistics - Stochastic Models, 6(4):615–648,
1990.

[14] Y. Ling, J. Mi, and X. Lin. A variational calculus approach to
optimal checkpoint placement. IEEE Transactions on Com-
puters, 59(7):699–708, July 2001.

[15] N. Neves and W. K. Fuchs. Adaptive recovery for mobile
environments. Communications of the ACM, 40(1):68–74,
January 1997.

[16] V. F. Nicola. Checkpointing and the modeling of program
execution time. Software Fault Tolerance, edited by Michael
R. Lyu,John Wiley & Sons Ltd., pages 167–188, 1995.

[17] Object Management Group. Telecom wireless CORBA.
OMG Doucment dtc/01-06-02, June 2001.

[18] J. S. Plank and M. G. Thomason. The average availability
of uniprocessor checkpointing systems, revisited. Technical
Report UT-CS-98-400, Dept. of Computer Science, Univ. of
Tennessee, August 1998.

[19] D. K. Pradhan, P. Krishna, and N. H. Vaidya. Recovery in
mobile environments: Design and trade-off analysis. The
26th International Symposium on Fault-Tolerant Comput-
ing, June 1996.

[20] A. N. Tantawi and M. Ruschitzka. Performance analysis of
checkpointing strategies. ACM Transactions on Computer
Systems, 2(2):123–144, June 1984.

[21] K. S. Trivedi. Probability and Statistics with Reliability,
Queueing and Computer Science Applications, 2nd edition.
John Wiley & Sons Ltd., New York, 2002.

[22] J. Tsai, S.-Y. Kuo, and Y.-M. Wang. Theoretical analysis
for communication-induced checkpointing protocols with
rollback-dependency trackability. IEEE Transactions on
Parallel and Distributed Systems, 9(10):963–971, October
1998.

[23] J. W. Young. A first order approximation to the opti-
mum checkpoint interval. Communications of the ACM,
16(9):530–531, September 1974.

[24] A. Ziv and J. Bruck. An on-line algorithm for checkpoint
placement. IEEE Transactions on Computers, 46(9):976–
985, September 1997.

Proceedings of the 22nd International Symposium on Reliable Distributed Systems (SRDS’03)
1060-9857/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 02:33:41 UTC from IEEE Xplore. Restrictions apply.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

