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Abstract

As the key factor in software quality, software re-
liability quantifies software failures. Traditional soft-
ware reliability growth models use the execution time
during testing for reliability estimation. Although test-
ing time is an important factor in reliability, it is likely
that the prediction accuracy of such models can be fur-
ther improved by adding other parameters which affect
the final software quality. Meanwhile, in software test-
ing, test coverage has been regarded as an indicator
for testing completeness and effectiveness in the liter-
ature.

In this paper, we propose a novel method to inte-
grate time and test coverage measurements together to
predict the reliability. The key idea is that failure de-
tection is not only related to the time that the software
experiences under testing, but also to what fraction
of the code has been executed by the testing. This is
the first time that execution time and test coverage are
incorporated together into one single mathematical
form to estimate the reliability achieved. We further
extend this method to predict the reliability of fault-
tolerant software systems. The experimental results
with multi-version software show that our reliability
model achieves a substantial estimation improvement
compared with existing reliability models.

Keywords: software reliability modeling, software
testing, test coverage, fault-tolerant software.

1 Introduction

As the key factor in software quality, software re-
liability quantifies software failures. Defined as the
probability that a software system does not fail in a
specified period of time in a specified environment,
software reliability has become the most essential in-
gredient in customer satisfaction [9]. As a result, many
analytical models have been proposed for software re-
liability estimation. The time-domain models, also
called software reliability growth models (SRGM),
have drawn most attention. These software reliabil-
ity models use the failures collected in testing phases
to predict the failure occurrences in the operational en-
vironment. There are two classes of basic data used in
traditional SRGMs: 1) failures per time period; and 2)
time between failures. A number of reliability mod-
els have been proposed to illustrate various distrib-
utions between failure/time and reliability, including
some well-known models, e.g., the Goel-Okumoto (G-
O) and Musa-Okumoto (M-O) models [9].

Although some of the historical SRGMs have been
widely adopted to predict software reliability [9], it
is likely that the prediction accuracy of these models
can be further improved by adding other important fac-
tors affecting the final software quality [5, 6, 11, 13].
Test coverage is believed to be one of such factors in
some of the previous studies [1, 7, 12]. In particular,
to incorporate the effect of test coverage on reliability
in traditional software reliability models, [5] proposes
a technique using both time and test coverage mea-
surement for reliability prediction. Basically, this ap-
proach reduces the execution time by a parameterized
factor when the test case neither increases test cover-
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age nor causes a failure. Experiments show that the
adjusted G-O and M-O models with such time reduc-
tion achieve more accurate predictions than the origi-
nal ones. In line with other studies [8, 14], our own
previous studies [2, 3, 10] have also found that test
coverage has certain effects on software reliability.

Most of the existing software reliability models are
based in the time domain, i.e., using either the elapsed
time between software failures or the number of fail-
ures occurring over a specified execution time period
[9]. However, examination of testing procedure sug-
gests that execution time should not be the only factor
that affects the failure behavior of the software. For
example, if the testing sequence within a test set is
changed, the time between failures or the number of
failures within a certain time period may also change.
In this situation, although the same test set is being
executed on the same software system, different reli-
ability predictions would be made by the traditional
time-domain reliability growth models.

In this paper, we propose a novel method to inte-
grate time and test coverage measurements together to
predict the reliability. Before that, we first formulate
the relationship between the number of failures and the
test coverage achieved in test cases using two simpli-
fied models. The key idea of the new reliability model
is that the reliability of a software system is not only
affected by the testing time it undergoes, but also the
completeness of the testing. Thus the reliability pre-
diction is composed of two parts: the estimation from
both execution time and test coverage. The two mod-
els we proposed, together with other existing coverage
functions, can be used to describe the effect of cover-
age on reliability. For the effect of time on reliability,
distributions from traditional SRGMs can be adopted
for the estimation.

In literature, several models have been proposed to
formulate the relationship between the number of fail-
ures/faults and test coverage achieved, using various
distributions. [13] suggests that this relation follows
a variant of the Rayleigh distribution, while [11] de-
rives a result that the relationship can be expressed
as a logarithmic-exponential formula, based on the as-
sumption that both defect coverage and test coverage
follow the Musa-Okumoto logarithmic growth model
with respect to execution time. [6] assumes that cov-
erage is a continuous monotonic non-decreasing func-

tion of testing time, and obtain a linear relationship be-
tween number of failures and test coverage achieved at
time t.

In the following, we discuss the two coverage mod-
els in Section 2. The proposed reliability model is for-
mulated in Section 3 and evaluated in Section 4. Fi-
nally, Section 5 elaborates the results and Section 6
concludes the paper.

2 Two Models of Defect Coverage and Test
Coverage

2.1 A Hyper-exponential Model

According to our previous observations reported in
[3], the relationship between the number of faults de-
tected and test coverage achieved varies under differ-
ent testing strategies. Based on this, we make the fol-
lowing assumptions:

1. For the relationship between defect coverage and
test coverage, there are K classes on the whole
test set, representing the different natures of the
various testing strategies;

2. Within each class, the fault detection rate with re-
spect to coverage is proportional to the number of
faults remaining undetected;

3. A fault, when found, is corrected instantaneously
without introducing new faults.

Following these assumptions, the fault detection
rate with respect to coverage within each class is:

dFc

dc
= β · Fr = β · (N − Fc)

where Fc is the current cumulated number of faults
detected when coverage c is achieved ( c ranges from
0 to 1, and 1 representing complete coverage of the
code), Fr is the number of residual faults, N is the
total number of faults that are detectable by the current
testing strategy, and β is a constant.

Solution of this differential equation in the range of
0 ≤ c ≤ 1, under initial condition F0 = 0, gives the
following:

Fc = N(1 − e−βc) (1)
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From the assumptions, each class follows the non-
homogeneous Poisson process (NHPP) model with its
own parameters [9]. So on the whole test set, the ex-
pected cumulated number of faults detected with cov-
erage c is:

Fc =
K∑

i=1

Ni(1 − e−βic) (2)

where K is the number of classes. Notice that if
K = 1 we have the NHPP model. Moreover, as
Ni represents the expected total number of faults to
be eventually detected in each class, the summation∑K

i=1 Ni is the total number of faults that will be de-
tected under various testing strategies.

Since the failure intensity function λc is the deriva-
tive of Fc, we therefore have

λ(c) =
K∑

i=1

Niβie
−βic (3)

The two parameters in each class can be estimated
using the maximum likelihood estimation (MLE)
method or least-squares estimation (LSE), using the
failure data and coverage information under that par-
ticular testing strategy.

2.2 A Beta Model

Unlike the Hyper-exponential model presented
above, following the well-known G-O reliability
growth model, we assume that both fault coverage and
test coverage follow the NHPP model with respect to
execution time, i.e.:

Fc(t) = N1(1 − e−b1t) (4)

where Fc(t) is the number of cumulated faults detected
at time t, N1 is the expected number of faults detected
eventually, and b1 is a constant.

Similarly, we have

c(t) = N2(1 − e−b2t) (5)

where c(t) is the cumulated test coverage achieved at
time t, N2 is the ultimate test coverage that can be
achieved by testing, and b1 is a constant.

From (5), we can derive the formula for time t,

t = − 1
b2

log(1 − c

N2
)

Substituting t in (4), we get

Fc = N1[1 − (1 − c

N2
)α] (6)

where α = b1/b2.
From (6), the relationship between cumulated de-

tected faults and test coverage follows a Beta distrib-
ution, where c

N2
< 1. Similarly, the parameters N1,

N2 and α can be estimated by MLE or LSE methods
using fault and coverage data collected during accep-
tance testing and operational testing.

2.3 Empirical Evaluation

In the year of 2002 we formed 34 independent pro-
gramming teams at the Chinese University of Hong
Kong to design, code, test, evaluate, and document a
critical application taken from industry - the RSDIMU
project [10]. Each team was composed of 4 senior-
level undergraduate Computer Science students for a
12-week long project in a software engineering course.
In this CUHK-RSDIMU project, 1200 test cases were
designed and executed in the acceptance test. Failure
data as well as the test coverage achieved in the testing
for all these programs were collected. Detailed project
and testing information can be found in [10, 3].

Here we apply the failure and coverage data in the
CUHK-RSDIMU project to evaluate the two simpli-
fied models above. The LSE method is used to esti-
mate the parameters in the models.

First of all, we evaluate the NHPP model as well as
the hyper-exponential model. The estimated parame-
ters and the sum of squared errors (SSE) are listed in
Table 1. This shows that the NHPP model does not fit
the failure/coverage data very well, although the SSE
is slightly smaller for the larger value of N and the
smaller value of β. If hyper-exponential modeling is
applied on the six testing regions, following the under-
lying design strategies of various test cases illustrated
in [3], it can be noted that the SSEs of Region II to
VI are considerably smaller. Region I combines all the
test cases which target basic functions in the programs
under test. This is why Region I exhibits such a high
diversity,

For the Beta model, if we assume the ultimate test
coverage N2 in (6) is 100%, we obtain

Fc = N1[1 − (1 − c)α] (7)
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Table 1. Estimated parameters in the cover-
age models

Model N β/α SSE
NHPP 5467 0.096 118200
Hyper-exponential 4087 – 23928

Region I 1989 0.256 22195
Region II 476 1.97 133
Region III 411 3.29 1315
Region IV 406 3.75 66
Region V 414 3.77 219
Region VI 391 21.3 1.01e-009

Beta 1101 0.303 38365

Hence, using the LSE method, we can derive the
following parameters for Beta model: N1 = 1101,
and α = 0.303, see Table 1. The SSE in this es-
timation is smaller than the NHPP model, but larger
than the hyper-exponential model. A comparison of
the NHPP model, the Hyper-exponential model and
the Beta model is shown in Figure 1.
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Figure 1. Comparison of the NHPP, Hyper-
exponential and Beta estimation

3 A New Software Reliability Model

Here we propose a new reliability model which
aims to predict the reliability performance using time

between failures and coverage measurement together.
The detailed assumptions and model form are illus-
trated as follows.

3.1 Assumptions

Our new reliability model is based on the following
assumptions:

1. The number of failures revealed in testing is re-
lated to not only the execution time, but also the
test coverage achieved by the current test set;

2. The failure rate with respect to time and test cov-
erage together is a parameterized combination of
those with respect to time or coverage alone;

3. The probabilities of failure with respect to time
and coverage are not independent, but affect each
other exponentially.

According to these assumptions, the data require-
ments for implementation of this model are: the time
between failures, or the actual sequences of test cases
in which the software failed, and the cumulated cover-
age measurement achieved by the whole test set.

3.2 Model Form

From the assumptions above, we can derive the joint
failure intensity function with respect to both time and
coverage as follows:

λ(t, c) = α1γ1e
−γ1cλ1(t) + α2γ2e

−γ2tλ2(c) (8)

where λ(t, c) is the joint failure intensity function,
λ1(t) is the failure intensity function with respect to
time, and λ2(c) is the failure intensity function with
respect to coverage. α1, γ1, α2 and γ2 are all parame-
ters with the constraint of α1 + α2 = 1.

From the integral of the failure intensity function in
(8), we can get the general expression of the expected
cumulated number of failures when execution time is
t, and cumulated coverage achieved is c:

F (t, c) = α1(1 − e−γ1c)F1(t)
+α2(1 − e−γ2t)F2(c) (9)

where F1(t) is the expected cumulated number of fail-
ures relating to testing time t, and F2(c) is the expected
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cumulated number of failures revealed by coverage c.
The constraint α1 + α2 = 1 is maintained.

Since λ1(t) is the failure intensity function with re-
spect to time, any existing distributions in well-known
reliability models can be used, e.g., NHPP, the Weibull
model, the S-shaped model and logarithmic Poisson
models. Similarly, we can use any form such as the
Hyper-exponential and Beta models proposed above
for the failure intensity function with respect to cov-
erage λ2(c).

To illustrate the detailed format of (8), if we use
NHPP models for both time and coverage, we will get
this joint failure intensity function:

λ(t, c) = α1γ1e
−γ1cN1β1e

−β1t

+α2γ2e
−γ2tN2β2e

−β2c (10)

From (9), we can obtain the expected cumulated
number of failures when execution time is t, and cu-
mulated coverage achieved is c:

F (t, c) = α1(1 − e−γ1c)N1(1 − e−β1t)
+α2(1 − e−γ2t)N2(1 − e−β2c) (11)

On the other hand, if we use the Beta model for
coverage, the joint failure intensity function will be :

λ(t, c) = α1γ1e
−γ1cN1β1e

−β1t

+α2γ2e
−γ2tN2β2(1 − c)β2−1 (12)

The expected cumulated number of failures is:

F (t, c) = α1(1 − e−γ1c)N1(1 − e−β1t)
+α2(1 − e−γ2t)N2[1 − (1 − c)β2 ] (13)

We can prove the joint density function f(t, c) de-
rived from (8) by calculating its theoretical integral
with respect to t and c and getting a result of 1, as
follows:
∫ ∞

0

∫ ∞

0
f(t, c)dtdc =

∫ ∞

0

∫ ∞

0
α1γ1e

−γ1cf1(t)dtdc

+
∫ ∞

0

∫ ∞

0
α2γ2e

−γ2tf2(c)dtdc

=
∫ ∞

0
α1γ1e

−γ1cdc +
∫ ∞

0
α2γ2e

−γ2tdt

= α1 + α2 = 1

4 Experimental Evaluation

In the CUHK-RSDIMU project, each team was re-
quired to use a Revision Control System (RCS) for
source control, so that every code change of each pro-
gram file could be recorded. Thus software faults
found during each stage were identified. These faults
were then injected into the final program versions
to create mutants, each containing one programming
fault. We selected 21 program versions for detailed
investigation, and created 426 mutants according to
certain generation strategies [10]. We disqualified the
other 13 versions as their developers did not follow the
development and coding standards which were nec-
essary for generating meaningful mutants from their
projects.

As we know, the CUHK-RSDIMU project is one of
the largest fault-tolerant software projects with real-
world application. The 426 mutants generated are real
faults occurring in the development, rather than hypo-
thetical faults injected into the programs. The other
important characteristics of this project is the collec-
tion of test coverage during testing, including block
coverage, decision coverage, C-Use and P-Use, which
makes it possible for the investigation of the relation-
ship between time, coverage and failure data.

4.1 Experimental Setup

To collect the time, coverage and failure data for re-
liability models with our own multi-version program
versions and mutants, we use a super-program for test-
ing and evaluation. The concept of a super-program
was first proposed in [4] in order to make use of the
testing data of fault-tolerant software for reliability es-
timation.

In our experiment, the super-program is composed
of all the 21 program versions which contain 426 mu-
tants, being treated as 426 faults or failures. The cov-
erage is measured against the super-program.

The testing procedure is described as follows:

1. Initialize the testing pool, which contains the
whole acceptance test set or operational test set;

2. Select a test case randomly from the testing pool;

3. Run the super-program according to one of three
different testing strategies:
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(a) Run all the mutants at the same time, find
those failing and delete them;

(b) Select a program version randomly, run all
the mutants within this version, record the
mutants failed, and remove them from the
super-program;

(c) Select one mutant from all the mutants in
all versions, remove it if it fails, otherwise
go to step 2;

4. Remove the current test case from the testing
pool, and go to step 2.

From the three different selection strategies for pro-
gram versions and mutants, we will get three different
testing results. These testing data can be applied to
this new reliability model for evaluation. Performance
comparisons with other well-known reliability models,
such as G-O, M-O, Musa Basic model, etc, can also
be made based on the experimental data. Meanwhile,
the estimation accuracy under three different selection
strategies can be further investigated..

4.2 Estimation Method

In this experimental evaluation, we adopt the first
testing strategy out of the three stated above, i.e., run
all the mutants at the same time and remove those fail-
ing. For the other two testing strategies, we will eval-
uate and compare their performance with the first one
in our later empirical study.

To estimate the parameters in our reliability model,
we have to deal with different reliability models with
respect to time and coverage separately. To make our
evaluation clearer, we adopt the NHPP growth model
for execution time, and the exponential or Beta model
for test coverage at the different failure rates. Other
failure rates can also be adopted for further evalua-
tions. Least-squares estimation (LSE) method is used
for parameter estimation in our experiment.

For each of the evaluations, we use two different
methods as follows:

Method A: first, the parameters in F1(t) and F2(c)
are estimated separately. After these parameters are
determined, the other parameters (α1, γ1, α2, and γ2)
are optimized using the joint failure rate;

Method B: identify the mathematical forms of F1(t)
and F2(c), and then optimize all the parameters in (9)
together according to existing experimental data.

In the two estimation methods, method A seems
more reasonable, since it sets the failure rates first and
estimates the parameters of dependencies on the ba-
sis of determined failure rates. However, method B is
also a necessary complement, as it tries to capture the
dependency between time and coverage together with
their different failure rates according to the current em-
pirical data. In our evaluation, in order to make the
results more convergent, we always set the initial val-
ues in method B as the parameters estimated separately
before.

In our evaluation study, we conduct comparisons
between our model (using methods A and B) with
some well-known time-based reliability models such
as the NHPP, Weibull and S-Shaped models, whose
expressions are listed in Table 2.

On the other hand, we also collect existing
coverage-based reliability models, study their perfor-
mance, and list their formula for comparison; see Ta-
ble 3.

4.3 Comparison with existing SRGMs

In this evaluation, we compare the performance of
other existing time-based SRGMs - namely, the NHPP,
Weibull and S-Shaped models - with our model with
different time and coverage distributions.

Supposing the defect coverage and test coverage
follows the exponential relationship as shown in (1),
we have the cumulative distribution function (cdf) ex-
pression as in (11). From LSE estimation for time and
coverage separately, we get the parameters N1, β1 for
time, and N2, β2 for coverage. Using these known pa-
rameters and failure data in the experiment, we get the
other three parameters using least-squares estimation,
as listed in Table 4 and illustrated in Figure 2. Note
that in Figure 2, the unit of time axis is second with
the assumption that each test case takes 0.1 second for
execution. The NHPP SRGM with respect to execu-
tion time is shown in Figure 3.

Table 4 shows that our estimation method A affords
an improvement compared with the NHPP model,
while estimation method B improves the estimation
performance significantly. This result supports our
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Table 2. Comparison of reliability models
Model Cumulated number of failures: F Failure intensity function: λ

NHPP N(1 − e−βt) Nβe−βt

Weibull N(1 − e−βtγ ) Nβγe−βtγ tγ−1

S-Shaped N [1 − (1 + βt)e−βt] Nβ2te−βt

Our model α1(1 − e−γ1c)F1(t) + α2(1 − e−γ2t)F2(c) α1γ1e
−γ1cλ1(t) + α2γ2e

−γ2tλ2(c)

Table 3. Comparison of coverage functions
Author Cumulated number of failures: F

Vouk (1992) N [1 − e−β(c−cmin)2)]

Gokhale&Trivedi(1999) ac(t) (where c(t) is the coverage function), e.g., a · (λt)k

1+(λt)k

Chen et al. (2001) Using coverage as a reduction parameter for testing time
Malaiya et al. (2002) α0 · log[1 + α1(eα2c − 1)]
Our model α1(1 − e−γ1c)F1(t) + α2(1 − e−γ2t)F2(c)
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Figure 2. Reliability modeling with exponen-
tial failure rates

previous observation: software failure behavior is re-
lated not only to testing time, but also to test coverage
or completeness. Although in our case, α2 is a neg-
ative number since α1 is larger than 1, both time and
coverage contribute to the number of failures detected
in the testing, and to the ultimate final reliability.

Supposing the failure/coverage relationship follows
the equation (7), we have the cdf expression shown in
(13). Again, we use two estimation methods described
in the previous section and compare their estimation
performance in Table 5 and Figure 4.
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Figure 3. Reliability modeling with NHPP time
relationship

From Figure 2 and Figure 4, it can be observed
that the reliability estimation using our new reliability
modeling is more accurate than that of NHPP model,
especially for method B.

The comparison results between method A and B
and the Weibull model itself can be found in Table 61.

1Please note that in Table 6, there are nine parameters with
method A since α2 can be derived from α1; there are eight para-
meters with method B since α1 and N1 are combined together for
method B. This is also applicable to the following Tables.
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Table 4. Estimated reliability parameters for exponential coverage model
Method α1 γ1 N1 β1 γ2 N2 β2 SSE
A -1.3844 3.0819 380 0.87 1.5110 1475 0.39 93849
B 1.7713 0.824 380 11.716 0.121 1475 -0.082 14130
NHPP Model - - 380 0.87 - - - 279230

Table 5. Estimated reliability parameters for the Beta coverage model
Method α1 γ1 N1 β1 γ2 N2 β2 SSE
A 0.0407 16.097 380 0.87 19.516 1101 0.303 36825
B 0.0565 20.182 380 0.098 21.138 1101 0.305 25712
NHPP Model - - 380 0.87 - - - 279230
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Figure 4. Reliability modeling with Beta cov-
erage relationship

A similar estimation improvement can be observed for
our combined model for both method A and method
B. The curve of Weibull model is shown in Figure 3.

The estimation comparisons with S-Shaped distri-
butions for both time and coverage measurement are
shown in Table 7. The S-Shaped model with time
alone can be found in Figure 3. Surprisingly, we can
see that, with our model, the estimation fits the ac-
tual data perfectly, which is a significant improvement
compared with the original time-based S-Shaped reli-
ability model.

As shown in the evaluation and comparison above,
the advantage of our reliability model is that: this is the
first time that test coverage information is combined
into traditional time-based software reliability model-

ing as one input parameter. Our experimental results
have shown that our reliability estimation is more ac-
curate and flexibly able to be incorporated with any
existing time or coverage-based model.

4.4 Comparison with other coverage-
based models

We compare the fitness of various coverage-based
models listed in Table 3 together with our Hyper-
exponential and Beta coverage model. How these
models fit the failure and coverage data we collected
is illustrated in Figure 5.
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Figure 5. Comparisons with existing cover-
age functions
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Table 6. Estimated reliability parameters for the Weibull coverage model
Method Parameters SSE
A {0.74, 48.1, 391, 1.1, 0.32, 197.76, 465.8, 4.44, 3.37} 10631
B {380,1.5, 1.0, 0.3, 1475, 27.3, 0.1, 0.5} 8516
Weibull {391, 1.1, 0.32} 13101

Table 7. Estimated reliability parameters for the S-Shaped coverage model
Method Parameters SSE
A {1.005, 0.0057, 379, 2.46, 1.447, 3515, 0.7} 0.9302
B {380, 0, 1.0, -0.05, 1.6, -0.06} 4 · 10−9

S-Shaped {379, 2.46} 392180

We further estimate the parameters in these models
using the least-squares method. The parameter estima-
tion and SSEs are listed in Table 8. Here we also give
the parameters of our model with Hyper-exponential,
Beta and Weibull functions respectively, in which all
the parameters are estimated together (method B). All
the parameters in Table 8 follow the same order as
those in Table 3.

From Table 8, we note that our model, which com-
bines time and coverage functions, performs better
than other coverage-based models for all three dis-
tributions: Hyper-exponential, Beta and Weibull. In
particular, the model with the Weibull distribution ex-
hibits the best accuracy. Malaiya et al. [11] report
a model with a similar SSE value, while Vouk’s and
Gokhale-Trivedi’s models have an SSE with a larger
magnitude. One of the underlying reasons may be that
our empirical data does not exhibit a linear relationship
between coverage and time, as assumed in Gokhale-
Trivedi model. Although in their model, the linear pa-
rameter does not have to be constant, we use a constant
linear relationship for simplicity here. Further empir-
ical investigations of the performance comparison are
needed, as long as the coverage and failure data can be
collected for large-scale software systems.

5 Discussions

Based on the experimental evaluation above, we
can see that the advantage of our proposed time- and
coverage-based reliability model, which aims to pre-
dict the number of failures based on both time and cov-
erage information. This is the first time that these two

measurements for failure prediction have been merged
in one single reliability model.

Furthermore, in our reliability model, although the
effects of time and coverage on number of failures
have been combined together, they are independent
from each other. The two effects can be estimated
or modeled separately, i.e., F (t) and F (c) can be ei-
ther of the existing models or distributions that have
been proposed for failure predictions based on time
or coverage information alone. After these two func-
tions have been estimated independently, the other pa-
rameters in our combined model can be estimated to-
gether. In other words, our model is highly flexible
and compatible with other reliability models. On the
other hand, our model is more demanding in terms of
the empirical data, i.e., not only should the testing time
and number of failures be available, but also the cover-
age measurements need to be collected during the test-
ing phases. Unfortunately, this information is rarely
available, hindering furthering empirical studies.

6 Conclusion

In this paper, we propose a new reliability model
which integrates time and coverage measurements for
reliability prediction. The key idea is that failure de-
tection is not only related to the time that the software
experiences under testing, but also how much the code
fraction has been executed by the testing. This is the
first time that execution time and test coverage are in-
corporated together into one single mathematical form
to estimate the reliability achieved.

Our experimental results show that our reliability
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Table 8. Performance of different coverage functions
Coverage function Parameters SSE

Vouk [382, 82] 345410
Gokhale & Trivedi [380,1.4,1.0] 594390

Malaiya et al. [382, 0.16, 3.23] 35870
Our model(hyper-exp) [1.7713,0.824,380,11.716,0.121,1475,-0.082] 14130

Our model(Beta) [0.0565,20.182,380,0.098,21.138,1101,0.305] 25712
Our model(Weibull) [380, 1.5, 1.0, 0.3, 1475, 27.3, 0.1, 0.5] 8516

model gives an more accurate estimation than some
existing time- and coverage-based models with a sig-
nificant improvement. However, the choice of cover-
age distribution does affect the final estimation perfor-
mance with our experimental data.

In our future work, we will conduct further empiri-
cal evaluations for our model and other well-known re-
liability models. The other two testing strategies need
to be employed for further comparison. More experi-
mental data are also needed for this purpose.
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