
Cross-Library API Recommendation
using Web Search Engines

Wujie Zheng, Qirun Zhang, Michael Lyu
Computer Science and Engineering

The Chinese University of Hong Kong, China
{wjzheng,qrzhang,lyu}@cse.cuhk.edu.hk

ABSTRACT
Software systems are often built upon third party libraries.
Developers may replace an old library with a new library,
for the consideration of functionality, performance, security,
and so on. It is tedious to learn the often complex APIs
in the new library from the scratch. Instead, developers
may identify the suitable APIs in the old library, and then
find counterparts of these APIs in the new library. How-
ever, there is typically no such cross-references for APIs in
different libraries. Previous work on automatic API rec-
ommendation often recommends related APIs in the same
library. In this paper, we propose to mine search results of
Web search engines to recommend related APIs of different
libraries. In particular, we use Web search engines to collect
relevant Web search results of a given API in the old library,
and then recommend API candidates in the new library that
are frequently appeared in the Web search results. Prelimi-
nary results of generating related C# APIs for the APIs in
JDK show the feasibility of our approach.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement

General Terms
Documentation, Reliability

1. INTRODUCTION
Code reuse is one of the primary techniques to improve

the productivity of building software systems. Due to the
requirement changes of a software system, developers may
need to replace an old library with a new library. Working
with complex APIs in the new library presents many barri-
ers, such as selecting the appropriate APIs and figuring out
how to use the selected APIs. Since the developers often can
identify the suitable APIs in the old library easily, a possible
solution is to find counterparts of the old APIs in the new

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE’11, September 5–9, 2011, Szeged, Hungary.
Copyright 2011 ACM 978-1-4503-0443-6/11/09 ...$10.00.

library. However, there is typically no such cross-references
for APIs in different libraries, and thus it can still take much
time of developers to look for the suitable API counterparts.

There has been much work on automatically generating
cross-references for APIs. Doxygen [4] and Javadoc [3] are
well-known for generating cross-references and documenta-
tions from developers’ comments in source code. However,
there are few, if any, comments that talk about the relation-
ship of APIs in different libraries. Many approaches rec-
ommend related APIs in the same library by analyzing the
source code of the library [8, 9, 11] or the client code [7,
10, 13]. These approaches rely on the assumption that two
related APIs are structurally or statistically connected in
some source code, which are not valid for APIs in different
libraries. Zhong et al. [12] mine API mappings from Java
to C# from the same projects’ different implementations
in these two languages (based on these languages’ basic li-
braries). However, for two arbitrary libraries, there may
not be implementations of the same project in these two li-
braries, and the APIs used in such projects may be limited.

In this paper, we propose to mine search results of Web
search engines to recommend related APIs of different li-
braries. The idea is that developers often share their knowl-
edge of related APIs of different libraries in the Web. For
example, the following question illustrates a case that devel-
opers ask about equivalent APIs in C# (more exactly, the
.NET Framework) for the “HashMap” class in Java (more
exactly, the Jave Development Kit)
(http://stackoverflow.com/questions/1273139/c-java-hashmap-
equivalent).

• “Coming from a Java world into a C# one is there a
HashMap equivalent? If not what would you recom-
mend?”

There can be many similar questions and discussions in
the Web. However, such knowledge is often described in un-
structured web pages that are spread in the Web. Moreover,
the results can be different and many unrelated APIs may
also be discussed. To mine the knowledge of developers for
cross-library API recommendation, we use Web search en-
gines to collect relevant Web search results of a given API
query, and then extract API candidates that are frequently
appeared in the Web search results. For a library, after
getting the results of each API, we also re-rank the related
APIs based on the whole distributions to reduce false posi-
tives. We have built a prototype for the proposed approach
and applied it to generate related APIs in .NET Framework
for the APIs in JDK.

480

2. RELATED WORK
In this section we discuss the related work, including the

most related work by us and by others. We also point out
the novelty of our approach.

There have been many approaches to recommend related
APIs in the same library by analyzing the source code of
the library [8, 9] or the client code [7, 10, 13]. Robillard
[9] proposed an approach named Suade to automatically
rank program elements for an investigation task based on
the structural dependencies in a program. Long et al. [8]
developed a tool Altair that ranks related API methods for
a given method according to the share variables between
methods. Li and Zhou [7] developed a tool named PR-
Miner that uses frequent itemset mining to extract implicit
API usage patterns from source code. Zhong et al. [13]
proposed a tool named MAPO that combines the frequent
subsequence mining technique with the clustering technique
to mine code snippets with respect to programming con-
texts. Thummalapenta and Xie [10] developed a tool named
PARSEWeb that uses Google code search engine [2] to col-
lect relevant code snippets and then mines code snippets for
a given target object type.

We [11] have augmented the call graph with control flow
analysis to capture the significance of the caller-callee link-
ages for API recommendation. In the previous work, we fo-
cus on recommending related APIs in the same library using
static analysis techniques. While in this work, we would like
to recommend related APIs in different libraries using in-
formation retrieval and statistical analysis techniques. Both
the usage scenarios and the required techniques are very dif-
ferent.

The single most related work by others is the MAM ap-
proach, proposed by Zhong et al. [12]. MAM mines API
mappings from Java to C# from the same projects’ im-
plementations in these two languages. However, for any
two languages, there may not be implementations of the
same project in these two languages, the APIs used in such
projects may be limited, and the mapping strategies could
be difficult to design. German and Davies [6] describe sev-
eral challenges of comparing the source code of different li-
braries. Differently, our approach recommends related APIs
in different libraries by mining the knowledge of the library
users shared in the Web.

Compared with the existing approaches, the new idea of
our approach is to exploit the huge amount of knowledge
of the library users shared in the World Wide Web. The
knowledge can reveal API correlations cross libraries (in dif-
ferent programming languages). However, the knowledge is
described in unstructured Web pages. New techniques are
needed to collect relevant Web search results and to extract
knowledge of the APIs from the noisy data.

3. APPROACH

3.1 Overview
We first describe the framework of mining Web search

results for API recommendation. Given a library for refer-
ence, which the developers are familiar with, and a targeted
library for studying, we would like to recommend similar
APIs in the latter for each API in the former.

Figure 1 shows the procedure of our approach. First, for
each API query, our approach constructs a Web query in the
purpose of searching for related APIs in the targeted library.

Web Query Construction

API query Q1

Querying Web Search
Engines

Mining API Candidates

Candidates of Q1

Web Search Results

Web Query

API List of Targeted Library

Candidates of Q2...

Ranking w.r.t. The Whole Library

API Recommendation Results

Figure 1: Overview of our approach

Our approach then queries a major Web search engine such
as Google to get the top-ranked Web search results. Our
approach then mines API candidates in the targeted library
that often appear in the Web search results. Finally, out ap-
proach ranks the mined API candidates for each API query
based on the whole distributions of API candidates, using
the tf-idf definition in Information Retrieval community [5].
Currently the API lists of the reference library and the tar-
geted library are both extracted manually. In Section 5 we
shall discuss how to extract them automatically in future.

3.2 Web Query Construction
Developers often share their knowledge of related APIs of

different libraries in the Web. However, this knowledge is
often described in unstructured web pages that are spread
in the Web. Web search engines are the best tools to collect
such information automatically. Given a API query, our
approach constructs a Web query by concatenating the given
API and the targeted library (or program language). Take
the HashMap class of Java Development Kits (JDK) as an
example. To find similar APIs of it in the C# language
(i.e., in the .NET Framework), our approach constructs a
Web query “HashMap C#” for the Web search engines.

It is also possible to mine the common words used for
querying equivalent APIs and add them to the Web query.
Moreover, we may use multiple Web queries for a given API,
and merge the Web search results for mining related APIs.

3.3 Querying Web Search Engines
We applied the Web services of Google to collect the top

search results of a Web query. Other major search engines
such as Bing and Yahoo also provide Web services for Web
search. We use Web search engines (text retrieval) instead
of code search engines, because an API in a library and its
similar API in another library are seldom used together in
some code.The search results of “HashMap C#” returned by the
Google search engine are shown in Figure 2. From the ex-
ample search results, we can see that developers discuss the

481

Figure 2: Search results of HashMap

equivalent of HashMap in C# in different forums. Moreover,
the results can be different. For example, the first result says
that the Dictionary class is preferable, while the third result
says that “Java HashMap equivalent in C# is HashTable”.

3.4 Mining API Candidates
Different APIs have different naming conventions. It is

difficult to distinguish the APIs from the general English
words. For mining API candidates from the Web search
results, we employ a dictionary-based approach.

In the context of API recommendation, developers often
know what the targeted library is. That is, the API candi-
dates for a API query should be in the list of all APIs in
the targeted library. Therefore, we extract all APIs in the
targeted library, e.g., .NET Framework, as the dictionary.
We then calculate the frequency of each API of the targeted
library in the title and the summary of Web search results.
Basically, the higher frequency a API candidate is, the more
likely it is relevant to the API query.

3.5 Ranking w.r.t. the Whole Library
Some common APIs, such as the Object Class, may ap-

pear frequently in the Web search results. However, these
common APIs are not interesting for a API query. Our ap-
proach uses the definitions of tf-idf from the Information
Retrieval community [5] to distinguish these common APIs
from the true relevant APIs.

Recall that we have mined API candidates for each API
query. That is, for an API query Qi, we have a set of API
candidates, T1, T2, etc. We can thus build a set of docu-
ments, where each document contains the API candidates
(with duplicates) for each API query. Figure 3 shows an ex-
ample, where T1 appears in one search results of three API
queries and T5 appears in two search results of the API
query Q3.

Q1: T1, T2, T3
Q2: T1, T4
Q3: T1, T5, T2, T5
Q4: T6

Figure 3: Example documents of API candidates

We then use the definitions of tf and idf to identify the
relevance of a API candidate to the API query. The term
frequency (tf) is the number of a API candidate appeared
in the document of a API query. The larger it is, the more
relevant the API candidate is to the API query. The inverse
document frequency (idf) is obtained by dividing the total
number of documents by the number of documents contain-
ing the API candidate, and then taking the logarithm of
that quotient. The larger it is, the less common the API
candidate is and thus the more relevant the API candidate
is to the API query. In particular, the relevance of a API
candidate T to a API query Q is defined as follows.

relevance(T, Q) = tf(T, Q) ∗ idf(T)

where tf(T, Q) is the frequency of the API candidate T
in the document of Q, and idf(T) is the inverse document
frequency of T in the whole corpus, i.e., the set of documents
for all API queries.

Finally, for each API query, the candidate APIs are ranked
in the descending order of the relevance to the API query.

3.6 Explanation Generation
It is often not enough to tell developers only which API

is relevant to a given query. Developers need more informa-
tion to understand why and how the recommended API is
relevant to a given query. To suit this need, our approach
also generates explanations for each recommended API, so as
to help developers understand the causality. Currently, for
each recommended API, our approach lists the Web pages
(within the Web search results) that discuss both the rec-
ommended API and the API query. The Web pages often
contain the users’ discussions or explanations of how an API
is relevant to a given query. It is also possible to generate
other kinds of explanations, such as the formal specification
of the recommended APIs.

4. PRELIMINARY RESULTS
We have built a prototype for the proposed approach and

applied it to generate related APIs in C# (mostly in the
.NET Framework) for the APIs in JDK. The Java Devel-
opment Kit (JDK) is a Sun Microsystems product aimed
at Java developers. Since the introduction of Java, it has
been by far the most widely used Java SDK. C# is a multi-
paradigm programming language encompassing imperative,
declarative, functional, generic, object-oriented (class-based),
and component-oriented programming disciplines. It was
developed by Microsoft within the .NET initiative. We fo-
cus on recommending the classes in the experiment. We
crawl the API list of JDK and C# from their official Web-
sites. The characteristics of these two subject libraries are
summarized in Table 1.

For each API query in JDK, our approach generates an in-
dividual result page that lists the recommended APIs in C#.

482

Table 1: Subject programs
Library #Packages #Classes
JDK 135 2723
.NET 408 13791

(a) Recommended APIs for HashMap

(b) Recommended APIs for URLConnection

Figure 4: API recommendation results

Figure 4 shows the recommendation results for java.util.Hash
Map. The first recommended APIs in C# include Hashtable
and Dictionary. These two APIs are similar to HashMap
as they are all collections that maps keys to values. Along
with each recommended API, our approach provides a link
(and the title) to the explanation of their correlations with
the API query. The link for Hashtable points to a blog that
compares HashMap and Hashtable, while the link for Dic-
tionary points to a discussion in a question and answer site.
These explanations not only increase the confidence of users
for the recommendation results, but also help users learn the
key similarities and differences between the recommended
APIs and the API query. Figure 4 also shows the results
for java.net.URLConnection. The first recommended API
is WebRequest. It is relevant to URLConnection because
they are both used to communicate to a URL. The link for
WebRequest points to an article that describes C# I/O and
networking APIs, compared with the Java ones. Finally,
our approach generates an index html for the JDK library,
where each entry links to the recommendation results of a
API query.

5. DISCUSSIONS

5.1 Keyword-based Web Query Construction
While users may talk about the names of a API query

and a target library, a more common scenario is that users
discuss the functionality of a API query and a target library.
Therefore, we may extract the keywords of a API based on
its documentation or the search results of the API, and then
construct a Web query that consists of the keywords and the
name of the target library.

5.2 API Candidates Extraction
Currently, our approach uses a dictionary-based approach

to extract API candidates for recommendation from Web
search results. The dictionary is the list of APIs in the tar-
geted library. Having such a API list can help to reduce
false positives effectively. However, it could be tedious for
the users to create such a API list manually. A possible
solution is to analyze the source code of a given library to
extract API lists, using tools such as Ctags [1]. Another pos-
sible solution is to use a template-based approach. That is,

instead of giving a API list, the users provide a template for
the potentially interested APIs, using regular expressions.

6. CONCLUSIONS
Sometimes developers need to replace an old library with

a new library for more effective code reuse. Learning the
often complex APIs in the new library could be tedious.
We propose an approach to help developers find APIs in
the new library that work similarly to a given API in the
old library automatically. In particular, we use Web search
engines to collect relevant Web search results of a given API
in the old library, and then recommend API candidates in
the new library that are frequently appeared in the Web
search results. We have built a prototype for the proposed
approach and applied it to generate related C# APIs for
the APIs in JDK. We have also discussed several issues for
further improvements.

7. ACKNOWLEDGMENTS
The work described in this paper was fully supported by

a grant from the Research Grants Council of the Hong Kong
Special Administrative Region, China (Project No. CUHK
415410), and a grant under Google Focused Grant Project
“Mobile 2014”.

8. REFERENCES
[1] Ctags. http://ctags.sourceforge.net/.

[2] Google code search.
http://www.google.com/codesearch.

[3] Javadoc. http://java.sun.com/j2se/javadoc/.

[4] Source code documentation generator tool.
http://www.doxygen.org/.

[5] R. Baeza-Yates, B. Ribeiro-Neto, et al. Modern
information retrieval. ACM press New York., 1999.

[6] J. Davies, D. M. Germán, M. W. Godfrey, and
A. Hindle. Software bertillonage: finding the
provenance of an entity. In MSR, pages 183–192, 2011.

[7] Z. Li and Y. Zhou. PR-Miner: automatically
extracting implicit programming rules and detecting
violations in large software code. In ESEC/SIGSOFT
FSE, pages 306–315, 2005.

[8] F. Long, X. Wang, and Y. Cai. Api hyperlinking via
structural overlap. In ESEC/SIGSOFT FSE, pages
203–212, 2009.

[9] M. P. Robillard. Automatic generation of suggestions
for program investigation. In ESEC/SIGSOFT FSE,
pages 11–20, 2005.

[10] S. Thummalapenta and T. Xie. PARSEWeb: a
programmer assistant for reusing open source code on
the web. In ASE, pages 204–213, 2007.

[11] Q. Zhang, W. Zheng, and M. R. Lyu. Flow-augmented
call graph: A new foundation for taming api
complexity. In FASE 2011, Fundamental Approaches
to Software Engineering, pages 386–400, 2011.

[12] H. Zhong, S. Thummalapenta, T. Xie, L. Zhang, and
Q. Wang. Mining api mapping for language migration.
In ICSE (1), pages 195–204, 2010.

[13] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei.
MAPO: Mining and recommending api usage
patterns. In ECOOP, pages 318–343, 2009.

483

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

