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Abstract

Although deep neural networks (DNNs) have achieved

tremendous performance in diverse vision challenges, they

are surprisingly susceptible to adversarial examples, which

are born of intentionally perturbing benign samples in a

human-imperceptible fashion. It thus poses security con-

cerns on the deployment of DNNs in practice, particularly

in safety- and security-sensitive domains. To investigate the

robustness of DNNs, transfer-based attacks have attracted

a growing interest recently due to their high practical ap-

plicability, where attackers craft adversarial samples with

local models and employ the resultant samples to attack a

remote black-box model. However, existing transfer-based

attacks frequently suffer from low success rates due to over-

fitting to the adopted local model. To boost the transfer-

ability of adversarial samples, we propose to improve the

robustness of synthesized adversarial samples via adver-

sarial transformations. Specifically, we employ an adver-

sarial transformation network to model the most harmful

distortions that can destroy adversarial noises and require

the synthesized adversarial samples to become resistant to

such adversarial transformations. Extensive experiments

on the ImageNet benchmark showcase the superiority of our

method to state-of-the-art baselines in attacking both unde-

fended and defended models.

1. Introduction

Deep neural networks (DNNs) have emerged as state-

of-the-art solutions to a dizzying array of challenging vi-

sion tasks [35, 22]. Despite their astonishing perfor-

mance, DNNs are surprisingly vulnerable to adversarial

samples, which are crafted by purposely attaching human-

imperceptible noises to legitimate images and can mis-

lead DNNs into wrong predictions [34, 38]. It poses a

severe threat to the security of DNN-based systems, es-

pecially in safety- and security-critical domains like self-

driving [26, 39, 43]. Therefore, learning how to synthe-

Figure 1: From left to right: An example of the clean image,

the resultant image distorted by our adversarial transforma-

tion network, and the corresponding adversarial image gen-

erated by our method.

size adversarial samples can serve as a crucial surrogate

to evaluate the robustness of DNN-based systems before

deployment [9] and spur the development of effective de-

fenses [18, 36].

There are generally two lines of adversarial attacks stud-

ied in the literature [2]. One focuses on the white-box set-

ting, where the attackers possess perfect knowledge about

the target model [9, 17, 25]. The other considers the black-

box setting, where attackers do not know the specifics

of the target model, such as its architecture and param-

eters [28, 10]. Compared to the white-box counterpart,

black-box attacks are recognized as a more realistic threat

to DNN-based systems in practice [28]. Besides, among ex-

isting black-box attacks, transfer-based attacks have gained

increasing interest recently due to their high practical appli-

cability, where attackers craft adversarial samples based on

local source models and directly harness the resultant adver-

sarial examples to fool the remote black-box victims [5, 37].

However, existing transfer-based attacks frequently man-

ifest limited transferability due to overfitting to the em-

ployed source model [9, 5, 44]. Concretely, although the

generated adversarial samples can fool the source model

with high success rates, they can hardly remain malicious to

a different target model. Inspired by the data augmentation

strategy [12, 16, 31], prior efforts have endeavored to im-

prove the transferability of adversarial samples by training
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Figure 2: The diagram of our attack strategy. We proceed

by first training an adversarial transformation network that

can characterize the most harmful image transformations to

adversarial noises. We then manufacture adversarial sam-

ples by additionally requiring them to be robust against the

adversarial transformation network.

them to become robust against common image transforma-

tions, such as resizing [42], translation [6], and scaling [21].

Unfortunately, these works explicitly model the applied im-

age distortions by employing only individual image trans-

formations or their simple combination under a fixed dis-

tortion magnitude. Therefore, it makes the generated adver-

sarial samples overfit to the applied image transformations

and hardly resist against unknown distortions [4], leading to

inferior transferability.

To mitigate the issue of poor transferability caused by

employing a fixed image transformation, a typical solution

is to identify a rich collection of representative image trans-

formations and then carefully tune a combination of them

for each image. However, such a strategy can incur pro-

hibitive computational costs. Therefore, we propose to ex-

ploit an adversarial transformation network to automate this

distortion tuning process, and Figure 1 illustrates an image

manipulated by our adversarial transformation network.

Figure 2 depicts the diagram of our Adversarial

Transformation-enhanced Transfer Attack (ATTA). Specif-

ically, motivated by the recent advance in applying convo-

lutional neural networks (CNNs) to conduct diverse image

manipulation tasks, like digital watermarking [45, 24] and

style transfer [7], we propose to train a CNN as the adversar-

ial transformation network by adversarial learning, which

can capture the most harmful deformations to adversarial

noises. After finishing the learning of the adversarial trans-

formation network, we require the crafted adversarial sam-

ples to be able to resist the distortions introduced by the

adversarial transformation network. As such, we can make

the generated adversarial samples more robust and improve

their transferability.

In summary, we would like to highlight the following

contributions of this work:

• We propose a novel technique to improve the transfer-

ability of adversarial samples with adversarial trans-

formations.

• We conduct extensive experiments on the ImageNet

benchmark to evaluate our approach. Experimental re-

sults confirm the superiority of our method over state-

of-the-art baselines in attacking both undefended and

defended models.

• We show that our technology is generally complemen-

tary to other state-of-the-art schemes, suggesting it as

a general strategy to boost adversarial transferability.

2. Related Work

We focus on deep image classifiers in this work. There-

fore, in this section, we briefly review two lines of prior arts

that are closely related to our work: synthesizing adversar-

ial samples and defending against adversarial samples.

2.1. Synthesizing Adversarial Samples

According to the adopted threat model, there are two

sorts of attacks explored in the literature to craft adversarial

examples [2]. The first one assumes the white-box setting,

where the target model acts as a local model, and attack-

ers possess perfect knowledge about the target model [9].

The second one considers the black-box scenario, where

the target model represents a remote model, and attackers

are not informed of the particulars of the target model, such

as its structures and parameters [5]. In practice, the black-

box assumption can more faithfully characterize the threat

to DNN-based systems [28]. Therefore, we also adopt a

black-box setup in this work.

There are generally two bodies of adversarial attacks

tailored for the black-box setting [13]: query-based and

transfer-based attacks. Query-based attacks need to query

the target model with instances of interest and exploit the

feedback information to seek adversarial images [1, 10].

Nevertheless, query-based attacks usually demand exces-

sive queries to spot an adversarial example, which may

incur prohibitive query costs and render attacks more de-

tectable [19]. By contrast, in transfer-based attacks, ad-

versaries adopt a local model as the substitute victim to

launch attacks, and directly harness the resultant adversar-

ial samples to attack the remote target model [5]. Therefore,

transfer-based attacks are grounded on the transferability of

adversarial samples, which represents the phenomenon that

the adversarial samples generated for a model can remain

malicious to a different model. Due to their high practical

applicability, transfer-based attacks have attracted unprece-

dented attention recently [21, 6].

Unfortunately, transfer-based attacks frequently mani-

fest limited success due to overfitting to the employed
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source model [5], especially when attacking a defended vic-

tim [6, 42, 41]. To boost the transferability of adversarial

samples, prevailing solutions usually view the generation of

adversarial samples as an optimization problem [21]. From

this perspective, they endeavor to migrate the traditional

scheme employed to improve the generalization of models

to synthesize transferable adversarial samples.

In this vein, prior efforts can be further split into two

groups. The first one involves applying more advanced op-

timization algorithms, like the momentum method and the

Nesterov Accelerated Gradient [29, 5, 21, 27]. The second

one is inspired by the data augmentation strategy [42, 6, 21].

Specifically, existing works along this line usually require

the synthesized adversarial samples to be robust under cer-

tain image transformations that can still preserve the im-

age content, such as resizing [42], translation [6], and scal-

ing [21]. However, these approaches bear the deficiency

of only considering individual image transformations or

their simple combination under fixed distortion strength.

It makes the crafted adversarial samples overfit to the ap-

plied image transformations and hardly survive under un-

known distortions, which may lead to inferior transferabil-

ity [4, 14, 23].

Therefore, a straightforward remedy would involve first

identifying a large corpus of image transformations that can

retain the image content. Then it carefully tunes the combi-

nation of image transformations that is appropriate to each

image. Unfortunately, such a process can incur prohibitive

computational costs. Inspired by the recent progress in

performing image manipulations with convolutional neural

networks [45, 24, 7], we propose to exploit a CNN-based

adversarial transformation network to mitigate the issue of

explicitly modeling the employed image transformations

and automate the tuning process. Specifically, our strategy

proceeds by training an adversarial transformation network

to model the most harmful image transformations to adver-

sarial noises by adversarial learning. Then we require the

generated adversarial samples to additionally defeat the ad-

versarial transformation network, which can improve adver-

sarial transferability.

2.2. Defending against Adversarial Samples

Enormous efforts have been devoted to defending against

adversarial samples, which generally fall into two axes. The

first one is termed adversarial training, which remains the

state-of-the-art defense to date [18, 36]. Adversarial train-

ing works by injecting the generated adversarial samples

into the training data to retrain the model [9]. Ensemble

adversarial training is a refined successor of vanilla adver-

sarial training [36], which employs the adversarial samples

synthesized from hold-out models to augment the training

data. As such, the adversarially trained models can show-

case robustness against transfer-based attacks.

The second line of defenses proceeds by purifying the

adversarial samples. Specifically, they pre-process the input

images as a potential defense to rectify adversarial perturba-

tions without reducing the classification accuracy on benign

images. The state-of-the-art defenses of this kind include

applying random resizing and padding [40], a high-level

representation guided denoiser [20], randomized smooth-

ing [4], an image compression module [14], and a JPEG-

based defensive compression framework [23]. In this paper,

we exploit these state-of-the-art defenses to evaluate the ef-

fectiveness of our attack against defended models.

3. Method

In this section, we detail our attack technique. We first

introduce the task of crafting adversarial samples in Sec-

tion 3.1. Then in Section 3.2, we elaborate on the proposed

adversarial transformation network. Finally, we present our

algorithm to generate adversarial samples in Section 3.3.

3.1. Problem Description

Let x denote a clean image with ground-truth label y.

We can regard a deep image classifier as a function f(x),
which returns a probability vector, indicating the probabil-

ities of the input belonging to each class. Given a target

model f and a clean image x, the task of attackers is to find

an adversarial counterpart xadv , which satisfies the follow-

ing two conditions:

argmax f(xadv) 6= y, (1)

and

||xadv − x||p ≤ ǫ. (2)

Here the first requirement reflects the attacker’s goal of mis-

leading the target model into wrong predictions. The second

condition constrains the admissible perturbation budget for

the attacker. In practice, the perturbation budget ǫ is usu-

ally a fairly small number, which ensures that the alteration

to the clean image is human-imperceptible. In this work,

we exploit the l∞ norm to define the visibility of adver-

sarial perturbations, since it is the most widely advocated

measurement in the community [9, 21]. Nevertheless, our

approach is generally applicable to other norm choices with

simple modifications.

We employ J(f(x), y) to signify the training loss func-

tion of the classifier f . As such, attackers can reformulate

the task of generating an adversarial sample xadv as the fol-

lowing optimization problem:

max
x
adv

J(f(xadv), y),

s.t. ||xadv − x||∞ ≤ ǫ. (3)

Here the attackers apply the training loss function

J(f(x), y) as a surrogate for the original attack object func-

tion (Eq. (1)).
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Figure 3: Illustrations of the output images from our ad-

versarial transformation network T . The top row shows

the clean input images, while the bottom row enumerates

the corresponding images transformed by T . We discover

that the learned adversarial transformation network can per-

form a diverse set of image manipulations, such as blurring

and a combination of multiple simple transformations. Best

viewed zoomed in on-screen.

In this paper, we endeavor to develop a transfer-based

attack, which works by attacking a local white-box model

and harnessing the crafted adversarial samples to fool the

black-box victim. By escalating the transferability of ad-

versarial samples, we can attack the target black-box model

with high success rates.

3.2. Adversarial Transformation Network

We attempt to improve the transferability of adversar-

ial samples by the data augmentation methodology [31]. It

works by asking the adversarial samples to be robust against

various image transformations, which may eliminate adver-

sarial noises while still preserve the semantic meaning of

the image [42]. Since only adopting a fixed transforma-

tion may lead to poor generalization to unknown ones, we

endeavor to address the issue of explicitly modeling the ap-

plied image transformations by figuring out the most harm-

ful image transformations to each adversarial image. We

expect that if the generated adversarial samples can resist

the toughest image deformations, they can also survive un-

der other weaker distortions [25].

Specifically, let H signify an image transformation func-

tion with parameter θH , which can be a composition of

multiple simple image transformations, such as blurring and

coloring. H(x) thus denotes the transformed image given

an input sample x. As per Eq. (3), we can formulate the task

of searching for the most harmful image transformations to

an adversarial image x
adv as the following min-max prob-

lem:

min
θH

max
x
adv

J(f(H(xadv)), y),

s.t. ||xadv − x||∞ ≤ ǫ,

argmax f(H(x)) = y. (4)

Recall that y is the ground-truth label of the legitimate im-

age x. Here the inner maximization problem corresponds

to finding an adversarial image x
adv . In contrast, the outer

minimization problem accounts for optimizing the transfor-

mation parameters to rectify the adversarial image, so that

they become no longer malicious. The second constraint

ensures that the learned image transformations can main-

tain the content of the clean image.

A straightforward way to solve the optimization problem

of Eq. (4) involves first spotting all candidate image trans-

formations, and then tuning their combinations and distor-

tion strengths for each adversarial image. However, such

a process can incur prohibitive computational costs. Mo-

tivated by the recent success of deep learning-based im-

age manipulation techniques [45, 24], we propose to train

a CNN-based adversarial transformation network to auto-

mate the process of tuning the most harmful image trans-

formations to each adversarial image.

Specifically, we relax the optimization problem of

Eq. (4) by restricting the hypothesis space of the transfor-

mation function H to be some class of convolutional neural

networks T (x; θT ) parameterized with θT . Therefore, the

optimization problem of Eq. (4) now reduces to the task as

follows.

min
θT

max
x
adv

J(f(T (xadv)), y),

s.t. ||xadv − x||∞ ≤ ǫ,

argmax f(T (x)) = y. (5)

Employing CNN to model the applied transformations af-

fords two-fold merits. The first one is that CNNs possess the

capacity to generate a cornucopia of image distortions, as

demonstrated in Figure 3. It ensures that although we have

reduced the hypothesis space of the transformation function

H to be some class of convolutional neural networks, the

constrained hypothesis space of the transformation function

H is still large enough. Therefore, the solution to the re-

laxed optimization problem of Eq. (5) is fairly close to the

optimal of the original task of Eq. (4). The second virtue is

that we can learn the CNN function in an end-to-end fash-

ion, which automates the tuning of the exploited transfor-

mations for each adversarial image. Therefore, it is faster

and more convenient by circumventing the prohibitive over-

head of manually tuning.

To train the CNN-based adversarial transformation net-

work, we resort to the adversarial learning scheme [9, 8] to
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Algorithm 1 Adversarial Transformation Network Training

Require: The fooling object function Lfool, the training

loss function LT of the adversarial transformation net-

work, and a clean image x

Require: The perturbation budget ǫ, the iteration numbers

Kouter and Kinner

1: Initialize x
adv = x

2: Randomly initialize θT
3: for kouter = 1 to Kouter do

4: for kinner = 1 to Kinner do

5: Update x
adv = x

adv −Adam(Lfool)
6: Clip x

adv = Clipǫ
x
{xadv}

7: end for

8: Update θT = θT −Adam(LT )
9: end for

10: return the parameter θT of the learned adversarial

transformation network

solve the optimization problem of Eq. (5). Specifically, we

first define the following training loss function of the adver-

sarial transformation network:

LT =J(f(T (xadv)), y) + α1J(f(T (x)), y)

+α2||x
adv − T (xadv)||2. (6)

Here the first term reflects the adversarial transformation

network’s pursuit of counteracting the adversarial noises,

namely, rendering the adversarial sample no longer destruc-

tive to the target image classifier after the pre-processing of

the adversarial transformation network. In contrast, the sec-

ond term requires the adversarial transformation network to

retain the content of the clean image, so that it will not

incur misclassification of the target model on distorted le-

gitimate images. The last term constrains the distortion

strength introduced by the adversarial transformation net-

work. It serves as a regularizer to alleviate the overfitting

issue during the training of the adversarial transformation

network. In this work, we employ the l2 norm to formu-

late the transformation magnitude for simplicity. Nonethe-

less, we can also adopt other semantic measurements, like

the distance calculated on the feature space of a pre-trained

deep model [31]. α1 and α2 are the scalar weights to bal-

ance the contributions of each term in Eq. (6).

For the inner maximization problem of Eq. (5), we pro-

pose the following fooling object function Lfool to search

for the adversarial instance x
adv:

Lfool = −J(f(T (xadv)), y)− βJ(f(xadv), y). (7)

Here the second term exploits the training loss function of

the target model as the surrogate to seek an adversarial ex-

ample x
adv . Moreover, the first term takes into account

the deformation induced by the adversarial transformation

Algorithm 2 Adversarial Sample Generation

Require: A classifier f , the attack object function Lattack,

the adversarial transformation network T , a clean im-

age x, and its ground-truth label y

Require: The perturbation budget ǫ and iteration number

K

Ensure: ||xadv − x||∞ ≤ ǫ

1: ǫ′ =
ǫ

K
2: x

adv
0 = x

3: for k = 0 to K − 1 do

4: x
adv
k+1 = Clipǫ

x
{xadv

k + ǫ′ sign(
∂Lattack

∂x
)}

5: end for

6: return x
adv = x

adv
K

network, and endeavors to make the adversarial example

remain malicious under the adversarial transformation net-

work. β is the scalar weight to control the strength of each

term in Eq. (7).

The above definitions of the outer and inner training loss

functions lead us to an end-to-end training algorithm of the

adversarial transformation network, which is detailed in Al-

gorithm 1. In short, we alternate the searching for the ad-

versarial example and the training of the adversarial trans-

formation network, which amount to the optimization of

the inner maximization problem and the outer minimiza-

tion task of Eq. (5), respectively. Here we employ an Adam

optimizer [15] to compute the updating value (Adam(·)) in

each iteration. Additionally, we apply the function Clipǫ
x

to clip the resultant adversarial sample to be within the ǫ-

neighborhood of the source image x in the l∞ space. There-

fore, we can satisfy the norm constraint for the adversarial

sample in Eq. (5).

3.3. Adversarial Sample Generation

After finishing the training of the adversarial transforma-

tion network, we can view the learned adversarial transfor-

mation network as a pre-processing module, and attach it

to the target image classification model, as depicted in Fig-

ure 2. As a result, we can regard the cascaded adversarial

transformation network and image classifier as another vic-

tim model to attack. Therefore, we define the following

attack object function for the attackers:

Lattack = J(f(xadv), y) + γJ(f(T (xadv)), y), (8)

where γ is the scalar weight to trade-off the contributions of

each term in Eq. (8).

To resolve the optimization problem of Eq. (8), we can

now turn to any backbone optimization algorithm to find

an approximate solution. In this paper, we apply the basic

iterative method [17], since it is simple and efficient. Algo-

9028



Attack Res-v2 Inc-v3 Inc-v4 IncRes-v2 Inc-v3ens3 Inc-v3ens4 IncRes-v2adv

Res-v2

FGSM 85.4 43.7 35.2 33.2 22.6 22.2 14.3

BIM 95.6 46.8 38.0 36.2 27.6 25.3 17.4

DIM 97.9 66.3 57.2 55.6 30.5 29.6 20.8

TIM 98.8 65.2 59.8 57.4 35.6 31.7 25.8

SIM 98.8 67.3 57.4 57.4 38.1 30.1 26.7

MI-FGSM 98.2 57.9 53.9 49.4 33.0 29.2 21.8

NI-FGSM 98.6 62.2 55.5 53.3 33.1 28.9 21.1

ATTA (Ours) 99.8 64.3 61.8 59.2 42.1 38.9 29.1

Inc-v3

FGSM 34.3 72.8 29.8 27.1 14.9 13.6 17.9

BIM 33.2 99.9 32.3 29.8 11.8 11.5 17.6

DIM 39.2 100 39.2 37.6 23.2 24.3 14.0

TIM 39.2 100 44.3 45.8 23.2 24.9 16.4

SIM 40.1 100 42.9 46.4 22.8 24.3 16.9

MI-FGSM 36.2 100 44.4 42.7 22.5 22.4 16.5

NI-FGSM 38.0 100 47.4 46.4 23.2 22.4 16.4

ATTA (Ours) 44.8 100 52.9 53.2 25.1 27.9 18.8

Inc-v4

FGSM 31.7 32.9 49.7 28.2 11.9 13.1 6.2

BIM 37.9 59.1 99.1 30.9 14.7 14.7 7.1

DIM 40.8 64.3 99.6 39.4 24.6 24.8 15.2

TIM 41.4 64.3 99.6 48.2 25.7 25.2 16.9

SIM 41.4 61.9 99.6 49.7 27.9 25.2 17.4

MI-FGSM 40.1 58.8 99.6 44.4 27.0 25.1 18.1

NI-FGSM 42.9 62.4 99.6 51.8 25.4 24.1 17.6

ATTA (Ours) 43.8 66.8 99.6 59.2 32.1 29.2 20.8

IncRes-v2

FGSM 29.3 31.0 23.5 42.8 13.1 12.7 7.3

BIM 39.6 58.5 23.5 42.8 15.2 13.1 7.1

DIM 41.3 63.4 58.3 97.7 30.7 29.2 19.8

TIM 43.1 62.9 55.4 98.9 31.8 29.2 20.6

SIM 42.1 60.9 52.7 98.9 29.6 29.2 20.9

MI-FGSM 39.9 56.8 48.6 97.7 19.6 26.0 21.7

NI-FGSM 39.7 59.1 51.2 98.9 25.6 25.2 20.6

ATTA (Ours) 44.8 68.9 65.2 98.9 33.0 31.9 24.3

Table 1: Success rates (%) of different attacks against seven models. The first column lists the source model adopted to craft

adversarial samples, while the first row shows the target model.

rithm 2 elaborates on our procedure to synthesize adversar-

ial samples.

4. Experiments

In this section, we conduct experiments to evaluate the

effectiveness of our approach. We first state the experimen-

tal setup in Section 4.1. Then in Section 4.2, we offer the

results of our attacks against both cutting-edge undefended

and defended models. We follow by an in-depth investiga-

tion of our approach in Section 4.3. We finally verify the

complementary effect of our strategy on other compatible

state-of-the-art approaches in Section 4.4.

4.1. Experimental Setup

We center on attacking image classifiers trained on the

ImageNet dataset [30], which is the most widely recognized

benchmark task for transfer-based attacks [6, 3]. We follow

the protocol of the state-of-the-art baseline [21] to set up the

experiments, which we detail as follows.

Dataset. We employ the ILSVRC 2012 training par-

tition [30] as the development set to develop our attack,

where we train the adversarial transformation network and

fine-tune the hyper-parameters. For the test data adopted

to evaluate our method, we randomly sample 1000 images

of different categories from the ILSVRC 2012 validation

set [30]. We also ensure that nearly all of the selected test

images can be correctly classified by every model exploited

in this paper.

Target model. We attack both undefended and defended

models. For undefended models, we consider multiple top-

performance models with diversified architectures, incor-

porating ResNet v2 (Res-v2) [11, 12], Inception v3 (Inc-

v3) [33], Inception v4 (Inc-v4) [32], and Inception-ResNet

v2 (IncRes-v2) [32]. For defended models, we focus on sev-

eral cutting-edge adversarially trained models, since adver-

sarial training is arguably the most effective and promising
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Attack HGD R&P NIPS-r3 FD ComDefend RS Average

FGSM 8.9 16.8 23.1 19.2 13.4 6.8 14.7

BIM 12.1 19.3 23.8 21.8 17.2 8.9 17.2

DIM 79.5 74.7 81.9 76.4 72.3 42.3 71.2

TIM 73.3 69.8 79.4 78.2 69.2 36.2 67.7

SIM 76.2 77.7 84.2 79.8 75.4 39.3 72.1

MI-FGSM 33.4 27.2 42.1 47.3 42.8 29.9 37.1

NI-FGSM 35.2 30.3 40.8 49.2 44.9 32.3 38.8

ATTA (Ours) 85.9 83.2 89.5 84.4 79.9 47.4 78.4

Table 2: Success rates (%) of different attacks against advanced defense methods.

Structure Res-v2 Inc-v3 Inc-v4 IncRes-v2 Inc-v3ens3 Inc-v3ens4 IncRes-v2adv

Conv (4, 3) 39.7 100 42.8 44.9 19.3 19.5 16.2

Conv (16, 3) 44.8 100 52.9 53.2 25.1 27.9 18.8

Conv (32, 3) 34.8 100 31.6 32.2 15.9 13.6 16.6

Conv (32, 32, 3) 33.8 100 34.1 31.3 12.3 11.9 17.9

Table 3: Success rates (%) of our attack when varying the complexity of the adversarial transformation network. The first

row shows the target model.

defense to date [25]. Specifically, we explore adversarially

trained Inception-ResNet v2 (IncRes-v2adv), adversarially

trained Inception v3 with deceptive samples from an en-

semble of three models (Inc-v3ens3) and four models (Inc-

v3ens4), respectively [36, 18].

Furthermore, we study another line of state-of-the-art

defenses that aims to rectify adversarial samples. These

defenses cover high-level representation guided denoiser

(HGD) [20], random resizing and padding (R&P) [40],

NIPS-r31, feature distillation (FD) [23], compression

defense (ComDefend) [14], and randomized smoothing

(RS) [4].

Baseline. We compare our approach with two sorts

of baselines. The first one represents top-performance

white-box attacks that manifest greater transferability than

the other white-box techniques [6], including Fast Gradi-

ent Sign Method (FGSM) [9] and Basic Iterative Method

(BIM) [17]. The second category incorporates state-of-the-

art transfer-based attacks, embracing Diverse Input Method

(DIM) [42], Translation-Invariant Method (TIM) [6], Scale-

Invariant Method (SIM) [21], Momentum Iterative Fast

Gradient Sign Method (MI-FGSM) [5], and Nesterov Itera-

tive Fast Gradient Sign Method (NI-FGSM) [21]. Similar to

us, they also seek to boost the transferability of adversarial

samples from the perspective of optimization and general-

ization, either by employing more advanced optimizers or

by data augmentation.

Parameter. For the adversarial transformation net-

work, we adopt a two-layer CNN: T (x) = Conv3×3 ◦
Leaky ReLU ◦ Conv16×3(x), where Conv indicates a con-

volutional layer with the denotation of Convkernel size×number.

1https://github.com/anlthms/nips- 2017/tree/

master/mmd

For benchmark attacks, we employ the recommended pa-

rameters in their original implementation for fair compar-

isons. Following [21, 5], we set the perturbation budget

ǫ = 16 for all attacks. The iteration numbers K, Kouter,

and Kinner are set to 10. We determine the best hyper-

parameters of our algorithm with grid search on the devel-

opment set. The weight parameters are 1.0, 10, 1.0, and 1.0

for α1, α2, β, and γ, respectively.

4.2. Attacking Results

Here we assess the performance of our attacks against

both undefended and defended models. Specifically, for a

given source model, we mount attacks on it and directly ap-

ply the result adversarial samples to fool the other different

models, which amounts to the black-box setting. We also

test the attacking results on the source model itself, which

corresponds to the white-box setting.

Table 1 reports the attacking performance of different

methods against both undefended and adversarially trained

models. Our attack achieves nearly 100% success rates un-

der the white-box scenarios. More importantly, we can see

that under the black-box settings, our technique can drasti-

cally improve the transferability of BIM. For instance, when

applying Inc-v3 as the source model, our attacking perfor-

mance exceeds BIM by over 14.4% on average. Besides,

our attack consistently outperforms all state-of-the-art base-

lines by a significant margin under the black-box settings,

which further corroborates the superiority of our strategy on

synthesizing transferable adversarial samples.

We also evaluate the success rates of different attacks

against other advanced defenses. Table 2 shows the re-

sults when adopting Inc-v3 as the source model to attack

other models defended with different mechanisms. Our at-
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Attack Res-v2 Inc-v3 Inc-v4 IncRes-v2 Inc-v3ens3 Inc-v3ens4 IncRes-v2adv

Res-v2
SI-NI-TI-DIM 99.8 78.3 70.2 71.8 34.9 35.9 30.2

AT-SI-NI-TI-DIM (Ours) 99.8 80.1 74.9 74.9 36.8 37.3 33.2

Inc-v3
SI-NI-TI-DIM 48.3 100 54.3 56.2 27.8 28.1 24.5

AT-SI-NI-TI-DIM (Ours) 49.1 100 55.9 57.1 27.8 28.6 24.9

Inc-v4
SI-NI-TI-DIM 49.5 72.1 99.6 60.3 33.2 31.8 26.9

AT-SI-NI-TI-DIM (Ours) 50.4 75.2 99.6 62.8 33.9 32.3 27.6

IncRes-v2
SI-NI-TI-DIM 50.1 72.9 69.6 98.9 34.5 32.7 27.4

AT-SI-NI-TI-DIM (Ours) 55.3 77.8 74.2 98.9 36.5 34.9 29.1

Table 4: Attack success rates (%) when combining our strategy with compatible algorithms. The first column lists the source

model adopted to craft adversarial samples, while the first row shows the target model.

tacks achieve an average success rate of 78.4%, defeat-

ing all state-of-the-art attacks by a significant margin of

over 6.3%. It further evidences the effectiveness of our

attacks against both top-performance undefended and de-

fended models, and raises a new security concern for devel-

oping more robust defenses.

4.3. Further Analysis

As shown in Algorithm 2, our attack is built upon

BIM by augmenting an adversarial transformation network.

Therefore, comparing the performance of BIM and our

method in Table 1 and Table 2 constitutes an ablation study.

The remarkable advance of our attack over BIM verifies the

contribution of the proposed adversarial transformation net-

work.

We then analyze the effect of the complexity of the ad-

versarial transformation network. Specifically, we adjust

the structures of the adversarial transformation network and

perform attacks as in Section 4.2. We present the results

when exploiting Inc-v3 as the source model in Table 3. We

indicate the architecture of the adversarial transformation

network in the format of Conv (a, b, ...), where we spec-

ify the kernel size of each convolutional layer in parenthe-

ses. The number of kernels is three across all convolutional

layers. From Table 3, we can observe that over simple or

sophisticated structures can deteriorate our attack perfor-

mance, since the former hardly owns enough representation

capacity, while the latter can make the adversarial transfor-

mation network overfit to the backbone attack algorithm.

4.4. Complementary Effect of Our Technique

In principle, our strategy is compatible with other state-

of-the-art transfer-based attacks. Therefore, we can conve-

niently combine our technique with these attacks. To val-

idate the complementary effect of our technology, we ex-

periment with the state-of-the-art integrated transfer-based

attack (SI-NI-TI-DIM) [21], which is a composition of SIM,

NI-FGSM, TIM, and DIM. Specifically, to integrate our

strategy with SI-NI-TI-DIM, we just need to first regard

the cascaded adversarial transformation network and image

classifier as another victim model. Then we attack both the

cascaded network and the original classifier with SI-NI-TI-

DIM. We denote the combination of our ATTA and SI-NI-

TI-DIM as AT-SI-NI-TI-DIM.

We conduct similar experiments as in Section 4.2,

and Table 4 states the results. We make the following obser-

vations. First, our attack (AT-SI-NI-TI-DIM) can attain al-

most 100% success rates under the white-box context. Sec-

ond, our method can consistently promote the success rates

of the state-of-the-art baseline by a considerable margin,

under all black-box cases. Therefore, it affirms the com-

plementary effect of our technique.

5. Conclusion

In this work, we introduce a novel technique, Adver-

sarial Transformation-enhanced Transfer Attack (ATTA), to

boost the transferability of adversarial samples. Inspired by

the data augmentation methodology, it features training a

CNN-based adversarial transformation network by adver-

sarial learning, and requiring the generated adversarial sam-

ples to withstand the adversarial transformation network.

Moreover, our strategy can be conveniently combined with

other transfer-based attacks to further promote their per-

formance. Extensive experiments corroborate the superi-

ority of our approach on synthesizing transferable adversar-

ial samples against both state-of-the-art undefended and de-

fended models. Therefore, our attack can serve as a strong

benchmark to evaluate future defenses.
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