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Abstract

Real-time emotion recognition (RTER) in conversations is
significant for developing emotionally intelligent chatting
machines. Without the future context in RTER, it becomes
critical to build the memory bank carefully for capturing his-
torical context and summarize the memories appropriately
to retrieve relevant information. We propose an Attention
Gated Hierarchical Memory Network (AGHMN) to address
the problems of prior work: (1) Commonly used convolu-
tional neural networks (CNNs) for utterance feature extrac-
tion are less compatible in the memory modules; (2) Unidi-
rectional gated recurrent units (GRUs) only allow each his-
torical utterance to have context before it, preventing infor-
mation propagation in the opposite direction; (3) The Soft
Attention for summarizing loses the positional and ordering
information of memories, regardless of how the memory bank
is built. Particularly, we propose a Hierarchical Memory Net-
work (HMN) with a bidirectional GRU (BiGRU) as the ut-
terance reader and a BiGRU fusion layer for the interaction
between historical utterances. For memory summarizing, we
propose an Attention GRU (AGRU) where we utilize the at-
tention weights to update the internal state of GRU. We fur-
ther promote the AGRU to a bidirectional variant (BiAGRU)
to balance the contextual information from recent memories
and that from distant memories. We conduct experiments on
two emotion conversation datasets with extensive analysis,
demonstrating the efficacy of our AGHMN models.

Introduction

Emotion recognition is a significant research topic because
of the potential application in developing empathetic ma-
chines in present artificial intelligence (AI) era. We focus on
the real-time scenario to detect the emotion state of speakers
in an ongoing conversation at utterance-level. According to
(Olson 1977), an utterance is a unit of speech bounded by
breathes and pauses. We term this task as Real-Time Emo-
tion Recognition (RTER). Inherently, emotion recognition
is a multi-modal learning task that could involve text, video
and audio features, but the text feature plays the most sig-
nificant role (Chen et al. 1998; Poria, Cambria, and Gelbukh
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Figure 1: The specification of the RTER task.

2015; Poria et al. 2017; Hazarika et al. 2018b). Thus, in this
paper, we tackle the RTER task in text conversations.

Without the future context, in RTER, it becomes critical to
exploit the contextual information from the historical utter-
ances. For this purpose, one needs to take good care of two
factors, i.e., the memory bank for capturing historical con-
text, and the summarizing technique for the query to extract
relevant information from the memory bank. The memory
bank is usually built in a two-level fashion to simulate the hi-
erarchical structure of conversations, i.e., words-to-utterance
and utterances-to-conversation. Specifically, existing mod-
els (Hazarika et al. 2018a; 2018b; Majumder et al. 2019)
obtain their memory banks by utilizing convolutional neu-
ral networks (CNNs) to learn utterance features and unidi-
rectional gated recurrent units (GRUs) (Cho et al. 2014) to
capture relationship of utterances. However, through our ex-
ploration, we find that a bidirectional GRU (BiGRU) learns
better utterance features than commonly used CNNs. More-
over, the unidirectional GRU only allows each historical ut-
terance to have context before but not after it, which may
prevent information propagation in the opposite direction.
As for the summarizing techniques, the commonly used Soft
Attention produces a weighted sum of the memories, which
can be regarded as a bag-of-memories. Just as the bag-of-
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words in word representation area (Mikolov et al. 2013) that
lacks sensitivity to word order (Ling et al. 2015), the bag-of-
memories loses the positional and ordering information of
the memories, regardless of how the memory bank is built.

Incorporating these factors, in this paper, we propose an
Attention Gated Hierarchical Memory Network (AGHMN)
to better extract the utterance features and the contextual in-
formation for the RTER task. Specifically, we summarize
our contributions as below: (1) We propose a Hierarchical
Memory Network (HMN) to improve the utterance features
and the memory bank for extracting contextual information.
The HMN is essentially a two-level GRU encoder, including
an utterance reader and a fusion layer. The utterance reader
applies a BiGRU to model the word sequence of each utter-
ance, which we demonstrate that it is more compatible with
the hierarchical structure. The fusion layer adopts a BiGRU
to read the historical utterances, which enables sufficient in-
teraction between them. (2) We propose an Attention GRU
(AGRU) to retain the positional and ordering information
while summarizing the memories, and promote it to its bidi-
rectional variant, i.e., BiAGRU, to capture more comprehen-
sive context. The AGRU is formed by utilizing the attention
weights of the query to the memories to update the inter-
nal state of a normal GRU. The final hidden state of AGRU
serves as the contextual vector to help refine the represen-
tation of the query. The BiAGRU is dedicated to balancing
the information from recent memories and that from distant
memories. (3) We conduct experiments on two emotion con-
versation datasets with extensive analysis, demonstrating the
efficacy of our proposed AGHMN models.

Related Work

Text Classification. Text-based emotion recognition is usu-
ally treated as a text classification problem. Previously
proposed methods can be mainly divided into three cate-
gories: keyword-based methods (Wilson, Wiebe, and Hwa
2004), learning-based methods (Yang, Lin, and Chen 2007),
and hybrid methods (Wu, Chuang, and Lin 2006). Nowa-
days, deep learning is dominating the text classification
area due to its powerful capability in learning latent fea-
tures. Representative methods include convolutional neu-
ral network (CNN) (Kim 2014), recurrent neural network
(RNN) (Abdul-Mageed and Ungar 2017), and hierarchical
attention network (HAN) (Tang, Qin, and Liu 2015). These
work are customized for data unit without context, e.g. inde-
pendent reviews or documents.

Context-Dependent Models. Recognizing emotion state of
speakers in conversations requires that the query should
take into account the context to carry accurate informa-
tion. Existing work can be divided into two streams: the
static models, and the dynamic models. The static models
include sequence-based and graph-based (Zhang et al. 2019;
Ghosal et al. 2019), the former of which let each utterance
to have the utterances both in the history and the future as
context. Among sequence-based static models, cLSTM (Po-
ria et al. 2017) only adopts long short-term memory net-
works (LSTMs) (Hochreiter and Schmidhuber 1997) to cap-
ture the sequential relationship between the utterances. Hi-

GRU (Jiao et al. 2019) employs a self-attention mechanism
for context weighting and summarizing, as well as a residual
connection for feature fusion. BiDialogueRNN (Majumder
et al. 2019) is built on RNNs that keeps track of the individ-
ual party states throughout the conversation and uses this in-
formation for emotion recognition. These static models may
adapt to the RTER task if we take their unidirectional vari-
ants. The dynamic models read the utterances in the order as
they are generated so that each incoming utterance, i.e., the
query, only depends on the historical utterances. These mod-
els include CMN (Hazarika et al. 2018b), DialogueRNN,
and ICON (Hazarika et al. 2018a). Among them, CMN and
ICON are customized for dyadic conversations, which incor-
porate memory networks (Sukhbaatar et al. 2015) to refine
the contextual information and also consider the self- and
inter-speaker emotional influence.

Our AGHMN models differ from these approaches in that
we aim to produce better utterance features and memory
representation by our proposed HMN and summarize the
memories in a better way by our proposed AGRU and Bi-
AGRU. We do not distinguish speakers explicitly as in Di-
alogueRNN but find that the model itself can recognize the
difference between speakers (see Case Study).

Task Specification

We first specify the task of Real-Time Emotion Recognition
(RTER) as below:

Real-Time Emotion Recognition. Suppose that a conver-
sation has proceeded for t turns so far with the utterance
sequence Ct = {u1, · · · , ut}, the t-th utterance is the query
utterance q, and the others are historical ones. As illustrated
in Fig 1, each utterance expresses a major emotion e among
a set of emotions E , such as joy, sadness, and neutral. Our
goal is to design and train a modelM to predict the emotion
expressed by q conditioned on the historical utterances.

Architecture

In this section, we will introduce the AGHMN model as
illustrated in Fig 2, which consists of a Word Embedding
Layer, a Hierarchical Memory Network, an Attention GRU,
and a Classifier.

Word Embedding Layer

For an utterance in Ct composed by a sequence of words
ut′ = {w1, w2, · · · , wN}, where t′ ∈ [1, t], N is the length
of the utterance, and wn ∈ ut′ is the index of the word in
the vocabulary. The utterance is fed into the word embed-
ding layer to get a dense vector x ∈ R

dw for each word,
where dw is the size of the word vector. The weights of the
word embedding layer are initialized by the publicly avail-
able 300-dimensional word2vec (Mikolov et al. 2013) vec-
tors1 trained on 100 billion words from Google News. The
words not included in the word2vec vocabulary will be ini-
tialized by randomly generated vectors.

1https://code.google.com/archive/p/word2vec/
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Figure 2: The architecture of our AGHMN model.

Hierarchical Memory Network

The Hierarchical Memory Network (HMN) is a two-level
encoder, the lower one as an utterance reader and the upper
one as the fusion layer.

Utterance Reader. Though current work (Hazarika et al.
2018a; 2018b; Majumder et al. 2019) always utilize CNN
to extract utterance features, we decide to adopt a BiGRU.
The BiGRU is able to model the word sequence while gather
the contextual information for each word in two directions,
making it better for understanding a sentence sufficiently.
Actually, we find that the BiGRU performs much better than
a commonly used 1-D CNN as the utterance reader (see
Table 4). Specifically, the BiGRU takes an utterance repre-
sented by word vectors X = {xn}Nn=1 as input:

−→
h n =

−−−→
GRU(xn,

−→
h n−1), (1)

←−
h n =

←−−−
GRU(xn,

←−
h n+1), (2)

where
−→
h n,
←−
h n ∈ R

d1 are the hidden states of the forward
GRU and the backward one, respectively, and d1 is the hid-
den size. The hidden states of both directions are concate-
nated and fed to the max-over-time pooling layer. The re-
sulted vector

←→
h is then transformed to be the utterance em-

bedding u ∈ R
d1 through a tanh layer:
←→
h = maxpool({[−→h n,

←−
h n]}Nn=1) (3)

u = tanh(Wu
←→
h + bu), (4)

where Wu ∈ R
d1×2d1 , and bu ∈ R

d1 .

Fusion Layer. At t-step, the representation of the query
comes from the utterance encoder: qt = ut. For each query
qt, we build a memory bank Mt based on the most recent
K historical utterances. Since the K utterances maintain a
sequence, we hope to make them interact with each other so
as to refine the memory representation. As shown in Fig 2,
we consider two types of memory banks here:
• Unidirectional Fusion (UniF). Firstly, we utilize a

unidirectional GRU to read these K utterances to model
the sequential relationship between them. The indepen-
dent utterance embeddings {ut−K−1+k}Kk=1 are fed to the
GRU, and are then connected to the output of the GRU
to form the memory bank: Mt = {−−−→GRU(ut−K−1+k) +
ut−K−1+k}Kk=1.
• Bidirectional Fusion (BiF). The UniF memory bank

only allows each memory to have the context before it but
not after it, which may prevent information propagation
from the opposite direction. To address such a problem, we
propose to read the K utterances through a BiGRU, and
combine the output and the input to form the memory bank:
Mt = {←−−→GRU(ut−K−1+k)+ut−K−1+k}Kk=1. For simplic-
ity, we use

←−−→
GRU to denote the sum of the hidden states in

the two directions of the BiGRU.

Attention GRU

Generally, the query in a conversation depends on the con-
text it follows. Thus, it is crucial to weight and summarize
the context to refine the representation of the query. This
process is usually realized by an attention layer (Hazarika et
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al. 2018a; 2018b), which allows the query to interact with
the memory bank and produce a contextual vector ct.

Context Weighting. The attention layer should be able to
retrieve relevant context from the memory bank to help pre-
dict the emotion expressed by the query. To weight the im-
portance of each memory to the query, we adopt the dot-
product attention with a softmax normalization. As a result,
at t-step, the weight of the kth memory Mt,k will be:

ak =
exp(q�

t Mt,k)∑K
k′=1 exp(q

�
t Mt,k′)

. (5)

Context Summarizing. Conventionally, the contextual vec-
tor ct can be produced by Soft Attention as a weighted
sum of the memories, i.e., ct =

∑K
k=1 akMt,k. This

method is efficient for computing, but just as the bag-of-
words in word representation area (Mikolov et al. 2013;
Ling et al. 2015) it loses both the positional and ordering
information of the memories. Thus, we propose an Atten-
tion GRU (AGRU) which uses the attention weight of the
query to the memories to update the internal state h̃t of a
normal GRU. As a result, the output of the AGRU is:

hk = ak ◦ h̃k + (1− ak) ◦ hk−1. (6)

The GRU is advantageous for retaining the positional and or-
dering information of the memories and the attention weight
controls the amount of information to be passed to the next
step. We take the final hidden state of the AGRU as the con-
textual vector, i.e., ct = hK , then the refined query repre-
sentation, i.e. the output, will be:

ot = qt + ct. (7)

Furthermore, considering the tendency of RNNs to better
represent recent inputs (Bahdanau, Cho, and Bengio 2015),
the contextual vector from AGRU also tends to carry more
information of the most recent memories. Accordingly, a
backward AGRU can better represent memories distant from
the query. Therefore, we promote AGRU to its bidirectional
variant, i.e., BiAGRU, so as to make a balance between
the information from recent memories and that from distant
memories. We believe the BiAGRU is capable of capturing
more comprehensive context from the memory bank, espe-
cially for long conversations. As a result, the contextual vec-
tors produced by a BiAGRU are expressed as:

cft =
−−−−−→
AGRU(Mt,K , aK ,

−→
hK−1), (8)

cbt =
←−−−−−
AGRU(Mt,1, a1,

←−
h 2), (9)

which are used to refine the query representation similarly.

Classifier

The refined representation of the query from the AGRU is
used for prediction by a softmax layer:

ŷt = softmax(Woot + bo), (10)

where Wo ∈ R
d1×|E|, bo ∈ R

|E|, and |E| is the number of
emotion classes.

Dataset Fold No. of No. of Avg. length
Utt Conv of Conv

IEMOCAP train/val 5810 120 48.4
test 1623 31 52.4

MELD train/val 11098 1153 9.6
test 2610 280 9.3

Table 1: Summary of the two conversation emotion datasets:
IEMOCAP, and MELD.

We train the AGHMN model by a cross-entropy loss func-
tion expressed as:

L =
1

∑L
l=1 Tl

Tl∑

t=1

|E|∑

e=1

ye
t log(ŷ

e
t ), (11)

where Tl is the number of utterances in the lth conversation,
and L is the total number of conversations in the training set.
yt denotes the one-hot vector of the target emotion labels,
and ye

t and ŷe
t are the elements of yt and ŷt for the emotion

class e, respectively.

Experimental Setup

In this section, we will present the details of our experimen-
tal setup, including datasets, compared methods, implemen-
tation, and training.

Datasets. We train and test our model on two conversation
emotion datasets, namely, IEMOCAP (Busso et al. 2008),
and MELD (Poria et al. 2019a).
• IEMOCAP2: The IEMOCAP dataset contains the acts

of 10 speakers in a dyadic conversation fashion, provid-
ing text, audio, and video features. We follow the previous
work (Hazarika et al. 2018a) to use the first four sessions of
transcripts as the training set, and the last one as the test-
ing set. The validation set is extracted from the randomly-
shuffled training set with the ratio of 80:20. Also, we fo-
cus on recognizing six emotion classes, namely, happy, sad,
neutral, angry, excited, and frustrated.
• MELD3: The MELD dataset (Poria et al. 2019a) is an

extended version of the EmotionLines dataset (Hsu et al.
2018). The data comes from the Friends TV series with mul-
tiple speakers involved in the conversations. It is split into
training, validation, and testing sets with 1039, 114, and 280
conversations, respectively. Each utterance has been labelled
by one of the seven emotion types, namely, anger, disgust,
sadness, joy, neutral, surprise and fear.

Compared Methods. With the different combination of
memory banks and AGRUs, we consider four variants of
AGHMN4 for experiments: UniF-AGRU, UniF-BiAGRU,
BiF-AGRU, and BiF-BiAGRU. These variants are compared
to the following baselines:

2https://sail.usc.edu/iemocap/
3https://github.com/SenticNet/MELD
4https://github.com/wxjiao/AGHMN
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Model
IEMOCAP: Emotion Classes

happy sad neutral angry excited frustrated Avg.
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 mF1

memnet� 25.7 33.5 55.5 61.7 58.1 52.8 59.3 55.3 51.5 58.3 67.2 59.0 55.7 55.1 53.4
CMN� 25.0 30.3 55.9 62.4 52.8 52.3 61.7 59.8 55.5 60.2 71.1 60.6 56.5 56.1 54.3
ICON♦ - - - - - - - - - - - - 58.3 57.9 -
DialogueRNN� 31.2 33.8 66.1 69.8 63.0 57.7 61.7 62.5 61.5 64.4 59.5 59.4 59.3 59.8 57.9
scLSTM 37.5 43.4 67.7 69.8 64.2 55.8 61.9 61.8 51.8 59.3 61.3 60.2 59.2 59.1 58.4
DialogueRNN 33.5 35.4 69.0 68.7 54.1 54.7 67.1 61.1 55.9 60.4 62.9 60.3 58.3 58.1 56.7
UniF-AGRU 42.7 51.1 63.4 68.0 61.3 57.4 61.9 61.8 67.5 70.5 64.1 60.5 61.9 61.8 61.5
UniF-BiAGRU 49.7 50.6 64.7 69.9 60.3 59.0 55.1 60.5 67.4 69.6 68.6 62.1 62.8 62.7 61.9
BiF-AGRU 48.3 52.1 68.3 73.3 61.6 58.4 57.5 61.9 68.1 69.7 67.1 62.3 63.5 63.5 63.0
BiF-BiAGRU 62.1 54.5 66.6 72.7 63.9 59.4 58.4 61.0 58.5 66.6 64.8 61.6 62.8 63.0 62.6

Table 2: Performance of AGHMN models on IEMOCAP.

Model
MELD: Emotion Classes

neutral surprise fear sadness joy disgust anger Avg.
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 mF1

CNN† - 74.9 - 45.5 - 3.7 - 21.1 - 49.4 - 8.2 - 34.5 - 55.0 33.9
scLSTM 78.4 73.8 46.8 47.7 3.8 5.4 22.4 25.1 51.6 51.3 4.3 5.2 36.7 38.4 57.5 55.9 35.3
DialogueRNN 72.1 73.5 54.4 49.4 1.6 1.2 23.9 23.8 52.0 50.7 1.5 1.7 41.9 41.5 56.1 55.9 34.5
UniF-AGRU 80.3 75.1 53.7 49.1 9.8 10.6 19.7 25.5 50.5 51.1 14.0 16.4 33.9 38.2 58.8 57.0 38.0
UniF-BiAGRU 83.4 76.4 49.1 49.7 9.2 11.5 21.6 27.0 52.4 52.4 12.2 14.0 34.9 39.4 60.3 58.1 38.6
BiF-AGRU 81.6 75.5 50.5 49.0 8.0 10.4 22.3 26.9 51.7 51.7 13.7 17.2 34.5 38.6 59.5 57.5 38.5
BiF-BiAGRU 80.7 75.4 50.7 47.9 7.2 10.0 20.9 26.3 53.9 52.1 10.4 12.8 33.9 38.1 59.2 57.1 37.5

Table 3: Performance of AGHMN models on MELD.

• scLSTM (Poria et al. 2017) is the unidirectional variant
that classifies utterances using historical utterance as context
realized by a LSTM.
• CMN (Hazarika et al. 2018b) models separate contexts

for both speaker and listener to an utterance. These contexts
are stored as memories to aid the prediction of an incoming
utterance.
• DialogueRNN (Majumder et al. 2019) is the unidirec-

tional variant with an attention layer that keeps track of the
individual party states throughout the conversation and uses
this information for emotion classification.
• ICON (Hazarika et al. 2018a) incorporates the self- and

inter-speaker emotional influences into global memories to
help predict the emotional orientation of utterances. It is a
unidirectional model with only historical context.

For IEMOCAP, we refer to the results of mem-
net (Sukhbaatar et al. 2015), CMN, DialogueRNN from
� (Majumder et al. 2019), and that of ICON from ♦ (Haz-
arika et al. 2018a). For MELD, we refer to the results of
CNN from † (Poria et al. 2019b). We re-run scLSTM and
DialogueRNN for both datasets. CMN and ICON cannot be
adapted for MELD because they are customized for dyadic
conversations and may encounter scalability issue for multi-
party conversation datasets (Poria et al. 2019b).

Implementation. We implement scLSTM and our proposed
AGHMN models from scratch on the Pytorch5 framework.
For the extraction of textual feature, we follow (Hazarika et
al. 2018a) to adopt a 1-D CNN with filters of 3, 4, and 5 each

5https://pytorch.org/

with 64 feature maps. The convolution result of each filter is
fed to a max-over-time pooling layer. The pooling results are
concatenated and transformed to the utterance embeddings
via a relu layer. The hidden size of the LSTM is 100. As for
our AGHMN models, the hidden sizes of GRUs and AGRUs
are also 100. By default, the context-window size K for the
memory bank is 40 for IEMOCAP and 10 for MELD, which
are around the average conversation lengths of each dataset,
respectively. Besides, the implementation of DialogueRNN
comes from the open-source codes6 provided by the authors
of DialogueRNN.

Training. We choose Adam (Kingma and Ba 2015) opti-
mizer with an initial learning rate lr = 5 × 10−4. To regu-
late the models, we clip the gradients of model parameters
with a max norm of 5 and apply dropout with a drop rate of
0.3. We monitor the macro-averaged F1-score (mF1) of the
validation sets during training and decay the learning rate by
0.95 once the mF1 stops increasing. The training process is
terminated by early stopping with a patience of 10.

Results

Table 2 and Table 3 present the results on IEMOCAP and
MELD testing sets, respectively. For both datasets, we re-
port the accuracy and F1-score (Tong et al. 2017) for each
emotion class and evaluate the overall classification perfor-
mance using their weighted averages of all emotion classes.
We also report the macro-average of F1-score (mF1) to re-

6https://github.com/SenticNet/conv-emotion/tree/master/
DialogueRNN
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Reader UniF-BiAGRU BiF-AGRU
Acc F1 mF1 Acc F1 mF1

CNN 59.8 59.9 59.4 60.2 60.2 59.9
CNNsoft 58.8 58.7 58.1 59.4 59.3 58.8
BiLSTM 62.0 62.0 61.2 62.8 62.7 61.9
BiGRU 62.8 62.7 61.9 63.5 63.5 63.0

Table 4: Testing results on IEMOCAP, with CNN, BiLSTM,
and BiGRU as the utterance reader, respectively.

flect the model performance on minority emotion classes,
since the weighted-average is compromised by the majority
classes. Each result provided by us in the tables is the aver-
age value of 10 times repeated experiments.

In Table 2, all of our AGHMN models perform
better than the compared models. BiF-AGRU attains
the best overall performance with significant improve-
ment over the strongest baseline DialogueRNN� (+4.2%
Acc, +3.7% F1, +5.1% mF1). For each emotion, our
ADHMN models achieve at least competitive performance
as DialogueRNN�. In particular, our models attain very
large improvement on happy (at least +11.5% Acc, +17.3%
F1), which is the emotion with the least utterances. This
demonstrates the capability of our models in recognizing mi-
nority emotion classes.

In Table 3, all the AGHMN models also outperform
the compared methods significantly. But this time, UniF-
BiAGRU becomes the best one (+2.8% Acc, +2.2% F1,
+3.3% mF1). Our models perform the best on most emotion
classes, especially the two minority classes fear and disgust,
though this is accompanied by the performance degradation
on anger. But referring to the mF1 value, it is safe to say that
our models produce much more balanced results.

Baseline Methods. The bcLSTM model implemented by
us is very strong, performing better than all the other base-
lines on both datasets except DialogueRNN� on IEMOCAP.
However, the results of DialogueRNN run by us are slightly
worse than DialogueRNN�. This may be because we follow
the default settings of the provided codes, which are cus-
tomized for BiDialogueRNN. No matter what, our AGHMN
models outperform them on the two datasets, suggesting the
efficacy of our context-modeling scheme.

AGHMN variants. UniF-AGRU performs the worst among
all the four variants on both datasets. Consistently, UniF-
BiAGRU and BiF-AGRU outperform UniF-AGRU, which
demonstrates the superiority of BiAGRU over AGRU and
BiF over UniF, respectively. However, BiF-BiAGRU does
not attain the best performance, which we speculate that
the model becomes too deep to learn from the two datasets.
In fact, the performance difference between the variants on
MELD is limited. This is mainly because the conversations
in MELD contain much fewer turns than that in IEMOCAP,
making it less sensitive to different modules.

Model Analysis

Utterance Readers. We argue that the BiGRU is a better
reader for utterances. Here, we test UniF-BiAGRU and BiF-

Mem-Attn IEMOCAP MELD
Acc F1 mF1 Acc F1 mF1

UniF-Soft 60.7 60.5 59.5 58.0 56.5 37.7
BiF-Soft 62.3 62.2 61.8 58.6 56.9 37.5
UniF-AGRU 61.9 61.8 61.5 58.8 57.0 38.0
UniF-BiAGRU 62.8 62.7 61.9 60.3 58.1 38.6

Table 5: Testing results on IEMOCAP and MELD, with dif-
ferent choices of attention and memory bank.
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Figure 3: Trends in the performance of UniF-BiAGRU and
BiF-AGRU with varying context-window size K.

AGRU on IEMOCAP with the utterance reader replaced by
a 1-D CNN and a bidirectional LSTM (BiLSTM), respec-
tively. The results are reported in Table 4, where we can eas-
ily conclude that the RNN variants (BiLSTM, and BiGRU)
surpass 1-D CNN with significant margins. For BiLSTM
and BiGRU, the latter one performs better because GRUs
are usually more powerful than LSTMs on small datasets.
These results indicate that RNNs are more compatible in this
Hierarchical Memory Network. Moreover, as BiGRU, BiL-
STM attains better performance in BiF-AGRU than in UniF-
BiAGRU, suggesting the advantage of BiF. In addition, we
also conduct experiments for the CNN reader with Soft At-
tention, named as CNNsoft, which encounters the degrada-
tion of performance. It demonstrates that the improvement
of our models is not achieved by only the BiGRU reader.

Attention Choices & Memory Banks. We investigate the
advantage of AGRU over Soft Attention here. As presented
in Table 5, with the UniF memory bank, AGRU attains bet-
ter results than Soft Attention on both datasets. The bidirec-
tional variant of AGRU extends the advantage even further.
It is noteworthy that we also include the results of Soft At-
tention with the BiF memory, which are considerably better
than that with UniF. This further verifies that BiF can pro-
duce better memory representation.

Context-Window Size. We plot the performance trend of
UniF-BiAGRU and BiF-AGRU on both datasets when vary-
ing the context-window size K for building the memory
bank. On both datasets, the two models follow similar trends
such that the performance increases at first and falls then
with the increase of K. On IEMOCAP, the best results are
obtained at K = 40 for BiF-AGRU and K = 50 for UniF-
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Figure 4: Evolution of memory selection as a conversation develops. The attention weights come from BiF-AGRU for both
IEMOCAP and MELD. Each utterance is tagged with two labels, the first is ground truth and the second is the prediction by
BiF-AGRU. IEMOCAP: M: Male, F: Female; MELD: J: Joey, M: Monica, C: Chandler.
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Figure 5: Comparison of memory selection between UniF-
Soft and UniF-AGRU, UniF-BiAGRU, and BiF-AGRU.

BiAGRU, which align with the average length of conversa-
tions in the dataset (see Table 1). On MELD, the best values
of K are 5 and 10, respectively, which are much lower than
that on IEMOCAP. We speculate that it is because the data of
MELD comes from the Friends TV sitcom with more rapid
emotion fluctuation. Therefore, a longer context may result
in model confusion. In contrast, the emotion state in IEMO-
CAP evolves much more gently.

Case Study

Attention Evolution. We find that the selection of memory
differs between speakers as a conversation develops, though
we do not distinguish the speakers explicitly in our model.
In Fig 4, we visualize the attention weights of BiF-AGRU
tested on a conversation fragment of IEMOCAP and MELD,
respectively. For IEMOCAP, the Male is excited from the
beginning so that the four utterances presented here pay the
most attention to the first utterance of the conversation. In
contrast, the attention of the Female is distributed over sev-
eral historical utterances, including the first one and some

intermediate ones (see Fig 5) that make her frustrated. As for
MELD, Joey is joyful all the time and his attention is paid to
his last joyful utterance. Monica pays her most attention to
the conversation between her and Joey, providing clues for
Chandler. Chandler focuses on Joey and where Joey is.

Attention Comparison. The selection of memory also
varies between different attention mechanisms. In Fig 5,
given a query utterance expressed by the Female with frus-
trated emotion, Soft Attention focuses on the utterance that
also expresses frustrated. AGRU pays most attention to one
utterance that could be the reason for the Female’s frustrated
emotion, but it classifies the query emotion as angry in this
example. BiAGRU can sense both kinds of clues, provid-
ing more comprehensive memory. BiF improves the mem-
ory representation and helps AGRU to extract the memory
as comprehensively as UniF-BiAGRU.

Error Analysis. In Fig 4, the 33rd utterance of IEMOCAP is
recognized as frustrated not neutral. We argue that the orig-
inal annotation might not be accurate. Given several turns of
frustrated and the latest response (34th) from the Male, the
Female could express frustrated again. Still, we cannot deal
with minority classes very well on MELD, such as disgust.
With more data or multimodal features to disambiguate with
other emotions, this issue might be better resolved.

Conclusions

We propose an Attention Gated Hierarchical Memory
Network (AGHMN) for Real-Time Emotion Recognition.
Firstly, the proposed Hierarchical Memory Network im-
proves the quality of utterance features and memories. Then,
the proposed Attention GRU summarizes better contextual
information than the commonly used Soft Attention. We
conduct extensive experiments on two emotion conversation
datasets, and our models outperform the state-of-the-art ap-
proaches with significant margins. Lastly, ablation studies
and attention visualization demonstrate the efficacy of each
component of our AGHMN models.
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