Tunneling Across Firewalls by Using XML and Serviet:
An Experiment on CORBA

Wing Hang Cheung, Michael R. Lyu, Kam Wing Ng
Department of Computer Science and Engineering
The Chinese University of Hong Kong
Shatin, N.T., Hong Kong SAR, PRC
{ whcheung | Iyu | kwng } @cse.cuhk.edu.hk

ABSTRACT

In this paper, we describe how we use XML and
Servlet to tackle some communication problems with
firewalls. Common firewalls block many different
communication protocols;, CORBA IIOP is one good
example. We introduce our mechanism by using XML
and Servlet to support CORBA general calls
tunneling through firewalls with HTTP. We further
extend our mechanism to support CORBA callbacks.
Then, we give an example of using the proposed
tunneling method to implement a scalable mediator-
based query system, and perform an evaluation on
our method. Qur approach is generic, and can be
applied to other communication protocols as well.

Keywords
Firewall Tunneling, Firewalls, XML, Java Servlet,
CORBA, IIOP, CORBA callbacks

1. INTRODUCTION

With the rapid expansion of the Internet, the use
of firewalls is also becoming more and more common
nowadays. Firewalls are used in the gateways
between the local networks and the public Internet, in
order to protect the computers in the internal
networks by enforcing some security policies. Their
role is to control external access to internal
information and services. Using packet filtering by a
router in the network layer to enforce certain rules is
one of the most common mechanism used by the
firewalls. But firewall systems can include elements
that operate at layers above the network layer in the
application level. Application level gateways for
Telnet, File Transfer Protocol (FTP), and Hypertext
Transfer Protocol (HTTP) are in common use.

Common firewalls block many less common
applications, such as the communication protocols for
agents, and also the Internet InterORB Protocol
(IIOP) used in Common Object Request Broker
Architecture (CORBA) [1]. This is because those
common firewalls may not be able to decode the
message bodies of those protocols. Using CORBA
IIOP as an example: IIOP is the Object Management
Group (OMG) specified network protocol for
communication between object request brokers,
which employs TCP/IP and can be handled by
common firewalls at network and transport level with
packet filters. But at the application level, the
message body of IIOP is encoded in Common Data
Representation (CDR) and firewalls are unable to
decode it. Therefore, firewalls cannot base filtering
decisions on IIOP messages.

With the blockings of some protocols by
firewalls, the scalability of system development and
system integration would be limited. There exist
specific firewalls with certain some protocols, but
they are usually not generic and may have some
limitations. Take CORBA IIOP as an example again:
There are a number of firewalls for CORBA IIOP,
such as IONA Orbix Wonderwall [2] and Visibroker
Gatekeeper [3], but they cannot solve all firewall
problems. First, they are not commonly used.
Secondly, they may be vendor-dependent and
proprietary. Also, some CORBA features, such as
callbacks, may not be handled.

Elenko and Reinertsen [4] have suggested a
communication perspective of the cooperation
between XML and CORBA by employing XML,
Servlet and HTTP calls to substitute for CORBA
IIOP communications. Applying HTTP calls to
transport XML parameter contents can eliminate the

complicated firewall issue of IIOP, as application
level gateways for HTTP are in common use.

Consequently, we took CORBA IIOP as our
target and developed a simple solution by using
HTTP, XML and Java Servlet for tunneling through
the firewalls for the support the CORBA IIOP calls in
a generic way. In the next section, we present how
we use XML and Servlet to support CORBA IIOP
calls and tackle the firewall problem. In Section 3,
we address how we further enhance our mechanism to
allow CORBA callbacks which are not feasible
behind many CORBA firewalls. In Section 4, we
briefly describe how we can automatically generate
the necessary components to support our mechanism,
by referring to the design of IDL (Interface Definition
Language) for a CORBA system. In Section 5, we
provide an example of using our approach to
implement a scalable query system. We address the
evaluation of our approach in Section 6 and conclude
our work in the last section. In general, our approach
can be applied to other communication protocols as
well.

Client Side CORBA
Enclave

FIREWALL Server Side CORBA

Enclave

Client HTTP messages with Servlet Server
Object | data in XML format

Component / Object

Fig 1. Our mechanism to support general
CORBA IIOP across the firewalls

2. SUPPORTING GENERAL CORBA CALL

In order to support IIOP calls between two
CORBA enclaves that are separated by firewalls, the
main approach we use is to convert the contents of
IIOP calls into HTTP calls, as HTTP calls can go
through the firewall blockings. Figure 1 shows the
mechanism of our tunneling solution. In this case, we
need two components to do the conversions
automatically: one is at the client side to convert
request messages from IIOP messages to HTTP
messages (i.e., the one named as Shadow Server in
Figure 1), while another one is at the server side to

convert the HTTP request messages back to normal
IIOP messages (i.e., the one named as Serviet
Component in Figure 1). Their duties will be inter-
changed when the server returns the computation
results back to the client side. We explain now the
details of these two components.

2.1 At Client Side

We call the client-side conversion component as
Shadow Server, as in the client objects’ viewpoint,
this conversion component will allow client objects to
make requests. Then this component will return the
results to the clients, so client objects can just regard
it as a proxy server object. That is why we call it as
Shadow Server.

The Shadow Server object must be very similar to
the real target server object in terms of their interface.
They must share the same interface such that the
client objects will not notice the differences between
them when making requests. Other than the common
interface, all the internal implementation of the
methods would be different. The Shadow Server will
not do any real computation or manipulation to the
data passed by the clients, but it will convert the
parameters and other related information to HTTP
messages and send them to the real server object. It
also converts all received resulting HTTP messages to
ordinary IIOP messages and returns them to the client
objects.

2.2 At Server Side

We use Java Servlet [5] component in the server
side to communicate with the Shadow Server in the
client side. Java Servlet is a web component,
managed by a container, that generates dynamic
content. Servlets interact with web clients via a
request-response paradigm implemented by the
Servlet container. This request-response model is
based on the behavior of HTTP.

In the server side, the server objects will combine
with a Servlet component when they are to be called
by some client objects outside their CORBA enclave.
When the Servlet component receives a request from
the client side, it will read and extract the parameters
and the related information of HTTP message, and
then invoke the related server object. The Servlet

component will also convert the returned data into an
HTTP message and send them back to the client.

2.3 Data in Transmission

Extensible Markup Language (XML) [6] plays a
very important role in the transmission of HTTP
messages. XML has the flexibility defining new tags
on top of its semi-structure feature, so that it can well
represent most of the complicated data structures [7].
Even in the case of unlimited-multilevel recursive
data structures, such as tree structures, XML can still
handle them nicely. Figure 2 shows a tree structure
and its corresponding XML representation. We can
see that the XML data can represent data with great
flexibility. Hence, we use HTTP to send stream of
XML data between the client and server sides. By
using the Data Type Definition (DTD) of XML data,
we can provide a grammar for the XML data
transmission format. Hence we can make a

compromise on the interpretation data transmission
formats for both sides.

<node> 1
<node> 2
<node> 4 </node>
<node> 5
<node> 8 </node>
<node> 9 </node>
</node>
</node>
<node> 3
<node> 6 </node>
<node> 7 </node>
</node>
</node>

Fig 2. A tree structure and its corresponding
XML data describing its structure

Besides the flexibility of data representation, the
readability and the ease of manipulation of XML
information also provide great flexibility of server as
well as client implementation. As long as we follow
the DTD of the data transmission format, it is not
limited for the client side or the server side to be
implemented by CORBA objects. Hence,
programmers can have great freedom to choose
different implementation methods.

3. SUPPORTING CORBA CALLBACK

The mechanism introduced in Section 2 can only
be used in general CORBA calls. CORBA provides
an interesting callback feature, which cannot be
handled by this mechanism. When client programs
need to react to changes or updates that occur in the
server side, it would be inefficient for the client
programs to check the server periodically. Instead, it
would be more efficient if the server can notify the
clients whenever there is an update in the server side,
hence the client programs can react to changes with a
faster response. This approach is the callback feature.
As the callback feature requires both sides to be
capable of starting a communication, we require both
sides to have the shadow objects and Servlet
components.

We describe our system design for callbacks in
Figure 3. The client object should be combined with
a Servlet component when it is expected to have
callbacks at the very beginning, which can be known
from the system IDL (Interface Design Language)
design. The client will first get a reference to the
shadow server in the client-sidle CORBA enclave.
The shadow server sends information, such as IP
address, port number and call method of the client
object and its Servlet component to the server side.

Client Enclave Server Enclave

FIREWALL—" ‘
Shadow
WOP_ | Server HTTP & XML Servlet

create Server

Object
HTTP & XML Shadow | {&°
Servlet ! Client

Fig 3. Diagram showing the mechanism that
supports CORBA callbacks

Client
Object

At the server enclave, if the server object’s
Servlet component does not have the record of the
client object, it will automatically create a new
Shadow Client object. That Shadow Client object
will be initialized by the information of the real client

and its Servlet component, so that it will know how to
set up the connection with the real client later.

The real server object then gets the reference of
the Shadow Clients (the newly created ones in the
server side) that require callbacks. Whenever the
server is updated, it can call the Shadow Clients to
invoke and notify the client object. During the data
transmission, we still employ similar XML data
format as described in the previous section. By this
mechanism, we can support IIOP calls for CORBA
callbacks by integrating XML, Servlet and HTTP
calls.

4. AUTOMACTIC CODE GENERATION

When building a CORBA system, it is a must to
have an IDL file to generate necessary source codes
for server skeletons, client stubs and other system
architectures. The IDL design of a CORBA system
provides the interface definitions of all the objects in
the system. As the add-on Servlet components and
the shadow objects concern only the interfaces of the
server and client objects, we can use the IDL files to
generate these add-on components automatically.
The IDL files can provide the following interface
information:

¢ Interface names;
* Method names provided by each interface;
* The return type of each method;

e All parameters types and their orders in
prototypes of each method;

* All exceptions in each method; and

e The possibility of having callbacks features
(i.e., when there is a CORBA object interface
which has another CORBA object interface as
one of its parameters).

We have written a compiler for IDL files which
will analyze the interface design and generate the
following artifacts:

* Source code for shadow server/client objects;
* Source code for Servlet components; and
e DTD of the transmitted messages.

The generation of these source codes reduces the
extra programming work for those add-on
components as they usually contain many similarities,

especially in the part of converting the internal data
structures to XML formats. The generation of DTD
files, on the other hand, provides a standard for
information exchange in XML formats, such that
based on the DTD, system developers can have
implementations other than using CORBA for their
client or server components.

5. EXPERIMENT ON A QUERY SYSTEM

In order to provide a clearer picture of our
approach, we demonstrate an example of an Internet
application using our tunneling method. We have
implemented a mediator-based query system [8] to
illustrate the steps we introduced.

1st Tier 2nd Tier 3rd Tier
Database Queries ana
Results
n-th Tier

Database

Mediator

Mediator

More
* Mediators
Layers of \| or Digital
queries Libraries
Web-based U’ .

Fig 4. Diagram showing the architeéture of our
query system example CORBA

Mediators are the middleware between the client
objects and the database objects, where clients can be
end users or another mediator objects. Mediators
forward the client queries to the appropriate database
objects, and then integrate the returned answers and
forward them back to the clients, forming an n-tier
distributed system. Figure 4 shows the architecture of
our system, which consists of Mediator objects,
Database objects and user interfaces. The system
provides a good method for system integration, as it
can abstract multiple databases into a single
conceptual interface to the users.

Now, suppose we want to make a query from a
mediator object in the client CORBA enclave, to
another mediator object in the server CORBA
enclave, in which they are separated by firewalls. In
this query system, we have implemented a Shadow
Server object, named MediatorGateway to serve the

purpose of connecting to another mediator object in a
server enclave behind a firewall. From the viewpoint
of the objects in the client enclave, the
MediatorGateway object, which is also inside the
same client enclave, is the same as the target
Mediator object in the server enclave, as both of them
implement the same interface. The objects in the
client enclave can call MediatorGateway the same
way as they call Mediator objects. This provides
transparency to other CORBA objects.

The MediatorGateway object converts all the
necessary parameters into an XML message, and then
send it to the target mediator by HTTP calls. Figure 5
shows the mechanism of such calling. In Figure 5,
Mediator M wants to call another Mediator SM,
which is integrated with Servlet. Mediator M would
call the MediatorGateway shadow object G, and G
converts the queries and parameters into an XML
message and sends it to SM by HTTP calls going
through the firewall. SM further makes queries to
other databases in the server enclave and returns the
answers, which are also converted in XML format
and sent to G by HTTP calls. G would return the
answers to Mediator M using ordinary IIOP calls. In
this case, mediator M just performs a normal call and
the external object reference is transparent to M.

Client Enclave Server Enclave

FIREW;I D

Web-based Ul

HTTP & XML SM

//O/a

Databases

@E[@ @Ej

. MediatorGateway Servlet
D Mediator O Object E Mediator @ Database

Fig 5. Diagram showing the mechanism that
supports general CORBA calls in our
sample system

To better help the users in obtaining the
information they need, one important feature of
modern information system is allowing users to
specify some topics of information they want to
subscribe. Whenever there is an update of the
specified information, the database objects can

inform the subscribed users immediately. This
feature requires callbacks.

We introduce a new object, agent object, which
asks for subscribed information. It will register the
subscribed topic on the Mediator object, and then
wait for the Mediator object to callback. You may
refer to Figure 6 for the callback mechanism. Agent
object, SA4, which has also associated with it a Servlet
component for later callbacks, sends a message to
MediatorGateway, MG, for registering the
subscription to the mediator. The message, in XML
format and sent by HTTP call, will carry information
about the IP address, port number and other relative
information of the Servlet Agent object.

Client Enclave Server Enclave

FIREWALL| @
L]

Databases

HTTP & XML SM /@/@

[+
Q|Create

HTTP & XML ° @
Agent I {| Mediator

with Sg:.:z‘:’ with Database
Servlet) Servlet

Fig 6. Diagram showing the mechanism that
supports CORBA callbacks in our
sample system

110P

In the server side, when the Servlet component of
the mediator notices that there is a need to callback,
but it does not have to make a record of that client
object, it will create an AgentGateway object, AG, the
Shadow Client, for the mediator to callback later.
Whenever the mediator notices that there is an update
in the databases, it will immediately give a callback to
the AgentGateway object. The AgentGateway object
will invoke the corresponding Agent object via HTTP
calls and this will return the result back to the real
Agent object in the client side. That is how we
implement the callback feature of CORBA with our
mechanism.

6. EVALUATION

6.1 Performance Statistics

We have evaluated the performance of the
CORBA-based query system described in Section 5 in
order to find out the overhead of our approach. The
query system was installed in a number of personal
computers with Pentium III 500MHz CPU and
10Mbps network connection. We tested our system
in a low workload environment such that it will not be
influenced by other factors. The system is Java-
implemented and the queries in our system would
return a few hundred bytes of information. We kept
track of the time each process used and the results
were shown in Table 1.

Table 1. Performance Statistics of the Query
System Described in Section 5.

Processes Milliseconds

1. Mediator objects 20 - 80

2. Databases 180 - 800

3. lIOP communications within the 10-100
same CORBA enclave (Local
Area Network)

4. Shadow Client or Server 20 -100
objects

5. Servlet Components with 120 - 250
Tomcat Servlet Engine [9]

6. HTTP communications in the 240 - 2200
Internet

From Table 1, we can find out that when
comparing to other objects in the system, the Servlet
components and the shadow objects carry similar
time to process. And the most time-consuming part
of the whole process is the Internet connection, which
is unavoidable in the communications in the world-
wide area. When comparing to the communications
in the Internet, the time spent in those add-on
components are not significant.

6.2 Pros and Cons of Our Approach

Our implementation of using XML, Servlet and
HTTP calls to substitute IIOP connections enjoys the
following advantages:

O It can solve the incompatible IIOP firewall
problems and provide vendor-independence and
callbacks support. Common normal firewalls
cannot block the communication between CORBA
objects and hence the scalability of system design
and construction can be greatly increased.

O The newly-added components to the system are
transparent to the original objects. Internal
CORBA objects would not notice the difference
between the real target object and the shadow
object, thus no special modification or
implementation is needed for ordinary internal
objects, which increases the system transparency
properly.

O Systems can maintain good security, as external
CORBA objects outside the enclave can only call
the objects integrated with the Servlet
components, and we can protect other internal
CORBA objects from being called externally.
Moreover, we are exploiting some very common
products like Java Servlet or HTTP calls, whose
security properties are well developed.

O No information loss or distortion, as using XML
can represent the information in the transmitted
messages well, even when the parameter structures
of the invoking calls are complicated. This
properly enhances the system interoperability.

O Our mechanism can also be used as a gateway to
inter-cooperate with other non-CORBA modules.
As long as the DTD of transmitted messages is
defined and agreed between both clients and
servers, we include any kind of implementation in
the server and the client sides.

Our design has some drawbacks, however. First,
using HTTP calls is slower than using the IIOP
communication. Moreover, we have one more
Servlet layer in the implementation and thus the
system requires extra workload to initialize and
engage the Servlet components. Nevertheless, the
time for this overhead is negligible when comparing
with the average Internet access delay.

7. CONCLUSION

In this paper, we have addressed the problem of
the common use of firewalls in the Internet, which
can block many communication protocols and affect
the scalability of system development and system

integration. We have proposed a mechanism to tackle
this Internet communication problem with CORBA
IHOP as an example. As CORBA IIOP
communications may be blocked by common
firewalls, the method we have proposed integrates
XML, Servlet, and HTTP calls to perform tunneling
and for the IIOP connections. We have further
addressed how we could enhance our design to
support the CORBA callback feature, which may not
be supported by other CORBA firewall gateways.

Then we have briefly addressed how we can
generate the related source code and components
automatically and in a generic way by engaging the
interface design (IDL) of a system. We have also
presented a real example by applying this mechanism
to implement a scalable mediator-based query system
across firewalls. The advantages and disadvantages
of our system have been evaluated and presented.

8. REFERENCES
[1] Object Management Group, Inc. The Common

Object Request Broker: Architecture and
Specification. Revision: CORBA 2.4.1,
November 2000.

[2] IONA Technologies. Orbix Wonderwall

Administrator’s Guide, June 1999.

[3] Visigenic Software, Inc. Visigenic Gatekeeper
Guide, version 3.2 edition, February 1998.

[4] Mark Elenko and Mike Reinertsen. XML &
CORBA. Application development trends,
September 1999.

[5] Sun Microsystems, Java Serviet Specification
Version 2.3, October 2000.

[6] World Wide Web Consortium,
http://www.w3.org/TR/2000/REC-xml-20001006.
Extensible Markup Language (XML) 1.0 (2nd
Ed), 2000

[71 S. Abiteboul, P. Buneman, and D. Suciu. Data
on the Web: from relations to semistructured data
and XML. Morgan Kaufmann Publishers, San
Franciso, USA, 1999.

[8] G. Wiederhold. Mediators in the architecture of
future information systems. [EEE Computer
Volume 25 Number 3, March 1992.

[9] Apache Software Foundation. Jakarta Project
Subprojects:Tomcat.
http://jakarta.apache.org/tomcat

	INTRODUCTION
	SUPPORTING GENERAL CORBA CALL
	At Client Side
	At Server Side
	Data in Transmission

	SUPPORTING CORBA CALLBACK
	AUTOMACTIC CODE GENERATION
	EXPERIMENT ON A QUERY SYSTEM
	EVALUATION
	Performance Statistics
	Pros and Cons of Our Approach

	CONCLUSION
	REFERENCES

