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Abstract—Due to the exponential growth of information on the
Web, Recommender Systems have been developed to generate
suggestions to help users overcome information overload and
sift through huge amounts of information efficiently. Many
existing approaches to recommender systems can neither handle
very large datasets nor easily deal with users who have made
very few ratings. Moreover, traditional recommender systems
consider only the rating information, resulting in the loss of
flexibility. Tagging has recently emerged as a popular way for
users to annotate, organize and share resources on the Web.
Several research tasks have shown that tags can represent users’
judgments about Web contents quite accurately. In the light
of the facts that both the rating activity and tagging activity
can reflect users’ opinions, this paper proposes a factor analysis
approach called TagRec based on a unified probabilistic matrix
factorization by utilizing both users’ tagging information and
rating information. The complexity analysis indicates that our
approach can be applied to very large datasets. Furthermore,
experimental results on MovieLens data set show that our method
performs better than the state-of-the-art approaches.

I. INTRODUCTION

Because of the exponential growth of information on the

Web, users are in great need of effective recommendations

in order to efficiently navigate through vast collections of

items. Recommender Systems have been developed to suggest

items that may interest users. Typically, recommender systems

are based on Collaborative Filtering, which has been widely

employed, such as in Amazon1, MovieLens2 and etc. Re-

cently, [1] has shown that collaborative filtering outperformed

humans on the average through comprehensive experiments.

Two trends have rised in recommendation algorithm: one is

memory-based algorithms [2], [3], [4], and the other is model-

based algorithms [5]. However, both types of algorithms suffer

two weaknesses: (1) The recommendation performances dete-

riorate when the available ratings are very sparse. As claimed

in [6], data sparsity is a common phenomenon in recommender

systems, and the density of available ratings in commercial

recommender systems is often less than 1%. (2) Almost all the

traditional recommendation algorithms only employ the user-

item rating matrix information, but ignore other user behaviors,

leading to the loss of flexibility.

Social tagging systems have recently emerged as a popular

way for users to annotate, organize and share resources on

1http://www.amazon.com
2http://movielens.umn.edu

the Web, such as del.icio.us3, Flickr4 and MovieLens. As a

type of social media sites [7], [8], [9], social tagging systems

transform the Web into a participatory medium where users

are actively creating, evaluating and distributing information.

Previously, [10], [11], [12] have shown that tags can represent

users’ judgments about Web contents quite accurately, which

are also good candidates to describe the resources.

In order to overcome the data sparsity problem and non-

flexibility problem confronted by traditional recommendation

algorithms mentioned above, this paper proposes a factor anal-

ysis approach by utilizing both users’ rating information and

tagging information based on probabilistic matrix factoriza-

tion, and we refer to this method as TagRec. The experimental

results on MovieLens 10M/100K data set5 show that our

method performs better than the state-of-the-art approaches;

in the meanwhile, our complexity analysis also implies that

our approach can be scaled to very large data sets.

The rest of the paper is organized as follows. In Section

II, we introduce related work. Our TagRec framework is

presented in Section III. Section IV shows the experimental

results. Finally, we draw conclusions and discuss future work

in Section V.

II. RELATED WORK

In recommendation algorithms, the most studied memory-

based approaches include user-based approaches [2], [13] and

item-based approaches [6]. User-based methods look for some

similar users who have similar rating styles with the active user

and then employ the ratings from those similar users to predict

the ratings for the active user. Item-based methods share

similar idea with user-based methods except for finding similar

items for each item. PCC [14] and VSS [2] are often applied

in memory-based algorithms. The problems with memory-

based recommendation algorithms is that the recommendation

performances deteriorate when the rating data are very sparse.

Model-based approaches include [15], [16]. Recently, the ma-

trix factorization method which focuses on modeling the user-

item rating matrix using low-rank approximations has been

proposed for collaborative filtering [5], [17], [18]. However,

almost all the approaches only engage the user-item rating

matrix, and ignore other user behaviors. They also suffer the

3http://delicious.com
4http://flickr.com
5http://grouplens.org/node/73
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problem of data sparsity. Our method, on the other hand,

shows three key differences: (1) Our method can deal with

the missing value problem and performs better when the data

are sparse. (2) The proposed framework incorporates tagging

information with the user-item rating information, resulting

in more flexibility, and includes the idea of multiple-source

learning, such as in [19]. (3) Complexity analysis indicates

that our method is scalable to very large data sets.

Recently, there are plenty of research efforts on social

tagging systems. Several papers studied the utility value of

tags, and found that tags were good at representing users’

opinions about Web contents, including [10], [11], [12]. How-

ever, little is known about whether we can utilize tagging

information to help improve recommendation quality. Our

method differs from above work because we leverage tagging

information to improve recommendation quality. The most

recent work in [20] proposed an algorithm that predicts users’

preferences for items based on their inferred preferences for

tags. Our method differs from this work in two aspects: (1)
Our method is interpreted using a probabilistic factor analysis

model by utilizing rating information and tagging information

together, thus can combine the best elements of both types of

information. (2) Our model is a unified model instead of a

two-step model in [20], thus is more systematic and general.

III. TAGREC FRAMEWORK

A. Preliminaries

To facilitate our discussions, Table I defines basic terms and

notations used throughout this paper.

B. User-Item Rating Matrix Factorization

As shown in Table I, we have m users and n items. The

user-item rating matrix is denoted as R, and the element rij

in R means the rating to item ij given by user ui, where

values of rij are within the range [0, 1]. In recommender

systems, ratings reflect users’ judgments about the items,

and most recommender systems use discrete rating values.

Suppose the original rating values range from rmin to rmax,

we use the function f(x) = (x − rmin)/(rmax − rmin) as

the mapping function to map the original rating values to

values in the interval [0, 1]. As listed in Table I, U denotes

the user latent feature matrix, and V denotes the item latent

feature matrix, with column vectors Ui and Vj denoting the

l-dimensional user-specific and item-specific latent feature

vectors respectively. We define the conditional distributions

over the observed ratings in Eq. (1):

p(R|U, V, σ2
R) =

m∏
i=1

n∏
j=1

[N (rij |g(UT
i Vj), σ2

R)]I
R
ij , (1)

where IR
ij is an indicator variable with the value of 1 if user

ui rated item ij , and 0 otherwise. The meaning of UT
i Vj is

the rating user ui gave to item ij predicted by the model,

and this is the typical matrix factorization approach. g(x) =
1/1 + e−x is the logistic function to map the value of UT

i Vj

within the range of [0, 1]. Similar to [5], zero-mean spherical

Gaussian priors are placed on the user and the item latent

feature matrices, which are defined in Eq. (2):

p(U |σ2
U ) =

m∏
i=1

N (Ui|0, σ2
UI),

p(V |σ2
V ) =

n∏
j=1

N (Vj |0, σ2
V I). (2)

Through a Bayesian inference, the posterior distributions of

U and V based only on the observed ratings are derived in

Eq. (3):

p(U, V |R, σ2
V , σ2

U , σ2
R)

∝ p(R|U, V, σ2
R)p(U |σ2

U )p(V |σ2
V )

=
m∏

i=1

n∏
j=1

[N (rij |g(UT
i Vj), σ2

R)]I
R
ij

×
m∏

i=1

N (Ui|0, σ2
UI) ×

n∏
j=1

N (Vj |0, σ2
V I). (3)

C. User-Tag Tagging Matrix Factorization

As listed in Table I, we have m users and o tags. The user-

tag tagging matrix is denoted as C, where the element cik in C
represents the extent of user ui’s preference for tag tk. Users’

tagging activities indicate users’ preference for tags, so the

meaning of cik can be interpreted as whether the user ui has

used the tag tk (a binary representation), or how strong the user

ui’s preference is for the tag tk (a real value representation).

We represent cik in Eq. (4):

cik = g(f(ui, tk)), (4)

where g(·) is the logistic function, and f(ui, tk) represents the

number of times user ui uses tag tk.

The idea of user-tag tagging matrix factorization is to derive

two low-rank l-dimensional matrices U and T , representing

the user latent feature matrix and the tag latent feature matrix

respectively, based on the observed user-tag tagging matrix

C. Denoting column vectors Ui and Tk as user-specific and

tag-specific latent feature vectors respectively, we can define

the conditional distributions over the observed user-tag tagging

matrix in Eq. (5):

p(C|U, T, σ2
C) =

m∏
i=1

o∏
k=1

[N (cik|g(UT
i Tk), σ2

C)]I
C
ik , (5)

where IC
ik is an indicator variable with the value of 1 if user

ui has at least used tag tk once, and 0 otherwise.

We also place the zero-mean spherical Gaussian priors, and

through a Bayesian inference, we can derive the posterior

195195195195195195195195
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TABLE I
BASIC NOTATIONS THROUGHOUT THIS PAPER

Notation Description
US = {ui}m

i=1 US is the set of users, ui is the i-th user, m is the total number of users
IS = {ij}n

j=1 IS is the set of items, ij is the j-th item, n is the total number of items
TS = {tk}o

k=1 TS is the set of tags, tk is the k-th tag, o is the total number of tags
l ∈ R l is number of dimensions of latent feature space

U ∈ R
l×m U is the user latent feature matrix

V ∈ R
l×n V is the item latent feature matrix

T ∈ R
l×o T is the tag latent feature matrix

R = {rij}, R ∈ R
m×n R is the user-item rating matrix, rij is rating that user ui gave to item ij

C = {cij}, C ∈ R
m×o C is the user-tag tagging matrix, cik is extent of user ui’s preference for tag tk

D = {djk}, D ∈ R
n×o D is the item-tag tagging matrix, djk is extent of how much tag tk can represent the concept of item ij

N (x|μ, σ2) Probability density function of the Gaussian distribution with mean μ and variance σ2

distributions of U and T in Eq. (6):

p(U, T |C, σ2
U , σ2

T , σ2
C)

∝ p(C|U, T, σ2
C)p(U |σ2

U )p(T |σ2
T )

=
m∏

i=1

o∏
k=1

[N (cik|g(UT
i Tk), σ2

C)]I
C
ik

×
m∏

i=1

N (Ui|0, σ2
UI) ×

o∏
k=1

N (Tk|0, σ2
T I). (6)

D. Item-Tag Tagging Matrix Factorization

As denoted in Table I, we have n items and o tags. The item-

tag tagging matrix is denoted as D, and the element djk in D
shows the extent of how much tag tk can represent the concept

of item ij . Users annotate items with tags to express their

judgments about items and distinguish one item from another.

The meaning of djk can be interpreted as whether item ij has

been annotated with the tag tk (a binary representation), or

how strong tag tk’s representing ability is for item ij (a real

value representation). We represent djk in Eq. (7):

djk = g(h(ij , tk)), (7)

where g(·) is the logistic function, and h(ij , tk) is the number

of times item ij is annotated with tag tk.

The idea of item-tag tagging matrix is to derive two

low-rank l-dimensional matrices V and T , representing the

item latent feature matrix and the tag latent feature matrix

respectively, based on the observed item-tag tagging matrix D.

Denoting column vectors Vj and Tk as item-specific and tag-

specific latent feature vectors respectively, we can define the

conditional distributions over the observed item-tag tagging

matrix in Eq. (8):

p(D|V, T, σ2
D) =

n∏
j=1

o∏
k=1

[N (djk|g(V T
j Tk), σ2

D)]I
D
jk , (8)

where ID
jk is an indicator variable with the value of 1 if item

ij is annotated with tag tk, and 0 otherwise.

Through a Bayesian inference, we can derive the posterior

Fig. 1. Graphical Model for TagRec

distributions of V and T in Eq. (9):

p(V, T |D, σ2
D, σ2

T , σ2
V )

∝ p(D|V, T, σ2
D)p(V |σ2

V )p(T |σ2
T )

=
n∏

j=1

o∏
k=1

[N (djk|g(V T
j Tk), σ2

D)]I
D
kj

×
n∏

j=1

N (Vj |0, σ2
V I) ×

o∏
k=1

N (Tk|0, σ2
T I). (9)

E. A Unified Matrix Factorization for TagRec

As discussed in Section I, since both users’ rating in-

formation and users’ tagging information can reflect users’

judgments about Web contents, we propose a factor analy-

sis approach by utilizing both users’ rating information and

tagging information based on a unified probabilistic matrix

factorization. Specifically, on the one hand, we connect users’

rating information with users’ tagging information through

the shared user latent feature space, and on the other hand,

we connect items’ received rating information with items’

received tagging information through the shared item latent

feature space. The shared tag latent feature space is used

to represent user-tag tagging information and item-tag tag-

ging information. The graphical model describing the TagRec

framework is represented in Fig. 1.

196196196196196196196196
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According to the graphical model described in Fig. 1, we

derive the log function of the posterior distributions of TagRec

in Eq. (10):

ln p(U, V, T |R, C, D, σ2
T , σ2

V , σ2
U , σ2

T , σ2
D, σ2

R, σ2
C) =

− 1
2σ2

R

m∑
i=1

n∑
j=1

IR
ij (rij − g(UT

i Vj))2

− 1
2σ2

C

m∑
i=1

o∑
k=1

IC
ik(cik − g(UT

i Tk))2

− 1
2σ2

D

n∑
j=1

o∑
k=1

ID
jk(djk − g(V T

j Tk))2

− 1
2σ2

U

m∑
i=1

UT
i Ui − 1

2σ2
V

n∑
j=1

V T
j Vj − 1

2σ2
T

o∑
k=1

TT
k Tk

−
m∑

i=1

n∑
j=1

IR
ij lnσR −

m∑
i=1

o∑
k=1

IC
ik lnσC −

n∑
j=1

o∑
k=1

ID
jk lnσD

−l
m∑

i=1

lnσU − l
n∑

j=1

lnσV − l
o∑

k=1

lnσT + C, (10)

where C is a constant independent of the parameters. We can

see the Eq. (10) is an unconstrained optimization problem, and

maximizing the log-posterior distributions with fixed hyperpa-

rameters is equivalent to minimizing the sum-of-squared-errors

objective function with quadratic regularized terms in Eq. (11):

E(U, V, T,R, C,D)

=
1
2

m∑
i=1

n∑
j=1

IR
ij (rij − g(UT

i Vj))2

+
θC

2

m∑
i=1

o∑
k=1

IC
ik(cik − g(UT

i Tk))2

+
θD

2

n∑
j=1

o∑
k=1

ID
jk(djk − g(V T

j Tk))2

+
θU

2

m∑
i=1

UT
i Ui +

θV

2

n∑
j=1

V T
j Vj +

θT

2

o∑
k=1

TT
k Tk, (11)

where θC = σ2
R/σ2

C , θD = σ2
R/σ2

D, θU = σ2
R/σ2

U , θV =
σ2

R/σ2
V , and θT = σ2

R/σ2
T . The local minimum can be found

by performing the gradient descent on Ui, Vj and Tk, and the

derived gradient descent equations are described in Eq. (12),

Eq. (13) and Eq. (14) respectively:

∂E

∂Ui
=

n∑
j=1

IR
ij (g(UT

i Vj) − rij)g′(UT
i Vj)Vj + θUUi

+ θC

o∑
k=1

IC
ik(g(UT

i Tk) − cik)g′(UT
i Tk)Tk, (12)

∂E

∂Vj
=

m∑
i=1

IR
ij (g(UT

i Vj) − rij)g′(UT
i Vj)Ui + θV Vj

+ θD

o∑
k=1

ID
jk(g(V T

j Tk) − djk)g′(V T
j Tk)Tk, (13)

∂E

∂Tk
= θC

m∑
i=1

IC
ik(g(UT

i Tk) − cik)g′(UT
i Tk)Ui + θT Tk

+ θD

n∑
j=1

ID
jk(g(V T

j Tk) − djk)g′(V T
j Tk)Vj , (14)

where g′(·) is the first-order derivative of the logistic function.

We set θU = θV = θT in our experiments in order to reduce

the model complexity.

F. Complexity Analysis

The major computation cost of the gradient descent methods

are evaluating objective function E and corresponding gradi-

ents on variables. Due to the sparsity of matrices R, C, and D,

the complexity of evaluating the objective function in Eq. (11)

is O(nRl+nC l+nDl), where nR, nC and nD are the number

of non-zero entries in matrices R, C and D respectively, and l
is the number of dimensions of latent feature space as shown in

Table I. Similarly we can derive the complexities of Eq. (12),

Eq. (13) and Eq. (14). Hence, the total complexity for one

iteration is O(nRl + nC l + nDl), which means it is linear

with respect to the number of observations in the three sparse

matrices. As claimed in [6] the density of available ratings

in commercial recommender systems is often less than 1%;

therefore, TagRec is efficient and is scalable to large data sets.

IV. EXPERIMENTAL ANALYSIS

We first ask several research questions intended to give an

idea of the highlights of our experimental analysis.

RQ1 How is our approach compared with the baseline

methods and the existing state-of-the-art approaches?

RQ2 How do the model parameters θC and θD affect the

prediction accuracies of our approach?

A. Description of MovieLens Data Set and Metrics

We use MovieLens 10M/100K data set in our experiments.

This data set contains 10000054 ratings and 95580 tags

added to 10681 movies by 71567 users of the online movie

recommender service MovieLens. In order to compare the

prediction quality of our method with other methods, we use

the Mean Absolute Error (MAE) and the Root Mean Squared

Error (RMSE) as the comparison metrics. MAE is defined in

Eq. (15), and RMSE is defined in Eq. (16):

MAE =

∑
i,j |ri,j − r̂i,j |

N
, (15)

RMSE =

√∑
i,j(ri,j − r̂i,j)2

N
. (16)

where ri,j denotes the rating user i gave to item j, r̂i,j denotes

the predicted rating, and N is the total number of tested

ratings.

197197197197197197197197
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B. Comparison

In order to show the prediction performance improvements

of TagRec, we compare TagRec with two baseline methods

user mean (UMEAN) and item mean (IMEAN). UMEAN is

defined in Eq. (17) and IMEAN is defined in Eq. (18):

r̂i,j =
∑

n ri,n

N
, (17)

where ri,n is the observed ratings of user i in the training data

and N is the number of observed ratings of user i.

r̂i,j =
∑

m rm,j

M
, (18)

where rm,j is the observed ratings of item j in the training

data and M is the number of observed ratings of item j.

In addition, we ultimately compare our TagRec approach

with top-performing recommendation algorithms, including

Probabilistic Matrix Factorization (PMF) [5] and Singular

Value Decomposition (SVD) [21].

In the comparison, we employ different amount of training

data, including 80%, 50%, 30%, 20% and 10%. 80% training

data means we randomly select 80% of ratings from the

MovieLens 10M/100K data set as training data, and leave

the remaining 20% as prediction performance testing. The

procedure is carried out 5 times independently, and we report

the average values in this paper. In the comparison, we set

θU = θV = θT = 0.004, set θC = 0.4 and set θD = 10. The

MAE results and RMSE results are reported in Table II and

Table III respectively. From the results, we can see that our

TagRec approach consistently outperforms existing algorithms,

especially when there is a small amount of training data,

which indicates our method performs better under sparse data

settings. In addition, it is necessary to notice that in MovieLens

10M/100K data set, all the selected users have rated at least

20 movies, but in reality, according to the famous power law

distribution phenomenon, in almost all kinds of Web activities

most users have rated very few items. Thus, we can see the

improvement of TagRec is significant, and this shows the

promising future of our TagRec approach.

C. Impact of Parameters θC and θD

TagRec utilizes both users’ rating information and tagging

information at the same time to perform the prediction. Specif-

ically, we incorporate user-item rating matrix, user-tag tagging

matrix, and item-tag tagging matrix together based on a unified

probabilistic matrix factorization. The parameter θC controls

the impact of the user-tag tagging matrix, and the parameter

θD controls the impact of the item-tag tagging matrix. If we set

both θC and θD as 0, it means we only consider users’ rating

information; if we set both θC and θD to + inf , it means we

only utilize users’ tagging information.

We test the impact of these two parameters independently.

When we test the impact of parameter θC , we set θU =
θV = θT = 0.004, θD = 10, and Fig. 2(a) and Fig. 2(b)

show the results. When we test the impact of parameter θD,

we set θU = θV = θT = 0.004, θC = 0.4, and Fig. 2(c)

and Fig. 2(d) present the results. We report results when

dimensionality = 20 in Fig. 2, and the results are similar

when dimensionality = 10. From the results presented in

Fig. 2, we can see that both the values of θC and θD impact the

prediction accuracies significantly, and this indicates that uti-

lizing both users’ rating information and users’ tagging infor-

mation simultaneously can improve the prediction quality. We

further observe that as the value of θC or θD increases, both

the MAE and RMSE first decrease (performances increase);

but after θC or θD is greater than some threshold value,

both MAE and RMSE start to increase again (performances

decrease). This observation meets our expectation, because

only utilizing users’ rating information or only utilizing users’

tagging information cannot perform better than utilizing rating

information and tagging information together. Our approach

performs best when θC ∈ [0.1, 1] and θD ∈ [5, 10], and the

relatively wide range of choosing optimal parameter indicates

that the model is easy to train.

V. CONCLUSIONS AND FUTURE WORK

Based on the intuition that both users’ rating information

and users’ tagging information can reflect users’ judgments

about Web contents, and that tags added to items can repre-

sent concepts of items, we propose the TagRec framework,

which employs users’ rating information and tagging with

a unified probabilistic matrix factorization. The experimental

results show that the innovative TagRec approach outperforms

existing approaches. The proposed approach uses the explicit

relations directly, such as users’ rating information and tagging

information; the approach also considers each user and each

item equally, ignoring the fact that there may be some hidden

structures among all the users and all the items. In the future,

we will investigate whether it is possible to first mine these

explicit relations to infer some implicit relations, and then use

the inferred implicit relations and the original explicit relations

together to improve the recommendation quality.
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