Abstract—Due to the exponential growth of information on the Web, Recommender Systems have been developed to generate suggestions to help users overcome information overload and sift through huge amounts of information efficiently. Many existing approaches to recommender systems can neither handle very large datasets nor easily deal with users who have made very few ratings. Moreover, traditional recommender systems consider only the rating information, resulting in the loss of flexibility. Tagging has recently emerged as a popular way for users to annotate, organize and share resources on the Web. Several research tasks have shown that tags can represent users’ judgments about Web contents quite accurately. In the light of the facts that both the rating activity and tagging activity can reflect users’ opinions, this paper proposes a factor analysis approach called TagRec based on a unified probabilistic matrix factorization by utilizing both users’ tagging information and rating information. The complexity analysis indicates that our approach can be applied to very large datasets. Furthermore, experimental results on MovieLens data set show that our method performs better than the state-of-the-art approaches.

I. INTRODUCTION

Because of the exponential growth of information on the Web, users are in great need of effective recommendations in order to efficiently navigate through vast collections of items. Recommender Systems have been developed to suggest items that may interest users. Typically, recommender systems are based on Collaborative Filtering, which has been widely employed, such as in Amazon\(^1\), MovieLens\(^2\) and etc. Recently, \cite{1} has shown that collaborative filtering outperformed humans on the average through comprehensive experiments. Two trends have rised in recommendation algorithm: one is memory-based algorithms \cite{2}, \cite{3}, \cite{4}, and the other is model-based algorithms \cite{5}. However, both types of algorithms suffer two weaknesses: (1) The recommendation performances deteriorate when the available ratings are very sparse. As claimed in \cite{6}, data sparsity is a common phenomenon in recommender systems, and the density of available ratings in commercial recommender systems is often less than 1\%. (2) Almost all the traditional recommendation algorithms only employ the user-item rating matrix information, but ignore other user behaviors, leading to the loss of flexibility.

Social tagging systems have recently emerged as a popular way for users to annotate, organize and share resources on the Web, such as del.icio.us\(^3\), Flickr\(^4\) and MovieLens. As a type of social media sites \cite{7}, \cite{8}, \cite{9}, social tagging systems transform the Web into a participatory medium where users are actively creating, evaluating and distributing information. Previously, \cite{10}, \cite{11}, \cite{12} have shown that tags can represent users’ judgments about Web contents quite accurately, which are also good candidates to describe the resources.

In order to overcome the data sparsity problem and non-flexibility problem confronted by traditional recommendation algorithms mentioned above, this paper proposes a factor analysis approach by utilizing both users’ rating information and tagging information based on probabilistic matrix factorization, and we refer to this method as TagRec. The experimental results on MovieLens 10M/100K data set\(^5\) show that our method performs better than the state-of-the-art approaches; in the meanwhile, our complexity analysis also implies that our approach can be scaled to very large data sets.

The rest of the paper is organized as follows. In Section II, we introduce related work. Our TagRec framework is presented in Section III. Section IV shows the experimental results. Finally, we draw conclusions and discuss future work in Section V.

II. RELATED WORK

In recommendation algorithms, the most studied memory-based approaches include user-based approaches \cite{2}, \cite{13} and item-based approaches \cite{6}. User-based methods look for some similar users who have similar rating styles with the active user and then employ the ratings from those similar users to predict the ratings for the active user. Item-based methods share similar idea with user-based methods except for finding similar items for each item. PCC \cite{14} and VSS \cite{2} are often applied in memory-based algorithms. The problems with memory-based recommendation algorithms is that the recommendation performances deteriorate when the rating data are very sparse. Model-based approaches include \cite{15}, \cite{16}. Recently, the matrix factorization method which focuses on modeling the user-item rating matrix using low-rank approximations has been proposed for collaborative filtering \cite{5}, \cite{17}, \cite{18}. However, almost all the approaches only engage the user-item rating matrix, and ignore other user behaviors. They also suffer the

\(^1\)http://www.amazon.com
\(^2\)http://movielens.umn.edu
\(^3\)http://delicious.com
\(^4\)http://flickr.com
\(^5\)http://grouplens.org/node/73
problem of data sparsity. Our method, on the other hand, shows three key differences: (1) Our method can deal with the missing value problem and performs better when the data are sparse. (2) The proposed framework incorporates tagging information with the user-item rating information, resulting in more flexibility, and includes the idea of multiple-source learning, such as in [19]. (3) Complexity analysis indicates that our method is scalable to very large data sets.

Recently, there are plenty of research efforts on social tagging systems. Several papers studied the utility value of tags, and found that tags were good at representing users’ opinions about Web contents, including [10], [11], [12]. However, little is known about whether we can utilize tagging information to help improve recommendation quality. Our method differs from above work because we leverage tagging information to help improve recommendation quality. The most recent work in [20] proposed an algorithm that predicts users’ preferences for items based on their inferred preferences for tags. Our method differs from this work in two aspects: (1) Our method is interpreted using a probabilistic factor analysis model by utilizing rating information and tagging information together, thus can combine the best elements of both types of information. (2) Our model is a unified model instead of a two-step model in [20], thus is more systematic and general.

III. TAGREC FRAMEWORK

A. Preliminaries

To facilitate our discussions, Table I defines basic terms and notations used throughout this paper.

B. User-Item Rating Matrix Factorization

As shown in Table I, we have m users and n items. The user-item rating matrix is denoted as R, and the element r_{ij} in R means the rating to item i_j given by user u_i, where values of r_{ij} are within the range $[0, 1]$. In recommender systems, ratings reflect users’ judgments about the items, and most recommender systems use discrete rating values. systems, ratings reflect users’ judgments about the items, and most recommender systems use discrete rating values.

Suppose the original rating values range from r_{min} to r_{max}, we use the function $f(x) = (x - r_{min})/(r_{max} - r_{min})$ as the mapping function to map the original rating values to values in the interval $[0, 1]$. As listed in Table I, U denotes the user latent feature matrix, and V denotes the item latent feature matrix, with column vectors U_i and V_j denoting the l-dimensional user-specific and item-specific latent feature vectors respectively. We define the conditional distributions over the observed ratings in Eq. (1):

$$p(R|U, V, \sigma^2_R) = \prod_{i=1}^{m} \prod_{j=1}^{n} \mathcal{N}(r_{ij}|g(U^T_i V_j), \sigma^2_R)I^R_{ij},$$

where I^R_{ij} is an indicator variable with the value of 1 if user u_i rated item i_j, and 0 otherwise. The meaning of $U^T_i V_j$ is the rating user u_i gave to item i_j predicted by the model, and this is the typical matrix factorization approach. $g(x) = 1/1 + e^{-x}$ is the logistic function to map the value of $U^T_i V_j$ within the range of $[0, 1]$. Similar to [5], zero-mean spherical Gaussian priors are placed on the user and the item latent feature matrices, which are defined in Eq. (2):

$$p(U|\sigma^2_U) = \prod_{i=1}^{m} \mathcal{N}(U_i|0, \sigma^2_U I),$$

$$p(V|\sigma^2_V) = \prod_{j=1}^{n} \mathcal{N}(V_j|0, \sigma^2_V I).$$

Through a Bayesian inference, the posterior distributions of U and V based only on the observed ratings are derived in Eq. (3):

$$p(U, V|R, \sigma^2_R, \sigma^2_U, \sigma^2_V) \propto p(R|U, V, \sigma^2_R)p(U|\sigma^2_U)p(V|\sigma^2_V)$$

$$= \prod_{i=1}^{m} \prod_{j=1}^{n} \mathcal{N}(r_{ij}|g(U^T_i V_j), \sigma^2_R)I^R_{ij}$$

$$\times \prod_{i=1}^{m} \mathcal{N}(U_i|0, \sigma^2_U I) \times \prod_{j=1}^{n} \mathcal{N}(V_j|0, \sigma^2_V I).$$

C. User-Tag Tagging Matrix Factorization

As listed in Table I, we have m users and o tags. The user-tag tagging matrix is denoted as C, where the element c_{ik} in C represents the extent of user u_i’s preference for tag t_k. Users’ tagging activities indicate users’ preference for tags, so the meaning of c_{ik} can be interpreted as whether the user u_i has used the tag t_k (a binary representation), or how strong the user u_i’s preference is for the tag t_k (a real value representation).

We represent c_{ik} in Eq. (4):

$$c_{ik} = g(f(u_i, t_k)),$$

where $g(\cdot)$ is the logistic function, and $f(u_i, t_k)$ represents the number of times user u_i uses tag t_k.

The idea of user-tag tagging matrix factorization is to derive two low-rank d-dimensional matrices U and T, representing the user latent feature matrix and the tag latent feature matrix respectively, based on the observed user-tag tagging matrix C. Denoting column vectors U_i and T_k as user-specific and tag-specific latent feature vectors respectively, we can define the conditional distributions over the observed user-tag tagging matrix in Eq. (5):

$$p(C|U, T, \sigma^2_C) = \prod_{i=1}^{m} \prod_{k=1}^{o} \mathcal{N}(c_{ik}|g(U^T_i T_k), \sigma^2_C)I^C_{ik},$$

where I^C_{ik} is an indicator variable with the value of 1 if user u_i has at least used tag t_k once, and 0 otherwise. We also place the zero-mean spherical Gaussian priors, and through a Bayesian inference, we can derive the posterior
distributions of U and T in Eq. (6):

$$p(U, T|C, \sigma_U^2, \sigma_T^2, \sigma_C^2) \propto p(C|U, \sigma_C^2)p(U|\sigma_U^2)p(T|\sigma_T^2)$$

$$= \prod_{i=1}^{m} \prod_{k=1}^{o} \left[N(c_{ik}|(U^T T_k), \sigma_C^2)\right]^{I_{jk}}$$

$$\times \prod_{i=1}^{m} N(U_i|0, \sigma_U^2 I) \times \prod_{k=1}^{o} N(T_k|0, \sigma_T^2 I). \quad (6)$$

D. Item-Tag Tagging Matrix Factorization

As denoted in Table I, we have m items and o tags. The item-tag tagging matrix is denoted as D, and the element d_{jk} in D shows the extent of how much tag t_k can represent the concept of item i_j. Users annotate items with tags to express their judgments about items and distinguish one item from another. The meaning of d_{jk} can be interpreted as whether item i_j has been annotated with the tag t_k (a binary representation), or how strong tag t_k's representing ability is for item i_j (a real value representation). We represent d_{jk} in Eq. (7):

$$d_{jk} = g(h(i_j, t_k)),$$

where $g(\cdot)$ is the logistic function, and $h(i_j, t_k)$ is the number of times item i_j is annotated with tag t_k.

The idea of item-tag tagging matrix is to derive two low-rank l-dimensional matrices V and T, representing the item latent feature matrix and the tag latent feature matrix respectively, based on the observed item-tag tagging matrix D. Denoting column vectors V_j and T_k as item-specific and tag-specific latent feature vectors respectively, we can define the conditional distributions over the observed item-tag tagging matrix in Eq. (8):

$$p(D|V, T, \sigma_D^2) = \prod_{j=1}^{m} \prod_{k=1}^{o} \left[N(d_{jk}|g(V_j^T T_k), \sigma_D^2)\right]^{I_{jk}}, \quad (8)$$

where I_{jk}^{D} is an indicator variable with the value of 1 if item i_j is annotated with tag t_k, and 0 otherwise.

Through a Bayesian inference, we can derive the posterior distributions of V and T in Eq. (9):

$$p(V, T|D, \sigma_D^2, \sigma_T^2, \sigma_V^2) \propto p(D|V, T, \sigma_D^2)p(V|\sigma_V^2)p(T|\sigma_T^2)$$

$$= \prod_{j=1}^{m} \prod_{k=1}^{o} \left[N(d_{jk}|g(V_j^T T_k), \sigma_D^2)\right]^{I_{jk}}$$

$$\times \prod_{j=1}^{m} N(V_j|0, \sigma_V^2 I) \times \prod_{k=1}^{o} N(T_k|0, \sigma_T^2 I). \quad (9)$$

E. A Unified Matrix Factorization for TagRec

As discussed in Section I, since both users’ rating information and users’ tagging information can reflect users’ judgments about Web contents, we propose a factor analysis approach by utilizing both users’ rating information and tagging information based on a unified probabilistic matrix factorization. Specifically, on the one hand, we connect users’ rating information with users’ tagging information through the shared user latent feature space, and on the other hand, we connect items’ received rating information with items’ received tagging information through the shared item latent feature space. The shared tag latent feature space is used to represent user-tagging information and item-tagging information. The graphical model describing the TagRec framework is represented in Fig. 1.
According to the graphical model described in Fig. 1, we derive the log function of the posterior distributions of TagRec in Eq. (10):

\[
\ln p(U, V, T|R, C, D, \sigma_R^2, \sigma_C^2, \sigma_D^2, \sigma_T^2, \sigma_C^2_R, \sigma_C^2_D, \sigma_T^2) =
\]

\[= -\frac{1}{2\sigma_R^2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_R^R(r_{ij} - g(U_i^T V_j))^2
\]

\[-\frac{1}{2\sigma_C^2} \sum_{i=1}^{m} \sum_{k=1}^{o} I_C^C(c_{ik} - g(U_i^T T_k))^2
\]

\[-\frac{1}{2\sigma_D^2} \sum_{j=1}^{n} \sum_{k=1}^{o} I_D^D(d_{jk} - g(V_j^T T_k))^2
\]

\[-\frac{1}{2\sigma_T^2} \sum_{k=1}^{n} T_k^T T_k - \frac{1}{2\sigma_C^2} \sum_{i=1}^{m} \sum_{k=1}^{o} I_C^C \ln \sigma_C - \frac{1}{2\sigma_D^2} \sum_{j=1}^{n} \sum_{k=1}^{o} I_D^D \ln \sigma_D
\]

\[-\sum_{i=1}^{m} \ln \sigma_U - \sum_{j=1}^{n} \ln \sigma_V - \sum_{k=1}^{o} \ln \sigma_T + C,
\]

(10)

where \(C\) is a constant independent of the parameters. We can see the Eq. (10) is an unconstrained optimization problem, and maximizing the log-posterior distributions with fixed hyperparameters is equivalent to minimizing the sum-of-squared-errors objective function with quadratic regularized terms in Eq. (11):

\[
E(U, V, T, R, C, D)
\]

\[= \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_R^R(r_{ij} - g(U_i^T V_j))^2
\]

\[+ \theta_C \sum_{i=1}^{m} \sum_{k=1}^{o} I_C^C(c_{ik} - g(U_i^T T_k))^2
\]

\[+ \theta_D \sum_{j=1}^{n} \sum_{k=1}^{o} I_D^D(d_{jk} - g(V_j^T T_k))^2
\]

\[+ \theta_U \sum_{i=1}^{m} U_i^T U_i + \theta_V \sum_{j=1}^{n} V_j^T V_j + \theta_T \sum_{k=1}^{o} T_k^T T_k,
\]

(11)

where \(\theta_C = \sigma_C^2 / \sigma_R^2\), \(\theta_D = \sigma_D^2 / \sigma_C^2\), \(\theta_U = \sigma_U^2 / \sigma_R^2\), \(\theta_V = \sigma_V^2 / \sigma_C^2\), and \(\theta_T = \sigma_T^2 / \sigma_D^2\). The local minimum can be found by performing the gradient descent on \(U_i, V_j\) and \(T_k\), and the derived gradient descent equations are described in Eq. (12), Eq. (13) and Eq. (14) respectively:

\[
\frac{\partial E}{\partial U_i} = \sum_{j=1}^{n} I_R^R(g(U_i^T V_j) - r_{ij})g'(U_i^T V_j)V_j + \theta_U U_i
\]

\[+ \theta_C \sum_{k=1}^{o} I_C^C(g(U_i^T T_k) - c_{ik})g'(U_i^T T_k)T_k,
\]

(12)

\[
\frac{\partial E}{\partial V_j} = \sum_{i=1}^{m} I_R^R(g(U_i^T V_j) - r_{ij})g'(U_i^T V_j)U_i + \theta_V V_j
\]

\[+ \theta_D \sum_{k=1}^{o} I_D^D(g(V_j^T T_k) - d_{jk})g'(V_j^T T_k)T_k,
\]

(13)

\[
\frac{\partial E}{\partial T_k} = \theta_C \sum_{i=1}^{m} I_C^C(g(U_i^T T_k) - c_{ik})g'(U_i^T T_k)U_i + \theta_T T_k
\]

\[+ \theta_D \sum_{j=1}^{n} I_D^D(g(V_j^T T_k) - d_{jk})g'(V_j^T T_k)V_j,
\]

(14)

where \(g'(\cdot)\) is the first-order derivative of the logistic function. We set \(\theta_U = \theta_V = \theta_T\) in our experiments in order to reduce the model complexity.

F. Complexity Analysis

The major computation cost of the gradient descent methods is evaluating objective function \(E\) and corresponding gradients on variables. Due to the sparsity of matrices \(R, C\), and \(D\), the complexity of evaluating the objective function in Eq. (11) is \(O(n_{R}l + n_{C}l + n_{D}l)\), where \(n_{R}, n_{C}\) and \(n_{D}\) are the number of non-zero entries in matrices \(R, C\) and \(D\) respectively, and \(l\) is the number of dimensions of latent feature space as shown in Table I. Similarly, we can derive the complexities of Eq. (12), Eq. (13) and Eq. (14). Hence, the total complexity for one iteration is \(O(n_{R}l + n_{C}l + n_{D}l)\), which means it is linear with respect to the number of observations in the three sparse matrices. As claimed in [6] the density of available ratings in commercial recommender systems is often less than 1%; therefore, TagRec is efficient and is scalable to large data sets.

IV. EXPERIMENTAL ANALYSIS

We first ask several research questions intended to give an idea of the highlights of our experimental analysis.

RQ1 How is our approach compared with the baseline methods and the existing state-of-the-art approaches?

RQ2 How do the model parameters \(\theta_C\) and \(\theta_D\) affect the prediction accuracies of our approach?

A. Description of MovieLens Data Set and Metrics

We use MovieLens 10M/100K data set in our experiments. This data set contains 10000054 ratings and 95580 tags added to 10681 movies by 71567 users of the online movie recommender service MovieLens. In order to compare the prediction quality of our method with other methods, we use the Mean Absolute Error (MAE) and the Root Mean Squared Error (RMSE) as the comparison metrics. MAE is defined in Eq. (15), and RMSE is defined in Eq. (16):

\[
MAE = \frac{\sum_{i,j} |\hat{r}_{ij} - \hat{r}_{ij}|}{N},
\]

(15)

\[
RMSE = \sqrt{\frac{\sum_{i,j} (r_{ij} - \hat{r}_{ij})^2}{N}}.
\]

(16)

where \(r_{ij}\) denotes the rating user \(i\) gave to item \(j\), \(\hat{r}_{ij}\) denotes the predicted rating, and \(N\) is the total number of tested ratings.
where $r_{i,n}$ is the observed ratings of user i in the training data and N is the number of observed ratings of user i:

$$\hat{r}_{i,j} = \frac{\sum_n r_{i,n}}{N},$$ \hspace{1cm} (17)

where $r_{m,j}$ is the observed ratings of item j in the training data and M is the number of observed ratings of item j:

$$\hat{r}_{i,j} = \frac{\sum_m r_{m,j}}{M},$$ \hspace{1cm} (18)

B. Comparison

In order to show the prediction performance improvements of TagRec, we compare TagRec with two baseline methods: user mean (UMEAN) and item mean (IMEAN). UMEAN is defined in Eq. (17) and IMEAN is defined in Eq. (18):

When we test the impact of parameter θ_C and θ_D, we set $\theta_U = \theta_V = \theta_T = 0.004$, $\theta_D = 10$, and Fig. 2(a) and Fig. 2(b) show the results. When we test the impact of parameter θ_D, we set $\theta_U = \theta_V = \theta_T = 0.004$, $\theta_C = 0.4$, and Fig. 2(c) and Fig. 2(d) present the results. We report results when $\text{dimensionality} = 20$ in Fig. 2, and the results are similar when $\text{dimensionality} = 10$. From the results presented in Fig. 2, we can see that both the values of θ_C and θ_D impact the prediction accuracies significantly, and this indicates that utilizing both users’ rating information and users’ tagging information simultaneously can improve the prediction quality. We further observe that as the value of θ_C or θ_D increases, both the MAE and RMSE first decrease (performances increase); but after θ_C or θ_D is greater than some threshold value, both MAE and RMSE start to increase again (performances decrease). This observation meets our expectation, because only utilizing users’ rating information or only utilizing users’ tagging information cannot perform better than utilizing rating information and tagging information together. Our approach performs best when $\theta_C \in [0.1, 1]$ and $\theta_D \in [5, 10]$, and the relatively wide range of choosing optimal parameter indicates that the model is easy to train.

V. CONCLUSIONS AND FUTURE WORK

Based on the intuition that both users’ rating information and users’ tagging information can reflect users’ judgments about Web contents, and that tags added to items can represent concepts of items, we propose the TagRec framework, which employs users’ rating information and tagging with a unified probabilistic matrix factorization. The experimental results show that the innovative TagRec approach outperforms existing approaches. The proposed approach uses the explicit relations directly, such as users’ rating information and tagging information; the approach also considers each user and each item equally, ignoring the fact that there may be some hidden structures among all the users and all the items. In the future, we will investigate whether it is possible to first mine these explicit relations to infer some implicit relations, and then use the inferred implicit relations and the original explicit relations together to improve the recommendation quality.

ACKNOWLEDGMENT

We thank GroupLens Research6 for providing the MovieLens data sets. The work described in this paper is supported by grants from the Research Grant Council of the Hong Kong Special Administrative Region, China (Project No.: CUHK 4128/08E and CUHK 4158/08E) and Microsoft (Project No.: 6902498). This work is also affiliated with the Microsoft-CUHK Joint Laboratory for Human-centric Computing and Interface Technologies.

REFERENCES

6http://www.grouplens.org/
Baseline Methods

1.0008 0.6528 0.7264 0.6167 0.8025 0.9569 0.8857
5 50 0.9440 0.6617 0.6156 0.7089
Dimensionality = 20
0.9703 0.8087 0.6354 0.6162 0.6650 0.9638
100
0.9038
TagRec
SVD
PMF
0.8587 0.8824 0.8234 0.9183
TagRec
SVD
PMF
0.8450
0.01
0.6811
Dimensionality = 20
0.8492 0.9869 0.7399 0.7484
0.7742
TagRec
0.8289 0.8330
Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 30,2020 at 06:19:00 UTC from IEEE Xplore. Restrictions apply.