
Characterizing and Mitigating Anti-patterns of
Alerts in Industrial Cloud Systems

Tianyi Yang∗, Jiacheng Shen∗, Yuxin Su†, Xiaoxue Ren∗, Yongqiang Yang‡, and Michael R. Lyu∗
∗Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China.

Email: {tyyang, jcshen, lyu}@cse.cuhk.edu.hk; xiaoxueren@cuhk.edu.hk
†School of Software Engineering, Sun Yat-Sen Univeristy, Zhuhai, China. Email: suyx35@mail.sysu.edu.cn

‡Computing and Networking Innovation Lab, Cloud BU, Huawei, Shenzhen, China. Email: yangyongqiang@huawei.com

Abstract—Alerts are crucial for requesting prompt human
intervention upon cloud anomalies. The quality of alerts sig-
nificantly affects the cloud reliability and the cloud provider’s
business revenue. In practice, we observe on-call engineers being
hindered from quickly locating and fixing faulty cloud services
because of the vast existence of misleading, non-informative,
non-actionable alerts. We call the ineffectiveness of alerts “anti-
patterns of alerts”. To better understand the anti-patterns of
alerts and provide actionable measures to mitigate anti-patterns,
in this paper, we conduct the first empirical study on the practices
of mitigating anti-patterns of alerts in an industrial cloud system.
We study the alert strategies and the alert processing procedure
at Huawei Cloud, a leading cloud provider. Our study combines
the quantitative analysis of millions of alerts in two years and
a survey with eighteen experienced engineers. As a result, we
summarized four individual anti-patterns and two collective anti-
patterns of alerts. We also summarize four current reactions to
mitigate the anti-patterns of alerts, and the general preventative
guidelines for the configuration of alert strategy. Lastly, we
propose to explore the automatic evaluation of the Quality
of Alerts (QoA), including the indicativeness, precision, and
handleability of alerts, as a future research direction that assists
in the automatic detection of alerts’ anti-patterns. The findings of
our study are valuable for optimizing cloud monitoring systems
and improving the reliability of cloud services.

Index Terms—alert antipatterns, alert strategy, alert gover-
nance, cloud reliability, software maintenance

I. INTRODUCTION

The boost of cloud adoption puts forward higher require-

ments on the reliability and availability of cloud services.

Typically, cloud services are organized and managed as

microservices that interact with each other and serve user

requests as a whole. In a large-scale cloud microservice

system, unplanned microservice anomalies happen from time

to time. Some anomalies are transient, while others persist

and require human intervention. If anomalies are not detected

and mitigated timely, they may cause severe cloud failures

and incidents, affect the availability of cloud services, and

deteriorate user satisfaction [1]. Hence, prompt detection,

human intervention, and mitigation of service anomalies are

critical for the reliability of cloud services. To accomplish that,

cloud service providers employ large-scale cloud monitoring

systems that monitor the system state and generate alerts that

require human intervention. Whenever anomalous states of

Yuxin Su is the corresponding author.

services emerge, alerts will be generated to notify engineers

to prevent service failures.

In a cloud system, an alert is a notification sent to On-Call

Engineers (OCEs), of the form defined by the alert strategy, of

a specific abnormal state of the cloud service, i.e., an anomaly.

A severe enough alert (or a group of related alerts) can escalate

to an incident, which, by definition, is any unplanned interrup-

tion or performance degradation of a service or product, which

can lead to service shortages at all service levels [1]. An alert
strategy defines the policy of alert generation, i.e., when to
generate an alert, what attributes and descriptions an alert
should have, and to whom the alert should be sent. Once an

OCE receives an alert, the OCE will follow the corresponding

predefined Standard Operating Procedure (SOP) to inspect the

state of the cloud service and mitigate the service anomaly

based on their domain knowledge. The alert strategies and

SOPs are two key aspects to ensure a prompt and effective

response to cloud alerts and incidents. In industrial practice,

the two aspects are often considered and managed together

because improperly designed alert strategies may lead to non-

informative or delayed alerts, affecting the diagnosis and

mitigation of the cloud alerts and incidents. We call the unified

management of alert strategies and SOPs alert governance.

Table I summarizes the terminologies used in this paper.

In industrial practice, a cloud provider usually deploys a

cloud monitoring system to obtain the telemetry data that re-

flects the running state of their cloud services [2], [3]. Multiple

monitoring techniques are employed to collect various types

of telemetry data, including the performance indicators of the

monitored service, the low-level resource utilization, the logs

printed by the monitored service, etc. For normally functioning

services, it is assumed that their states, as well as their

telemetry data, will be stable. For a service that will fail soon,

its telemetry data will fluctuate from the normal state [4], [5].

Hence, cloud providers typically conduct anomaly detection

on the telemetry data to detect the deviation from the normal

state. If an anomaly triggers an alert strategy, an alert will be

generated, and the cloud monitoring system will notify OCEs

according to the configuration of the alert strategy.

The configuration of alert strategies is empirical, which

heavily depends on human expertise. Since different cloud

services exhibit different attributes and serve different pur-

poses, their alert strategies vary significantly. In particular, the

393

2022 52nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)

2158-3927/22/$31.00 ©2022 IEEE
DOI 10.1109/DSN53405.2022.00047

20
22

 5
2n

d
A

nn
ua

l I
EE

E/
IF

IP
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
ep

en
da

bl
e

Sy
st

em
s a

nd
 N

et
w

or
ks

 (D
SN

) |
 9

78
-1

-6
65

4-
16

93
-1

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

D
SN

53
40

5.
20

22
.0

00
47

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on August 09,2022 at 05:02:39 UTC from IEEE Xplore. Restrictions apply.

TABLE I
THE TERMINOLOGY ADOPTED IN THIS PAPER.

Term Explanation

Anomaly A deviation from the normal state of the cloud system, which will possibly trigger an alert.
Alert A notification sent to On-Call Engineers (OCEs), of the form defined by the alert strategy, of a specific anomaly

of the cloud system.
Incident Any unplanned interruption or performance degradation of a service or product, which can lead to service

shortages at all service levels [1].
Alert Strategy The policy of alert generation, including when to generate an alert, what attributes and descriptions an alert

should have, and to whom the alert should be sent.
SOP A predefined Standard Operating Procedure (SOP) to inspect the state of the cloud system and mitigate the

system abnormality upon receiving an alert. The operations can be conducted by OCEs or automatically.
Alert Governance The unified management of alert strategies and SOPs.

empiricalness of alert strategies results from two aspects of

cloud services. On the one hand, a cloud service’s abnormal

state may differ because each cloud service implements its

own business logic. There is no one-fits-all rule for anomaly

detection on cloud services, i.e., when to generate an alert. For

example, network overload is a crucial anomaly for a virtual

network service. However, high connection number becomes

a real issue for a database service. On the other hand, the

attributes of an alert that helps the manual inspection and

mitigation of the abnormal state, e.g., the location information

and the free-text title that describes the alert, are also service-

specific and lack comprehensive guidelines. In other words,

“what attributes and descriptions an alert should have” also

depends on human expertise. For example, the title “Instance x
is abnormal” is non-informative. In summary, the configuration

of alert strategies, as a precursor step for human intervention

in cloud anomalies, is an empirical procedure.

Manually-configured alert strategies are flexible but can

also be ineffective (e.g., misleading, non-informative, and non-

actionable) when the engineer is inexperienced or unfamiliar

with the monitored cloud service. The ineffectiveness of

alerts becomes anti-patterns that hinder the OCEs’ diagnosis,

especially for inexperienced OCEs. The anti-patterns of alerts,

which we will elaborate in Section III, will frustrate OCEs and

deteriorate cloud reliability in the long term.

In this paper, we conduct the first empirical study on the

industrial practice of alert governance in Huawei Cloud1. The

cloud system considered in this study consists of 11 cloud

services and 192 cloud microservices. The procedure of our

study includes 1) a quantitative assessment of over 4 million

alerts in the time range of two years to identify the anti-

patterns of alerts; 2) interviews with 18 experienced on-call

engineers (OCEs) to confirm the identified anti-patterns and

summarize the current practice to mitigate the identified anti-

patterns. To sum up, we make the following contributions:

• We conduct the first empirical study on characterizing

and mitigating anti-patterns of alerts in an industrial cloud

system.

• We identify six anti-patterns of alerts in a production cloud

system. Specifically, the six anti-patterns can be divided into

1Huawei Cloud is a global cloud provider and ranked fifth in Gartner’s
report [6] on the global market share of Infrastructure as a Service in 2020.

two categories, namely individual anti-patterns and collec-

tive anti-patterns. Individual anti-patterns result from the

ineffective patterns in one single alert strategy, including Un-
clear Name or Description, Misleading Severity, Improper
and Outdated Alert Strategy, and Transient and Toggling
Alerts. Collective anti-patterns are ineffective patterns that a

bunch of alerts collectively exhibit, including repeating and

cascading alerts.

• We summarize the current industrial practices for mitigating

the anti-patterns of alerts, including postmortem reactions

to mitigate the effect of anti-patterns and the preventative

guidelines to avoid the anti-patterns. The postmortem reac-

tions include rule-based alert blocking and alert aggrega-
tion, pattern-based alert correlation analysis, and emerging
alert detection. We also describe three aspects of designing

preventative guidelines for alert strategies according to our

experience in Huawei Cloud.

• Lastly, we share our thoughts on prospective directions to

achieve automatic alert governance. We propose to bridge

the gap between manual alert strategies and cloud service

upgrades by automatically evaluating the Quality of Alerts

(QoA) in terms of indicativeness, impact, and handleability.

II. ALERTS FOR THE RELIABILITY OF CLOUD SERVICES

This section provides the preliminary knowledge for our

study. We first generally introduce the reliability measures of

cloud services, then describe the mechanism of alerting in

cloud systems.

A. Reliability of Cloud Services

Cloud providers typically split various services into mi-

croservices and organize them into microservice architec-

ture [7]. Microservices are small, independent, and loosely

coupled modules that can be deployed independently [8].

Communicating through well-defined APIs, each microservice

can be refactored and scaled independently and dynami-

cally [9]. External requests are routed through and served by

dozens of different microservices that rely on one another.

One of the major weaknesses of the microservice archi-

tecture is the difficulty in system maintenance [10], [11].

The highly decoupled nature of the microservice architecture

makes the performance debugging, failure diagnosis, and fault

localization in cloud systems more complex than ever [1],

394

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on August 09,2022 at 05:02:39 UTC from IEEE Xplore. Restrictions apply.

[12]–[14]. A common pathway to tackle the difficulties in sys-

tem maintenance is to 1) improve system observability [15]–

[19] with logging, tracing, and performance monitoring, 2)

employ proper alert strategies to detect system anomalies and

send alerts [10], and 3) design effective SOPs to quickly

mitigate the system abnormality before it escalates to severe

failure and incidents. In practice, cloud providers usually

deploy cloud monitoring systems to improve observability,

detect anomalies, and generate alerts.

B. Alerts in Cloud Services

1) Necessities of Alerts: Service reliability is one of the

most significant factors for cloud providers and their clients,

but failures that prevent cloud services from properly func-

tioning are inevitable [1]. In order to satisfy Service Level

Agreements (SLAs) on the reliability of the target services,

cloud providers need to deal with service and microservice

anomalies before they escalate their effect into severe failures

and incidents. Alerting is a practical way to achieve this goal.

Figure 1 demonstrates the significance of alerts. By contin-

uously monitoring cloud services via traces, logs, metrics,

the monitoring system will send alerts2 to On-Call Engineers

(OCEs) upon detecting anomalous service states. With the

information provided in the alerts, OCEs can judge with their

domain knowledge, fix the problems, and clear the alert. As

a result, unplanned failures and incidents can be avoided or

quickly mitigated.

Fig. 1. The significance of alerts for cloud reliability.

2) Attributes of Alerts: Alerts have many attributes that are

helpful for OCEs’ diagnosis, including title of alerts, severity

level, time, service name, duration, location information. The

Title of an Alert concisely describes the alert. Typically, the

title should contain information like “the affected service or

microservice” and “the manifestation of the failure”. The

OCEs will look up the alert title to find the corresponding

SOP and perform predefined actions to mitigate the alert.

The Severity Level indicates how severe the alert is. The

corresponding Alert Strategy defines the severity level and

alert title according to the nature of the affected service or

microservice. The Time means the time of occurrence of the

alert, and Duration is the duration between the occurrence and

the clearance of the alert. The Location Information contains

the necessary information to locate the anomalous service or

microservice. Table II shows the samples of alerts from the

monitoring system of Huawei Cloud.

3) Generation of Alerts: An alert represents a specific

abnormal state of the cloud system. The first and foremost step

of alert generation is anomaly detection. Anomaly detection

2This paper only focuses on the alerts that indicate potential bugs and
failures, i.e., the system reliability alerts.

in logs [16], [20], [21], traces [11], [22], [23], and monitoring

metrics [24]–[26] of the cloud system have been widely

studied.

The cloud monitoring system will continuously detect

anomalies and generate system reliability alerts according

to the alert strategies associated with specific services or

microservices. The strategies for system reliability alerts can

be divided into three categories, i.e., probes, logs, and metrics.

• Probes: The cloud monitoring system will send probing

requests to the target services and receive the heartbeat from

the target services. Typically, OCEs set fixed thresholds of

no-response time for different services as the strategy of

probes. If a target service does not respond to the probing

requests for a long time, an alert will be generated.

• Logs: The cloud monitoring system will process logs of

the target services. OCEs can set flexible rules for different

services. Typical rules of logs are keyword matching, e.g.,

“IF the logs contain 5 ERRORs in the past 2 minutes, THEN

generate an alert.” Traces can also be viewed as special logs

and will be processed similarly.

• Metrics: Performance metrics are time series that show the

states of a running service, e.g., latency, no. of requests,

network throughput, CPU utilization, disk usage, memory

utilization, etc. The alert strategy for metrics varies from

static threshold to algorithmic anomaly detection.

4) Clearance of Alerts: Alerts can be cleared manually or

automatically. On the one hand, after the human intervention,

if the OCE confirms the mitigation of the anomaly, the OCE

can manually mark the alert as “cleared”. On the other hand,

the cloud monitoring system can automatically clear some

alerts. For system reliability alerts of probes and metrics, the

cloud monitoring system will continue to monitor the status of

the associated service. If the service returns to a normal state,

the cloud monitoring system will mark the corresponding alert

as “automatically cleared”.

III. AN EMPIRICAL STUDY ON THE ANTI-PATTERNS OF

ALERTS

The research described in this paper is motivated by the pain

point of alert governance in a production cloud system. In this

section, we present the first empirical study of characterizing

the anti-patterns of alerts3 and how we mitigate the anti-

patterns in the production cloud system. Specifically, we study

the following research questions (RQs).

• RQ1: What anti-patterns exist in alerts? How do these

anti-patterns prevent OCEs from promptly and precisely

diagnosing the alert?

• RQ2: What is the standard procedure to process alerts? Can

the standard procedure handle the anti-patterns?

• RQ3: What are the current reactions to the anti-patterns of

alerts? How about their performance?

• RQ4: What are the current measures to avoid the anti-

patterns of alerts? How about their performance?

3An alert always corresponds to an alert strategy. Therefore, we do not
discriminate “anti-pattern of alerts” and “anti-patterns of alert strategies”.

395

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on August 09,2022 at 05:02:39 UTC from IEEE Xplore. Restrictions apply.

TABLE II
SAMPLE RELIABILITY ALERTS IN A CLOUD SYSTEM. THE NAMES OF MICROSERVICES ARE OMITTED DUE TO CONFIDENTIALITY.

No. Severity Time Service Alert Title Duration Location

1 Major 2021/05/18 06:36 Block Storage Failed to allocate new blocks, disk full 10 min Region=X;DC=1;...
2 Critical 2021/05/18 06:38 Database Failed to commit changes ... 2 min Region=X;DC=1;...
3 Critical 2021/05/18 06:39 Database Failed to commit changes ... 5 min Region=X;DC=1;...

To answer these research questions, we quantitatively an-

alyzed over 4 million alerts from the production system of

Huawei Cloud which serves tens of millions of users and

contains hundreds of services. The time range of the alerts

spans over two years. We conducted a survey involving 18

experienced OCEs to find out the current practice of mitigating

the anti-patterns of alerts. Among them, 10 (55.6%) OCEs

have more than 3 years of working experience. The number of

OCEs with 2 to 3 years’ working experience and 1 to 2 years’

working experience are 3 (16.7%) and 2 (11.1%). Lastly, 3

(16.7%) OCEs’ experience are less than 1 year.

A. RQ1: Anti-patterns in Alerts

Anti-patterns of alerts are misconfigured and ineffective pat-

terns in alerts that hinder alert processing in practice. Although

alerts provide essential information to OCEs for diagnosing

and mitigating failures, anti-patterns of alerts hinder this

process. We divide the anti-patterns into two categories, i.e.,

individual anti-patterns and collective anti-patterns. Individual
anti-patterns result from the ineffectiveness of one single

alert. In practice, OCEs usually have limited time to diagnose

alerts. If one alert and its SOP are poorly designed, e.g.,

misleading steps to diagnose or non-informative description,

the manual diagnosis will be difficult. Collective anti-patterns
are ineffectiveness that alerts collectively exhibit. Sometimes,

due to inappropriate configuration of alert strategy, complex

dependency, and inter-influence effect in the cloud, numerous

alerts may simultaneously occur. If alerts flood to OCEs or

are collectively hard to handle, it will be too complicated

for manual diagnosis, especially for inexperienced OCEs.

Characterizing these anti-patterns is the leading step for alert

governance.

For this research question, we analyzed more than 4 million

alerts over two years to characterize the anti-patterns of alerts.

The total number of alert strategies in this empirical study

is 2010. To select the candidates of individual anti-patterns,

we group the alerts according to the alert strategies, then

calculate each strategies’ average processing time. The alert

strategies that take the top 30% longest time to process are

selected as the candidates of individual anti-patterns. To find

cases of collective anti-patterns, we first group all the alerts

by the hour they occur and the region they belong to. Then

we count the number of alerts per hour per region. If the

number of alerts per hour per region exceeds 2004, we select

all the alerts in this group as the candidate of collective anti-

patterns. We also went through the incident reports over the

4We set the threshold as 200 as the estimated maximum number of alerts
an OCE team can deal with is 200. Experienced OCEs confirm the threshold.

past two years to seek the ineffectiveness in alerts recorded by

OCEs. We get five candidate cases of individual anti-patterns

and two candidate cases of collective anti-patterns. After that,

we ask two experienced OCEs to mark whether they think the

candidate ineffective pattern in alerts is an anti-pattern. If they

both agree, we include it as an anti-pattern. If disagreements

occur, another experienced OCE is invited to examine the

pattern. As a result, we summarized four individual anti-

patterns and two collective anti-patterns.

Our survey asked the OCEs to determine the impact of

different anti-patterns on alert diagnosis. Figure 2(a) shows the

answers’ distributions. Each bar represents one anti-pattern,

which is elaborated below.

1) Individual anti-patterns: Individual anti-patterns are the

ineffectiveness of a single alert, including unclear name or

description, misleading severity, and improper and outdated

generation rule.

[A1] Unclear Name or Description. Unclear alert name or

alert description obstructs the OCEs from gaining intuitive

judgment at the first sight, which slows down the diagnosis and

even hinders OCEs from knowing the logical connections from

the alert to other alerts. Typical unclear alert names describe

the system state in a very general way with vague words,

e.g., “Elastic Computing Service is abnormal”, “Instance x
is abnormal”, “Component y encounters exceptions”, and

“Computing cluster has risks”. All OCEs agree with the impact

of unclear name or description, and 61.1% of them think the

impact is high.

[A2] Misleading Severity. Severity helps OCEs to prioritize

which alert to diagnose first. Inappropriately high severity level

takes up OCE’s time for dealing with less essential alerts,

while too low severity level may lead to missing important

alerts. In our survey, 88.9% of OCEs agree with the impact

of misleading severity. In practice, we find that the setting

of severity heavily depends on domain knowledge. With the

update of the cloud system, especially the enhancement of

fault tolerance mechanisms, the severity may also change.

[A3] Improper and Outdated Generation Rule. Typically,

the cloud monitoring system will continuously monitor the

performance indicators of both lower-level infrastructures

(e.g., CPU usage, disk usage) and higher-level services (e.g.,

request per second, response latency). If any indicator in-

creases over or drops below the predefined thresholds, an

alert will be generated. Although the performance indicators

of lower-level infrastructures can provide valuable information

when the root cause of the alert is failures of lower-level in-

frastructures (e.g., high CPU usage), due to the fault-tolerance

techniques applied in cloud services, the performance indica-

396

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on August 09,2022 at 05:02:39 UTC from IEEE Xplore. Restrictions apply.

(a) How about the impact of different anti-
patterns to alert diagnosis?

(b) How helpful are the predefined SOPs? (c) How about the effectiveness of current reactions
to anti-patterns?

Fig. 2. A survey about the current practice of mitigating the anti-patterns of alerts.

tors of lower-level infrastructures do not have definite effect on

the quality of cloud services from the perspective of customers.

According to our survey, 72.2% of OCEs agree that the impact

of improper and outdated generation rule is high.
[A4] Transient and Toggling Alerts. As mentioned in Sec-

tion II-B4, the cloud monitoring system can automatically

clear some alerts. When the interval between the generation

time and automatic clearance time of an alarm is less than a

certain value (known as the intermittent interruption thresh-

old), the alert is called a transient alert. Commonly speaking,

a transient alert is an alert that lasts for a short time. When

the same alert is generated and cleared multiple times (i.e.,

oscillation), and the number of oscillations is greater than a

certain value (known as the oscillation threshold), it is called a

toggling alert. Transient and toggling alerts are usually caused

by alert strategies being too sensitive to the fluctuation of the

metrics. Transient and toggling alerts cause fatigue of OCEs

and also distract the OCEs from being dealing with other

important alerts. Although there are disagreements on the level

of impact, most OCEs (94.4%) think the impact exists.
2) Collective anti-patterns: Collective anti-patterns result

from the ineffective patterns of a bunch of alerts that occur in

a short time scope. Zhao et al. [10] defined numerous alerts

(e.g., hundreds of alerts) from different cloud services in a

short time (e.g., one minute) as “alert storm”, and conducted

several case studies of alert storms. In alert storms, even if

all the individual alerts are effective, the large number of

alerts may still set obstacles for OCEs and greatly affect the

system reliability in the following three ways. Firstly, during

an alert storm, many alerts are generated. If OCEs check each

alert manually, the troubleshooting will take unacceptably long

time. Secondly, since alert storms occur frequently [10], the

OCEs will continually receive alerts by email, SMS, or even

phone call. According to our study, alert storms occur weekly

or even daily, and 17 out of 18 interviewed OCEs say that the

alert storms greatly fatigue them. Lastly, the overwhelming

number of alerts adds pressure to the monitoring system, so

the latency of generating new alerts may increase.
Inspired by [10], we summarize the following collective

anti-patterns from confirmed cases of alert storms in Huawei

Cloud. In this study, if the number of alerts from a region

exceeds 100 in an hour, we count it as an alert storm.

Consecutive hours of alert storm will be merged into one.

Among the two collective anti-patterns, “cascading alerts” has

already been observed by [10], but “repeating alerts” has not.

In particular, we demonstrate the collective anti-patterns of

alerts with a representative alert storm that happened from

7:00 AM to 11:59 AM in Huawei Cloud. During the alert

storm, totally 2751 alerts were generated, among which we

observeed both collective anti-patterns as described below.

Fig. 3. Repeating alerts in an alert storm. Fig. 4. Answers to Q1 “Overall
Helpfulness” regarding OCEs’
working experience.

[A5] Repeating Alerts. Repeating alerts means that alerts

from the same alert strategy appear repeatedly. Sometimes

the repeated alerts may last for several hours. This is usually

due to the inappropriate frequency of alert generation. For

example, in Figure III-A2, we count the number of alerts per

strategy. The total number of alerts is 2751, and the number

of effective alert strategies is 200. To make the figure clear,

we only show the name of the top two alerts. All other alerts

are classified as “Others” in the figure. The alert “haproxy

process number warning”, abbreviated as HAProxy in the

figure, takes up around 30% of the total number of alerts in

each hour. However, it is only a WARNING level alert, i.e., the

lowest level. Even though an individual alert is straightforward

to process, it is still time-consuming to deal with it when it

occurs repeatedly. If one rule continually generates alerts, it

will distract OCEs from dealing with the more essential alerts.

Most OCEs (94.4%) agree with the impact of repeating alerts.
[A6] Cascading Alerts. Modern cloud systems are com-

posed of many microservices that depend on each other [22].

When a service enters an anomalous state, other services that

rely on it will probably suffer from anomalous states as well.

Such anomalous states can propagate through the service-

calling structure [27]. Despite various fault tolerance mecha-

nisms being introduced, minor anomalies are still common to

magnify their impact and eventually affect the entire system.

Each of the affected services will generate many anomalous

monitoring metrics, resulting in many alerts (e.g., thousands of

alerts per hour). As a consequence, the alerts burst and flood to

the OCEs. Although the alerts are different, they are implicitly

related because they originate from the cascading effect of one

single failure. Manually inspecting the alerts is hard without

sufficient knowledge of the dependencies in the cloud system.

397

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on August 09,2022 at 05:02:39 UTC from IEEE Xplore. Restrictions apply.

All interviewed OCEs agree with the impact of cascading
alerts. Table II shows a simplified sample of cascading alerts.

By manually inspecting the alerts, experienced OCEs would

infer that the alert 1 possibly cause alert 2 because 1) Alert

2&3 occurred right after alert 1 and 2) The relational database

service relies on the block storage service as the backend.

If the relational database service failed to commit changes,

i.e., write data, one possible reason is that the storage service

failed.

Finding 1: Individual anti-patterns and collective anti-

patterns widely exist. They hinder alert diagnosis to

different extent.

B. RQ2: Standard Alert Processing Procedure

SOP for alert nginx_cpu_usage_over_80
Description CPU usage of nginx instance is higher than 80%

Generation Rule Continuously check the CPU usage of nginx instance,
generate the alert when usage is higher than 80%.

Potential Impact Affects the forwarding of all requests.

Possible Causes a) The workload is too high. b)

Steps to Diagnose Step 1: execute command top -bn1 in the instance.
Step 2:

Fig. 5. An example Standard Operation Procedure.

The Standard Operation Procedure (SOP) defines the pro-

cedure to process a single alert. For each alert, its SOP

includes the alert name, the alert description, the generation

rule of the alert (i.e., alert strategy), the potential impact

on the cloud system, the possible causes, and the steps to

process the alert. Figure 5 shows an example SOP of the alert

nginx_cpu_usage_over_80. The OCEs can follow the

SOP to process the alert upon receiving the alert. According

to our survey, only 22.2% of OCEs think current SOPs are

helpful (Q1, Figure 2(b)), and the other 77.8% of OCEs say

the help is limited. The SOPs are deemed to show limited help

by all OCEs with over 3 years’ experience, taking up 71.4%
of all OCEs selected ”Limited Help” for Q1 (Figure III-A2).

Moreover, SOPs are considered much less helpful for diagnos-

ing collective anti-patterns (Q3, Figure 2(b)) than individual

anti-patterns (Q2, Figure 2(b)).

Finding 2: SOPs can help OCEs quickly process

alerts, but the help is limited. SOPs are considered

less helpful when dealing with collective anti-patterns.

C. RQ3: Reactions to Anti-patterns

Depending on the number of alerts, OCEs react differently.

When the number of alerts is relatively small, OCEs will scan

through all the reported alerts. Then they will manually rule

out alerts that are not of great importance and deal with critical

alerts that will affect the whole system.

OCEs react differently when the number of alerts becomes

too large. According to our interview with senior OCEs in

Huawei Cloud, they typically take four kinds of reactions,

i.e., alert blocking, alert aggregation, alert correlation analysis,

and emerging alert detection. In practice, we observe that

although the reactions are considered effective, they need to

be reconfigured after the update of cloud services or alert

strategies.

[R1] Alert Blocking. When OCEs find that transient alerts,

toggling alerts, and repeating alerts provide no information

about service anomaly, they can treat these alerts as noise

and block them with alert blocking rules. As a result, these

non-informative alerts will not distract OCEs from quickly

identifying the root causes of service anomalies.

[R2] Alert Aggregation. When dealing with large amounts

of alerts, there may be many duplicate alerts in a time

period. For the non-informative alerts, OCEs will employ

alert blocking introduced before to facilitate analysis. For the

informative ones, they will adopt alert aggregation. To be more

specific, OCEs will set rules to aggregate alerts in a period and

use the number of alerts as another feature [28]. By doing so,

OCEs can quickly identify critical alerts and focus more on

the information provided by them.

[R3] Alert Correlation Analysis. Apart from the information

provided by the alerts and their statistical characteristics, OCEs

will also leverage other exogenous information to analyze

the correlation of alerts. Two kinds of exogenous information

are used to correlate alerts. The first is the dependencies of

alert strategies, which indicate the spread of alerts in the

cloud services [29]. For instance, if a source alert triggers

another alert, OCEs will be more interested in the source

alert, potentially the root cause of future service failures.

They will associate all the derived alerts with their source

alerts and diagnose the source alerts only. Another exogenous

information is the topology of cloud services. Based on the

topology of services, OCEs will set rules to correlate alerts

based on the services that generated them. With this kind of

correlation, OCEs can quickly pinpoint the root cause of a

large number of alerts by following the topological correlation.

[R4] Emerging Alert Detection. Due to the large scale

of cloud services, manually configured dependencies of alert

strategies could not cover all the alert strategies. This may

lead to the failure of alert correlation analysis. For example,

a few alerts corresponding to a root cause (i.e., emerging

alerts) appear first. If they are not dealt with seriously, when

the root cause escalates its influence, numerous cascading

alerts will be generated. The lack of critical association rules

will prevent the OCEs from discovering the correlation and

quickly alert diagnosis. This usually happens on gray failures

like memory leak and CPU overloading. Hence, it would

be helpful to capture the implicit dependencies. We employ

the adaptive online Latent Dirichlet Allocation [30], [31] to

capture the implicit dependencies. OCEs could detect these

emerging alerts as early as possible for faster alert diagnosis

with the implicit dependencies.

Figure 2(c) shows OCEs’ opinions about the effectiveness

of the four reactions. In general, the effectiveness of all four

reactions is relatively high.

398

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on August 09,2022 at 05:02:39 UTC from IEEE Xplore. Restrictions apply.

Finding 3: Current reactions are considered effective,

but the configurations of such reactions still require

domain knowledge.

D. RQ4: Avoidance of Anti-patterns

To avoid the alert anti-patterns from occurring, Huawei

Cloud also adopts preventative guidelines and conducts pe-

riodical reviews on alert strategies. We summarize the generic

aspects to consider when designing the guidelines. The guide-

lines are designed by experienced OCEs and guide from three

aspects of alerts.

• Target means what to monitor. The performance metrics

highly related to the service quality should be monitored.

• Timing means when to generate an alert upon the man-

ifestation of anomalies. Sometimes an anomaly does not

necessarily mean the service quality will be affected.

• Presentation means whether the alerts’ attributes are helpful

for alert diagnosis.

However, our interview with OCEs shows that the pre-

ventative guidelines are not strictly obeyed in practice. Most

(88.9%) OCEs agree that strictly following the guidelines will

make alert diagnosis easier.

Finding 4: The preventative guidelines could reduce

the anti-patterns and assist in alert diagnosis if they

are carefully designed and strictly obeyed.

IV. FUTURE DIRECTIONS

Although several postmortem reactions and preventative

guidelines are adopted (Section III), according to our study,

the problem of alert anti-patterns is still prevailing in industrial

cloud monitoring systems because most current measures still

require manual configuration. As for the alert blocking, OCEs

need to inspect each alert and set rules manually. How to

define the blocking rules and when to invalidate these rules

become a crucial problem. A similar problem also exists in

alert correlation. As for alert correlation analysis, OCEs also

need to inspect alert generating rules and service topology doc-

uments apart from reading alerts, which incurs a considerable

burden to OCEs. Moreover, the effectiveness of the reactions

also lacks clear criteria to evaluate. OCEs can only estimate

the effectiveness of the reactive measures by their feeling.

Therefore, outdated reactive measures is hard to detect. As

a result, the whole process of alert governance becomes time-

consuming and laborious.

Automatic Detection
Reaction

Section III.C
Avoidance
Section III.D

Fig. 6. Incorporating human knowledge and machine learning to detect anti-
patterns of alerts.

In Figure 6, we formulate the three stages of the mitigation

of alert anti-patterns. We already shared our experience of

avoiding and reacting to alert anti-patterns in Section III. To

close the gap between manual alert strategies and cloud system

upgrades, we propose to explore the automatic detection of

alert anti-patterns. Automatic evaluation of the Quality of

Alerts (QoA) will be a promising approach to the automatic

detection of alert anti-patterns.

Based on our empirical study, we propose three criteria to

measure the quality of alerts (QoA), including indicativeness,

precision, and handleability.

• Indicativeness measures whether the alert can indicate the

failures that will affect the end users’ experience.

• Precision measures whether the alert can correctly reflect

the severity of the anomaly.

• Handleability measures whether the alert can be quickly

handled. The handleability depends on the target and the

presentation of the alert. Improper target or unclear presen-

tation decreases the handleability.

In the future, incorporating human knowledge and machine

learning to evaluate the three aspects of alerts deserves more

exploration. In particular, OCEs provide their domain knowl-

edge by creating labels like “high/low precision/handleabili-

ty/indicativeness” for each alerts during alert processing. With

the labels, a machine learning model could be trained and

continuously updated so that it can automatically absorb the

human knowledge for future QoA evaluation.

V. RELATED WORK

Many works focus on processing alerts of cloud services and

microservices. One of the essential tasks of alert processing is

to reduce the enormous amount of reported alerts to facilitate

failure diagnosis. Alert correlation [32] and clustering [10],

[33], [34] are two common techniques employed to help OCEs

find critical alerts and repair the system in a short period. Li

et al. [35] proposes to generate incidents based on the system

alerts to prevent services from future failures. Unlike all prior

works, our paper focuses on not only how to deal with alerts

after they are generated, but also how to generate better alerts

and conduct better alert governance.

VI. CONCLUSION

This paper conducts the first empirical study to characterize

the anti-patterns in cloud alerts. We also summarize the indus-

trial practices of mitigating the anti-patterns by postmortem

reactions and preventative guidelines. We wish our study to

inspire further research on automatic QoA evaluation and

anti-pattern detection and benefit the reliability of the cloud

services in the long run.

ACKNOWLEDGMENT

The work was supported by Key-Area Research and

Development Program of Guangdong Province (No.

2020B010165002), Key Program of Fundamental Research

from Shenzhen Science and Technology Innovation

Commission (No. JCYJ20200109113403826), and the

Research Grants Council of the Hong Kong Special

Administrative Region, China (CUHK 14210920).

399

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on August 09,2022 at 05:02:39 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Z. Chen, Y. Kang, L. Li, X. Zhang, H. Zhang, H. Xu, Y. Zhou, L. Yang,
J. Sun, Z. Xu, Y. Dang, F. Gao, P. Zhao, B. Qiao, Q. Lin, D. Zhang,
and M. R. Lyu, “Towards intelligent incident management: why we need
it and how we make it,” in ESEC/FSE ’20: 28th ACM Joint European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, Virtual Event, USA, November 8-13, 2020.
ACM, 2020, pp. 1487–1497.

[2] Z. Li, Q. Cheng, K. Hsieh, Y. Dang, P. Huang, P. Singh, X. Yang,
Q. Lin, Y. Wu, S. Levy, and M. Chintalapati, “Gandalf: An intelligent,
end-to-end analytics service for safe deployment in large-scale cloud
infrastructure,” in 17th USENIX Symposium on Networked Systems De-
sign and Implementation, NSDI 2020, Santa Clara, CA, USA, February
25-27, 2020. USENIX Association, 2020, pp. 389–402.

[3] C. L. Dickson, “A working theory-of-monitoring,” Google, Inc., Tech.
Rep., 2013. [Online]. Available: https://www.usenix.org/conference/
lisa13/working-theory-monitoring

[4] P. Huang, C. Guo, L. Zhou, J. R. Lorch, Y. Dang, M. Chintalapati, and
R. Yao, “Gray failure: The achilles’ heel of cloud-scale systems,” in
Proceedings of the 16th Workshop on Hot Topics in Operating Systems,
HotOS 2017, Whistler, BC, Canada, May 8-10, 2017. ACM, 2017, pp.
150–155.

[5] H. Wang, Z. Wu, H. Jiang, Y. Huang, J. Wang, S. Köprü, and T. Xie,
“Groot: An event-graph-based approach for root cause analysis in in-
dustrial settings,” in ASE ’21: 36th IEEE/ACM International Conference
on Automated Software Engineering, Virtual Event, Australia, November
15-19, 2021. IEEE/ACM, 2021, pp. 1–12.

[6] D. Blackmore, C. Tornbohm, D. Ackerman, C. Graham, S. Matson,
T. Lo, T. Singh, A. Roy, C. Tenneson, M. Sawai, E. Kim, E. Anderson,
S. Nag, N. Barton, N. Sethi, R. Malik, B. Williams, C. Healey, R. Buest,
T. Wu, K. Madaan, S. Sahoo, H. Singh, and P. Sullivan, “Market share:
It services, worldwide, 2020,” Tech. Rep., 2021.

[7] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,
A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica,
and M. Zaharia, “Above the clouds: A berkeley view of cloud
computing,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2009-28, Feb 2009. [Online]. Available: http:
//www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html

[8] M. A. Doc, “Microservices architecture style,” 2019. [On-
line]. Available: https://docs.microsoft.com/en-us/azure/architecture/
guide/architecture-styles/microservices

[9] M. Villamizar, O. Garcés, H. Castro, M. Verano, L. Salamanca, R. Casal-
las, and S. Gil, “Evaluating the monolithic and the microservice archi-
tecture pattern to deploy web applications in the cloud,” in 2015 10th
Computing Colombian Conference (10CCC). IEEE, 2015, pp. 583–590.

[10] N. Zhao, J. Chen, X. Peng, H. Wang, X. Wu, Y. Zhang, Z. Chen,
X. Zheng, X. Nie, G. Wang, Y. Wu, F. Zhou, W. Zhang, K. Sui, and
D. Pei, “Understanding and handling alert storm for online service sys-
tems,” in ICSE-SEIP 2020: 42nd International Conference on Software
Engineering, Software Engineering in Practice, Seoul, South Korea, 27
June - 19 July, 2020. ACM, 2020, pp. 162–171.

[11] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, D. Liu, Q. Xiang, and C. He, “La-
tent error prediction and fault localization for microservice applications
by learning from system trace logs,” in Proceedings of the ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2019,
Tallinn, Estonia, August 26-30, 2019. ACM, 2019, pp. 683–694.

[12] X. Zhang, Y. Xu, S. Qin, S. He, B. Qiao, Z. Li, H. Zhang, X. Li,
Y. Dang, Q. Lin, M. Chintalapati, S. Rajmohan, and D. Zhang, “Onion:
identifying incident-indicating logs for cloud systems,” in ESEC/FSE
’21: 29th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, Athens, Greece,
August 23-28, 2021. ACM, 2021, pp. 1253–1263.

[13] X. Zhang, Q. Lin, Y. Xu, S. Qin, H. Zhang, B. Qiao, Y. Dang, X. Yang,
Q. Cheng, M. Chintalapati, Y. Wu, K. Hsieh, K. Sui, X. Meng, Y. Xu,
W. Zhang, F. Shen, and D. Zhang, “Cross-dataset time series anomaly
detection for cloud systems,” in 2019 USENIX Annual Technical Confer-
ence, USENIX ATC 2019, Renton, WA, USA, July 10-12, 2019. USENIX
Association, 2019, pp. 1063–1076.

[14] Y. Gan, Y. Zhang, K. Hu, D. Cheng, Y. He, M. Pancholi, and
C. Delimitrou, “Seer: Leveraging big data to navigate the complexity
of performance debugging in cloud microservices,” in Proceedings of
the Twenty-Fourth International Conference on Architectural Support

for Programming Languages and Operating Systems, ASPLOS 2019,
Providence, RI, USA, April 13-17, 2019. ACM, 2019, pp. 19–33.

[15] P. Huang, C. Guo, J. R. Lorch, L. Zhou, and Y. Dang, “Capturing and
enhancing in situ system observability for failure detection,” in 13th
USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2018, Carlsbad, CA, USA, October 8-10, 2018. USENIX
Association, 2018, pp. 1–16.

[16] S. He, P. He, Z. Chen, T. Yang, Y. Su, and M. R. Lyu, “A
survey on automated log analysis for reliability engineering,” ACM
Comput. Surv., vol. 54, no. 6, Jul. 2021. [Online]. Available:
https://doi.org/10.1145/3460345

[17] A. Pecchia, M. Cinque, G. Carrozza, and D. Cotroneo, “Industry prac-
tices and event logging: assessment of a critical software development
process,” in Proc. of the 37th IEEE/ACM International Conference on
Software Engineering (ICSE), 2015, pp. 169–178.

[18] K. Yao, G. B. de Pádua, W. Shang, C. Sporea, A. Toma, and S. Sajedi,
“Log4perf: suggesting and updating logging locations for web-based
systems’ performance monitoring,” Empir. Softw. Eng., vol. 25, no. 1,
pp. 488–531, 2020.

[19] S. He, Q. Lin, J. Lou, H. Zhang, M. R. Lyu, and D. Zhang, “Identifying
impactful service system problems via log analysis,” in Proceedings
of the 2018 ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, November 04-
09, 2018. ACM, 2018, pp. 60–70.

[20] V. Le and H. Zhang, “Log-based anomaly detection without log parsing,”
in ASE ’21: 36th IEEE/ACM International Conference on Automated
Software Engineering, Virtual Event, Australia, November 15-19, 2021.
IEEE/ACM, 2021, pp. 1–12.

[21] N. Zhao, H. Wang, Z. Li, X. Peng, G. Wang, Z. Pan, Y. Wu, Z. Feng,
X. Wen, W. Zhang, K. Sui, and D. Pei, “An empirical investiga-
tion of practical log anomaly detection for online service systems,”
in ESEC/FSE ’21: 29th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
Athens, Greece, August 23-28, 2021. ACM, 2021, pp. 1404–1415.

[22] T. Yang, J. Shen, Y. Su, X. Ling, Y. Yang, and M. R. Lyu, “Aid: Efficient
prediction of aggregated intensity of dependency in large-scale cloud
systems,” in ASE ’21: 36th IEEE/ACM International Conference on
Automated Software Engineering, Virtual Event, Australia, November
15-19, 2021. IEEE/ACM, 2021, pp. 1–12.

[23] X. Guo, X. Peng, H. Wang, W. Li, H. Jiang, D. Ding, T. Xie, and L. Su,
“Graph-based trace analysis for microservice architecture understanding
and problem diagnosis,” in ESEC/FSE ’20: 28th ACM Joint European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, Virtual Event, USA, November 8-13, 2020.
ACM, 2020, pp. 1387–1397.

[24] Y. Meng, S. Zhang, Y. Sun, R. Zhang, Z. Hu, Y. Zhang, C. Jia, Z. Wang,
and D. Pei, “Localizing failure root causes in a microservice through
causality inference,” in 28th IEEE/ACM International Symposium on
Quality of Service, IWQoS 2020, Hangzhou, China, June 15-17, 2020.
IEEE, 2020, pp. 1–10.

[25] P. Liu, Y. Chen, X. Nie, J. Zhu, S. Zhang, K. Sui, M. Zhang, and D. Pei,
“Fluxrank: A widely-deployable framework to automatically localizing
root cause machines for software service failure mitigation,” in 30th
IEEE International Symposium on Software Reliability Engineering,
ISSRE 2019, Berlin, Germany, October 28-31, 2019. IEEE, 2019, pp.
35–46.

[26] G. Zhao, S. Hassan, Y. Zou, D. Truong, and T. Corbin, “Predicting
performance anomalies in software systems at run-time,” ACM Trans.
Softw. Eng. Methodol., vol. 30, no. 3, pp. 33:1–33:33, 2021.

[27] A. W. Services, “Aws well-architected framework,” 2020.
[Online]. Available: https://docs.aws.amazon.com/wellarchitected/latest/
framework/welcome.html

[28] Z. Chen, J. Liu, Y. Su, H. Zhang, X. Wen, X. Ling, Y. Yang, and M. R.
Lyu, “Graph-based incident aggregation for large-scale online service
systems,” in ASE ’21: 36th IEEE/ACM International Conference on
Automated Software Engineering, Virtual Event, Australia, November
15-19, 2021. IEEE/ACM, 2021, pp. 1–12.

[29] R. Melo and D. Macedo, “A cloud immune security model based on alert
correlation and software defined network,” in 28th IEEE International
Conference on Enabling Technologies: Infrastructure for Collaborative
Enterprises, WETICE 2019, Naples, Italy, June 12-14, 2019. IEEE,
2019, pp. 52–57.

400

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on August 09,2022 at 05:02:39 UTC from IEEE Xplore. Restrictions apply.

[30] T. Yang, C. Gao, J. Zang, D. Lo, and M. R. Lyu, “TOUR: dynamic
topic and sentiment analysis of user reviews for assisting app release,”
in Companion of The Web Conference 2021, Virtual Event / Ljubljana,
Slovenia, April 19-23, 2021. ACM / IW3C2, 2021, pp. 708–712.

[31] C. Gao, J. Zeng, M. R. Lyu, and I. King, “Online app review analysis for
identifying emerging issues,” in Proceedings of the 40th International
Conference on Software Engineering, ICSE 2018, Gothenburg, Sweden,
May 27 - June 03, 2018. ACM, 2018, pp. 48–58.

[32] S. A. Mirheidari, S. Arshad, and R. Jalili, “Alert correlation algorithms:
A survey and taxonomy,” in Cyberspace Safety and Security - 5th
International Symposium, CSS 2013, Zhangjiajie, China, November 13-
15, 2013, Proceedings, ser. Lecture Notes in Computer Science, vol.
8300. Springer, 2013, pp. 183–197.

[33] D. Lin, R. Raghu, V. Ramamurthy, J. Yu, R. Radhakrishnan, and J. Fer-
nandez, “Unveiling clusters of events for alert and incident management
in large-scale enterprise it,” in The 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’14, New
York, NY, USA - August 24 - 27, 2014. ACM, 2014, pp. 1630–1639.

[34] J. Xu, Y. Wang, P. Chen, and P. Wang, “Lightweight and adaptive service
API performance monitoring in highly dynamic cloud environment,” in
2017 IEEE International Conference on Services Computing, SCC 2017,
Honolulu, HI, USA, June 25-30, 2017. IEEE Computer Society, 2017,
pp. 35–43.

[35] L. Li, X. Zhang, X. Zhao, H. Zhang, Y. Kang, P. Zhao, B. Qiao, S. He,
P. Lee, J. Sun, F. Gao, L. Yang, Q. Lin, S. Rajmohan, Z. Xu, and
D. Zhang, “Fighting the fog of war: Automated incident detection for
cloud systems,” in 2021 USENIX Annual Technical Conference, USENIX
ATC 2021, July 14-16, 2021. USENIX Association, 2021, pp. 131–146.

401

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on August 09,2022 at 05:02:39 UTC from IEEE Xplore. Restrictions apply.

