
Renegotiable Quality of Service -
A New Scheme for Fault Tolerance in Wireless Networks

Tsu-Wei Chen, Paul Krzyzanowski, Michael R. Lyu, Connac Sreenan and John A. Trotter
Bell Laboratories

Lucent Technologies, Murray Hill, NJ 07974

Abstract

In this paper; we propose the concept that faults in
telecommunications networks ofen manifest themselves
as reductions in service quality, which can be addressed
by using the notion of Quality of Service (QoS). In wire-
less ATM networks, the ability to provide QoS guarantees
for high priority trafJic in the presence of noise or faults is
of utmost importance. Moreover; there is a need for rene-
gotiating existing QoS on an established connection, since
the characteristics of a wireless link may well change dur-
ing the lifetime of a connection due to mobile hosts’ move-
ments or extemal interference. In this paper we describe
a general QoS strategy as a fault tolerance mechanism,
and address the problems associated with providing QoS
over a wireless link. We present a QoS scheme with rene-
gotiation capability, define an API (application program-
ming interface) for the access to this scheme and describe
our implementation for this QoS API on the SWAN system,
a wireless ATM network, and summarize its performance
using measurements obtained from a series of experiments
based on different fault scenarios.

1 Introduction
Conventional fault tolerance schemes in treating com-

puter or network failures rely on the design and allocation
of protective redundancies [IO]. In typical communica-
tion networks, the protective redundancies can be applied
in multiple levels of system components, including pro-
cessors, memory units, disks, communication links, data
streams, transmission time frames, and software codes 161.
For example, a number of redundant disk array architec-
tures (RAID) are proposed in [8], on which a clustered
architecture can be built [7]. On-line failure recovery al-
gorithms can allow a fast recovery process by either ab-
sorbing the disk bandwidth not consumed by the user pro-
cesses [5] , or by utilizing the inherent redundancy in video
streams of the application [14].

We consider fault tolerance in a system of communi-
cating processors that work together to provide some ser-

vice. An example of such a system might be a cluster of
workstations providing web service to a client. The client
requests a page and the server machines respond by de-
livering that page. A further example is a video delivery
system where a server delivers a video stream to a client
connected to the network. In both scenarios a fault might
be a service interruption due to network component fail-
ures or machine crashes.

Traditional fault tolerance has studied the problem of
dealing with service outages because components fail in a
system. Techniques involve replacing the faulty element,
either using a hot standby or a warm standby or even ac-
cepting some downtime and repairing the unit off line. Ex-
isting traffic may also be rerouted via another redundant
path from the source to its destination by routing algo-
rithms [2, 121.

In telecommunications networks, fault tolerance has
progressed to considering the recovery of failures such as
reductions in the speed or capacity of a service. For in-
stance, a telecom switch might reduce the maximum num-
ber of calls that can be handled if a processor failure is en-
countered. Thus faults, rather than manifesting themselves
as complete service failures, often manifest themselves as
reductions in service quality such as reduced bandwidth or
increased latency, e.g., due to rerouting. These problems
can be addressed in the context of communications net-
works by using the notion of Quality of Service (QoS) [3].

We view QoS as a new scheme in providing fault tol-
erance to prevent service interruptions in a proactive fash-
ion: In the presence of faults, services that need a level of
resource (e.g., bandwidth) will be guaranteed to perform
satisfactorily when there is enough of the resource to be
shared, and when it is scarce, negotiation with the service
provider will take place to assure a lower, but deliverable
level of service.

Wireless networks pose a more demanding set of chal-
lenges than in wired networks. Due to movement of mo-
biles, a fault-tolerant protocol for maintaining location di-
rectories in mobile networks is needed [9]. Furthermore,
low signal-to-noise (SNR) ratio makes wireless link er-
rors a norm rather than an exception in the system. The

21
0731-3071/97 $10.00 0 1997 IEEE

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 05:05:06 UTC from IEEE Xplore. Restrictions apply.

data rate does not drop immediately to zero; instead, it
slowly reduces as noise increases. Thus before completely
switching to a redundant channel on a faulty link, the link
errors can be gracefully tolerated by the provisioning and
renegotiation of QoS in a (high) service level, in addi-
tion to existing recovery techniques using error correcting
codes or retransmission in a (low) physical level.

In this paper we propose an extension to the QoS con-
cept of “renegotiation” which can be used to reestablish
a level of reliability for a system. We explain how such
a system works using a wireless network data link as an
example. The approach allows applications to specify a
desired quality over the link. If a failure occurs and the
available bandwidth decreases, the system renegotiates the
bandwidth requirements. In this way the application is
knowledgeable about what level of service is available and
may be able to change what it does accordingly.

This concept allows a system to tolerate failures in
parts, and makes it a system for recovering in a graceful
way transparent to its users. The remainder of this paper
is organized as follows: In Section 2 we discuss a general
QoS approach and its constraints, while in Section 3 we
describe a wireless ATM network environment used as a
testbed for our QoS design, implementation, and experi-
mentation. Section 4 lays out the architectural policy and
mechanism for our QoS scheme, and presents the imple-
mentation in detail. In Section 5 a number of fault tolerant
experiments are conducted to verify our scheme and com-
pare it with a traditional approach without QoS. Conclu-
sions are drawn in Section 6.

2 The QoS Approach
The need to make computer communication have more

deterministic behavior is the origin of work on QoS. Tra-
ditional packet networks provide a single service model
that makes a best-effort attempt to deliver data packets.
Bandwidth is shared out amongst competing senders on
an as-needed basis. Packets are not guaranteed to take the
same route or experience the same delay in getting to their
destination. This is not important for traditional computer
applications, as long as the overall delays are not exces-
sive. On the other hand, in circuit switched networks, the
service model is highly predictable, with a fixed slot of
bandwidth allocated for use by a sender in each time pe-
riod, and with equal delivery times for each slot. This has
proved useful for transferring digitized voice at the fixed
rate of 64 Kbps. The desire to operate just a single network
for both computer and telephony traffic sparked work on
integrated services networks. In addition to these service
categories, such a network should also support multimedia
services in the form of packet audiolvideo, and real-time
services like process control which have strict communi-

cation delay constraints. Multimedia services typically de-
mand high bandwidths and are sensitive to delay and vari-
ation in delay, but may be prepared to tolerate some data
loss. For example, dropping one image from a video se-
quence at 30 imageskecond may not be noticeable. Real-
time applications usually have low bandwidth require-
ments, but demand predictable delay and zero loss. Sup-
port for such diverse requirements is expressed in terms of
the particular QoS expected from the network.

The challenge of designing a network to address these
issues led to the development of asynchronous transfer
mode (ATM), ATM transports data in small, fixed size
packets called cells. Small cells have the benefit of in-
creasing scheduling granularity and hence providing more
control over queueing delays. This avoids problems such
as a delay sensitive audio packet getting delayed behind a
large file transfer packet. Having a fixed cell size allows
the network design to be more deterministic. ATM carries
cells across the network on connections known as virtual
circuits (VC). In essence, aVC is just a way of maintaining
state for a particular flow of data at each stage in its path
from source to destination. A key element of this state in-
formation relates to how the cells for a VC are processed
in order to satisfy its QoS requirements. Hence, in ATM
the concept of setting up a VC with an associated QoS ex-
ists. Setting up a VC involves taking information on the
traffic and expected performance and negotiating along a
path in order to reserve the necessary resources, such as
switch buffer space. Performance information describes
any requirements on delay and delay variation for cells in
a VC. Using this information the network checks to see if
the necessary resources are available. If they are, then the
VC is set up, otherwise the request is denied. This process
is known as admission control. Once admitted, the net-
work continually checks that the VC sends data according
to its allowance, known as policing. It also schedules cells
at the switches in order to achieve the agreed QoS.

Our work is motivated by the rising popularity of wire-
less data networking and the desire for fault tolerant com-
munications. Wireless networking is inherently unreli-
able. Various forms of interference on the wireless link
result in changing bandwidth availability and low effec-
tive bandwidths due to high error rates. These problems
are exacerbated as users move around. Faults of this kind
require a fresh look at how such networks can be used to
support applications which demand some degree of pre-
dictability. We adopt the approach of ATM, in which QoS
is used to form a service contract between applications and
the network. We build on that work by recognizing that an
unreliable wireless network demands a more dynamic ap-
proach to resource usage. Many applications can deal with
varying bandwidth availability once provided with suffi-

22

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 05:05:06 UTC from IEEE Xplore. Restrictions apply.

cient knowledge of the resource climate. Typical exam-
ples include audio and video applications which can alter
their rate or encoding to match the available bandwidth or
deal with different error rates. Our contribution is a QoS
scheme which builds on this notion of adaptation by pro-
viding explicit renegotiation. This is similar in spirit to the
feedback mechanisms for non real-time traffic in ATM, but
differs in that we aim to provide feedback right up to the
application level, not just to the sending host [I 11. Thus
we incorporate renegotiation as a key part of our QoS API.

Four elements compose our approach. First, we engage
the support for multiple VCs over a wireless channel, and
the usage of a set of per-VC QoS parameters to influence
bandwidth allocation. Second, we define a group of in-
terface routines for opening, accessing and closing VCs,
as well as being able to assign QoS parameters. These
parameters include a description of the traffic type as con-
stant bit-rate (CBR), variable bit-rate (VBR) or available
bit-rate (ABR). CBR and VBR applications have real-time
requirements, e.g. 64 Kbps speech and compressed video.
ABR is used for more traditional applications which can
accept much more variability in service. Consistent with
our emphasis on adaptation, we accept values for preferred
and minimum bandwidths for a VC. Third, we design a
centralized QoS manager to coordinate the access to a
wireless channel. Using parameters supplied via the API,
the manager performs admission control, monitors per-
formance on the channel and initiates renegotiation when
necessary. Fourth, for each VC, the application provides
a callback routine which is used by the QoS manager to
provide feedback as part of renegotiation.

The QoS scheme described above is successfully im-
plemented in a wireless ATM network: SWAN [l].

3 The SWAN Environment

computing. SWAN consists of mobile units which are usu-
ally laptops, and base stations which are connected to a
backbone network [4]. Both the base stations and laptops
are equipped with a radio interface known as the FAWN
(Flexible Adapter for Wireless Networking) [131 card that
allows them to communicate with each other wirelessly.
Each base station has a range of 100 feet inside a build-
ing, providing access to a local area network for mobiles
in their vicinity. As well as communicating with the base
stations the mobiles can communicate with each other, al-
lowing them to create ad-hoc networks that continually
change as the mobiles move around.

The FAWN card provides a very programmable plat-
form on which to develop interface software, which is im-
portant in a testbed. FAWN uses a 2.4 GHz ISM band
radio modem whose raw bit rate is 624 Kbps which is di-
vided between incoming and outgoing connections. The
modem has a raw error rate of 1 x for a signal
strength of -77 dBm which translates to a packet loss
of one in 1500 for our 64 byte packets. The FAWN
adapter has four 64 byte packet buffers implemented in
hardware to store buffer complete packets and therefore
improve performance. The FAWN card is controlled by
an ARM610 processor which takes the packets from the
buffers, processes them and makes them available to a host
computer via a PCMCIA interface.

A simplified diagram of SWAN’S channel access
scheme is shown in Fig. 2. A TDD (Time Division Du-
plex) scheme is used to share the bandwidth between the
base station and the mobile host. The traffic of each direc-
tion alternatively transmits a data burst of 10 ATM cells at
a time and then switches to receiving mode for data from
the other direction. Due to the overhead introduced by the
TDD scheme and the ATM cell structure used in SWAN,
the available bandwidth is 240 Kbps in each direction.

UPSTREAM DOWNSTREAM UPSTREAM DOWNSTREAM

Wld. h A N FM

1 ms (Ium-around time)

Fig. 2: TDD scheme of SWAN
Wlnd H M

Several other wireless communication devices are
available for the local area network market (e.g. Wave-
LAN, RangeLAN), and most of them are based on or akin
to the IEEE 802.11 or CSMNCA (Carrier Sense Multi-
ple Access with Collision Avoidance) schemes. Though
a CSMNCA scheme simplifies the hardware implementa-
tion and provides reasonable efficiency in supporting data-
gram traffic, its random access characteristic cannot pro-

h#eps can mom nelv-n

(small. s mple, 101. cost)

Fig. 1: SWAN system architecture

The SWAN (Seamless Wireless ATM Network) sys-
tem, shown in Fig. 1, is a testbed for wireless networked

23

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 05:05:06 UTC from IEEE Xplore. Restrictions apply.

vide multimedia applications with a predictable bandwidth
available on the link. The SWAN system, as described
previously, was designed with ATh4 traffic in mind. Its
TDD scheme assures a constant bandwidth can be granted,
at least when the channel condition is stable. Therefore,
SWAN provides a good platform for realizing our pro-
posed QoS scheme.

Unfortunately, despite the direct support of ATh4 cells
and TDD MAC scheme, challenges still exist in SWAN
when considering the support of multimedia traffic in a
wireless, mobile environment. These challenges include
(1) low radio bandwidth; (2) increasing likelihood of erro-
neous packets due to lower SNR; (3) lack of a mechanism
to support traffic of different classes and (4) lack of an
interface to provide link QoS information to upper layer
applications. We will address our approach to these prob-
lems when describing our QoS implementation in the next
section.

4 System Implementation
To achieve QoS renegotiation in a unreliable wireless

environment, We design a mechanism that exists in the
operating system level (the interface at which the appli-
cations request resources) for an application to request a
grade of service for a network connection and for the ap-
plication to be informed about changes on that connec-
tion. In this section, we describe our approach in detail
from two aspects: (1) the policy, in which we determine
how an application can specify its QoS requirements and
how it can be notified of failures so it may adapt to a new
environment; (2) the mechanism, where we addresse the
realization of the policy.

4.1 Policy
Our goal is to use existing interfaces and facilities pro-

vided by widely accepted operating systems, instead of
creating an ad-hoc system or proposing a new, proprietary
interface. Therefore we chose Linux, a UNIX-like sys-
tem, to develop our work. Also, since SWAN is designed
to provide ATM connectivity, we consider the QoS nego-
tiation on a per-VC basis. In our approach, the VCs are
instantiated as UNIX devices, such that one may use the
open (system call to obtain a VC and the close ()
system call to release the VC. During the connection, data
is sent and received via write () and read () system
calls.

As soon as a circuit is activated (opened), it is given a
default service grade of unspecified bit rate (UBR) service.
This allows applications that do not have QoS demands to
receive the best service effort from the system. If an appli-
cation does wish to specify its bandwidth need, it does so
with one or more ioctl() system calls (U 0 control).

By performing these ioctl () operations, an applica-

tion may select ABR, CBR, or UBR services, and specify
the associated QoS parameters. Currently, two bandwidth
parameters (minimum and preferred) have been consid-
ered. Supporting these two bandwidth parameters allows
an application to specify a range of acceptable bandwidth
so that it doesn’t get informed each time when the sup-
ported bandwidth changes.

The way an application should be notified of QoS fail-
ure is also considered. Using existing UNIX facilities, the
signal mechanism allows the operating system to send a
“QoS failure” message to the application. The applica-
tion uses the signal () system call to setup an exception
handler to process this QoS failure event. A similar pol-
icy exists for the reverse operation, where an application
receives a signal when the service failure is removed and
returns to its original performance.

4.2 Mechanism
In this section we describe in detail the realization for

the above policy. We first introduce the usage and func-
tionality of this API, by which the applications specify the
QoS parameters associated with the VC. Then we draw the
core of the implementation.

4.2.1 The API The first aspect of creating the de-
sired interface is to provide a device driver for the VCs
and the associated API to manage them. The VCs are
implemented as devices within the UNIX file systems to
which the standard system calls can be applied. The entire
API of our implementation is shown in Fig. 3. Since it is
implemented using standard UNIX I/O operations, a user
program can manipulate its connection just as an ordinary
character device.

The QoS requests are made through the ioctl () sys-
tem call with the application specifying parameters for the
type of service, minimum or preferred bandwidth, etc. The
parameters we have implemented for the QoS negotiation
are listed in Table 1. The default values shown in the table
indicate that an UBR service is assumed to reserve the sys-
tem minimum bandwidth, which is zero, if the application
does not make any QoS request.

[QOSREQUEST 1 ARGUMENT I DEFAULT
I VC-SERVICE I ABR,CBR,UBR I UBR

Table 1 : ioctl(): parameters

With this API, the application can be easily pro-
grammed using a traditional cliendserver model: (1) the
client and the server first request a VC using open () . (2)
If the VC can be opened successfully, the required QoS

24

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 05:05:06 UTC from IEEE Xplore. Restrictions apply.

int open(char *vc-dev-name, int mode);

int close(int vc-des);

int read(int vc-des, char *buff, int n);

int write(int vc-des, char *buff. int n);

int ioctl(int vc-des, int qos-request, long arg);

int signal(int QoS-SIGNAL, void *qos-handler(int));

/ * acquire a VC, return -1 if requested VC is in use * /

/* release a VC *

* read n bytes from a VC *

P write n bytes to a VC *

/* request, negotiate a QoS attribute of a VC * /

/ * set up a handler for QoS changes * /

Fig. 3: List of the API

can be provided by using i o c t 1 () with parameter values
based on the traffic characteristic. (3) Data is transmitted
using read () and w r i t e () . (4) When the program ter-
minates, VCs should be released by using c lose () . The
system routine s i g n a l () listed in Fig. 3 is not really
a QoS operation; instead it is used by the application to
setup its own QoS interrupt handler which can renegotiate
new QoS agreements when the original service require-
ments cannot be met.

I -t I I

FA

Fig. 4: The architecture for multiple queues
scheme

4.2.2 Multiple Queues Scheme Fig. 4 illustrates
the block diagram that shows the relationship between
user applications and FAWN hardware, as well as the
interaction among each module. On the top, applica-
tions in user level communicate with the QoS mechanism
through a set of interface routines (the API). A group of
priority queues are dynamically allocated in the kernel
space. Each of these queues corresponds to an individ-
ual VC. Once a VC is opened and its QoS is negotiated
through ioc tl () , which interacts with the QoS manager
(qosmgr ()) for service and bandwidth specification,

the QoS manager translates the requested service type and
bandwidth in terms of time slots for carrying data cells in
each data burst. This information will be kept in a QoS ta-
ble (qos-table ()) that will later be referred by the VC
scheduler (vc-schedule ()). The QoS manager is also
responsible for monitoring the overall link quality through
the FAWN hardware, and providing feedback directly to
application when the requested QoS can not be satisfied or
when a better service is available. This feedback is imple-
mented through the UNIX signal, as described in Section
4.2.1.

The VC scheduler reads packets from those activated
queues and sends them to the FAWN hardware for trans-
mission. It serves these multiple queues in a “round-robin”
fashion which allows a control of QoS granularity such
that one circuit will not dominate the data path with a large
chunk of data.

5 System Functions
Currently, two major functions provided in this system

are bandwidth reservation and QoS renegotiation. They
are the keys to providing multimedia traffic support in
wireless networks.

5.1 Bandwidth Reservation
In SWAN, the radio channel in use is shared between

a base station and a mobile host in a TDD fashion. Thus
the allocated bandwidth can be represented in terms of the
number of time slots devoted to a connection. For exam-
ple, a connection granted with one slot in each data burst
is served at the bit rate of 24 Kbps (240 Kbps/ 10 slots) in
FAWN’S TDD scheme.

During bandwidth reservation, the QoS manager is re-
sponsible for converting the bandwidth requirements into
the necessary number of time slots for transmitting the
data to meet the bandwidth guarantees. If the time slots
cannot be allocated, the bandwidth request will be rejected
by the QoS manager. UBR service is provided by placing
data in slots that are unreserved or unused by CBWABR
circuits. In addition to providing service to queues of dif-
ferent QoS requirements, a starvation prevention scheme
is also utilized to prevent starvation on UBR service. In
this scheme, at least one data slot is reserved and shared
among all UBR queues in a “round-robin” fashion so no
UBR connection will be starved even if some of them are
heavily loaded. This avoids any dominate usage of one
application over the bandwidth of the wireless link.

5.2 QoS Renegotiation
In a wired network, QoS is usually guaranteed for the

life time of each connection, In a wireless network with
host mobility, however, such a guarantee is not realistic
due to distance, noise or channel fading, etc. On the other

25

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 05:05:06 UTC from IEEE Xplore. Restrictions apply.

hand, many multimedia applications have used algorithms
that can adapt to bandwidths that users specify. For in-
stance, several video transmission schemes (nv, vic, etc.)
can adjust their resolution and frame rates to fit the band-
width parameters that they are given; several audio appli-
cations may adjust their sampling rate and level of quan-
tization based on the channel bandwidth. Such properties
have not been utilized for a self-adjusting multimedia ap-
plication because of the lack of QoS feedback from the
traditional packet network like the Internet, or even some
ATM networks.

In our work, the signaling mechanism we propose in-
forms the applications of the changes in QoS. The applica-
tions can benefit from this mechanism by simply setting up
interrupt handling routines so that when they are notified
of a change in QoS, they can adjust their data transmission
algorithm based on the current QoS information. This sig-
naling mechanism was implemented in the QoS manager
which has a direct access to the FAWN hardware to learn
about the current status of radio link. For example, when
the QoS manager detects the decrease in radio bandwidth,
it first reduces the service to the UBR traffic; If such a re-
duction is not sufficient to guarantee the requested band-
width for all ABR and CBR traffics, it then reduces the
ABWCBR service rate to its minimum requirement. Fi-
nally if the bandwidth is still not sufficient, the QoS man-
ager will prorate the assigned bandwidth on all CBR and
ABR connections and signal the corresponding handlers
created by the applications to notify the change of QoS.
Upon receiving the signal from the QoS manager, the han-
dler in each application can decide whether to accept the
newly assigned QoS, to terminate the connection, or to
renegotiate a new QoS through the provided API.

6 Fault Tolerant Experiments and Analyses
We conducted two experimental studies to verify the

implementation of our QoS scheme, and assess the effec-
tiveness of this scheme as a fault tolerant mechanism in
the presence network failures. These experiments are de-
scribed as follows.

6.1 QoS Renegotiation Experiment
The first experiment studies the effect of signal to noise

ratio on a wireless link in the SWAN system. As signal to
noise ratio decreases the number of erroneous packets re-
ceived increases, which maps to a decrease in available bit
rate over the link. We plot the performance of the system
as the bit rate decreases (in other words as the error rate
increases) by measuring the traffic through the system for
a system based on UDP datagram transmission (non QoS
system) as well as our QoS based system.

In the experiment we assume that there are three data
streams, A, B and C sharing the wireless link from a mo-

bile to a base station that is connected to the network.
Stream A is an ABR stream like anftp file transfer which
can use as much data rate as possible up to some max-
imum. In our experiment this maximum was 48 Kbps.
Streams B and C are CBR streams, like those used in
an uncompressed video transmission. Stream B needs 72
Kbps and stream C 96 Kbps. Stream C can operate at the
lower bit rate of 48 Kbps if it is informed of the change.
It can achieve this by reducing the number of frames per
second that it sends.

-
Stream A

Stream B

9 Stream

240 200 160 120 60 40 0
Total throughput (Kbps)

Fig. 5: Realizable throughput for a system with-
out QoS

6.1.1 Variation of Throughput for the Non-QoS
Case The graph in Fig. 5 shows the variation of actual
throughput versus the available data throughput for each
of the streams A, B and C. The system’s available data
throughput varies along the x axis from 240 Kbps down
to zero. The shaded regions in the graph indicate a range
of possible bitrates that data streams achieve, and the ac-
tual data rate tends to oscillate between the maximum and
minimum values in each region. The three streams, A, B
and C are presented to the communication channel. In the
first region from 240 to 216 Kbps of throughput, streams
A, B and C (whose total requirement is 216 Kbps) are ac-
commodated.

In the second region, from 216 through about 150
Kbps, the total bandwidth requirements of all the chan-
nels cannot be satisfied, and they begin to interfere with
each other. The scheduler attempts to give one third of
the total data rate to each of the channels. Streams B and
C can consume the third that they are given. However,
stream A under-utilizes the available data rate because it
only needs 48 Kbps, while a third of the bandwidth in this
region varies from 72 to 96 Kbps. This means that there is

26

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 05:05:06 UTC from IEEE Xplore. Restrictions apply.

spare throughput that streams B and C attempt to use. Both
streams have the potential of getting their full bandwidth
at some instances of time, thus the minimum bandwidth in
this region is set by a third of the available data rate and
the maximum bandwidth by the maximum data rate that
can be sent by each stream. Even though stream A's data
rate requirements do not exceed one third of the available
data rate, it is interfered with by streams B and C which
are using some of that capacity by putting large packets in
the single queue which delay stream A's packets.

The final range is from 144 through 0 Kbps. Here all
three streams can consume a third of the available band-
width and compete for the bandwidth evenly.

,96--

n s
E 72-

5

- -
I ABR, Stream A

, _ _ _ _ _ CBR, Stream6

I - - . CBR, StreamC

_-__--I
I I

Fig. 6: Realizable throughput for a system with
QoS

6.1.2 QoS Version In our implementation of the
QoS scheme, all the queues are sharing the available band-
width of 240 Kbps (with no errors). As the number of er-
rors increases over the link the effective data rate for each
of the queues decreases proportionately. Because the QoS
scheme allocates bandwidth on a slot basis the granularity
of the available data rate is one tenth of the total available
bandwidth.

The graph in Fig. 6 shows how each of the streams A, B
and C respond to variations in the available bit rate. When
there are no errors on the link stream A can operate at
48 Kbps (consuming two of the ten available timeslots),
stream B operates at 72 Kbps and stream C at 96 Kbps.
As the error rate increases slightly both streams B and C
need extra timeslots to continue to be provided with their
required bit rate. One slot comes from slack in the sys-
tem (only 9 of the 10 were in use initially) and the other
comes from stream A, which is an ABR stream and is

downgraded to 1 timeslot. As the data rate reduces fur-
ther, eventually stream C is unable to have its requested
96 Kbps. At this point the QoS manager sends it a sig-
nal telling it to renegotiate its required bit rate, and since
it can operate at 48 Kbps it does so. At about 50 Kbps
stream C needs 3 timeslots to provide the 48 Kbps. This
allows stream A to use another two timeslots for its ABR
traffic. As the error rate increases the two CBR streams
consume more timeslots, and correspondingly the band-
width available for stream A reduces. At an error rate of
about 95 Kbps stream B needs another timeslot to satisfy
its data rate needs. However, since stream A always needs
at least 1 timeslot and the CBR traffic of stream B cannot
support a lower bit rate, it is renegotiated to zero. This
makes more bandwidth available for stream A, but as the
error rate further increases it gives that bandwidth to the
CBR stream C which eventually stops when the error rate
rises to about 185 Kbps, when the throughput falls to 55
Kbps.

6.2 Network Link Failure Experiment

The objective of the next experiment is to examine
whether our QoS VC architecture and implementation
scheme truly provides the required fault tolerant mecha-
nisms in delivering the service it guarantees, and to com-
pare the results with a network without QoS assurance. In
this experiment, we consider link faults due to the failure
of radio interface, particularly when the mobile stations
move out of the radio range. That is, the quality on a failed
link will degrade to a level where no data can be transmit-
ted, and therefore traffic needs to be rerouted to another
link in order to maintain session continuity.

Node A (Source)

n

NO& D
(Destination)

N d e C (Source)

Fig. 7: Topology for a network link failure experi-
ment

27

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 05:05:06 UTC from IEEE Xplore. Restrictions apply.

6.2.1 Network Topology and 'lkaffic Flow As-
sumptions We consider a multi-hop wireless topology
based on SWAN environment as shown in Fig. 7. There
are four nodes in this network topology: Node A, Node
B, Node C, and Node D. Five SWAN radio links are set
up for communication between these nodes, marked as
Link 1 through Link 5 in Fig. 7. Without losing gener-
ality, we made the following assumptions during the our
experiment:

1.

2.

3.

4.

5 .

Nodes A, B, and C are source nodes while node D is
a destination node.

Initially, Node A sends a CBR traffic (CBR video 1,
abbreviated as V I) to Node D via Link 1, Node B
sends an ABR traffic (ABR datagram, abbreviated as
d l) to Node D via Link 2, and Node C sends a CBR
traffic (CBR video 2, abbreviated as v2) to Node D
via Link 3.

Both V I and v 2 are uncompressed video sessions
transmitted at frame rate of 0.5 frame/sec and 1
framehec, which yield the constant bit rate of 73
Kbps and 145 Kbps, respectively. The traffic d l is de-
signed to represent the ordinary datagram traffic thus
we assume it may consume all the bandwidth that is
left available.

Links 4 and 5 are robust rerouting links in the pres-
ence of link failures. When Link 1 fails, V I from
Node A will be routed to Node B via Link 4, then
delivered to Node D via Link 2. Similarly, Node C
will redirect v 2 to Node D via Link 5 and Link 2 in
the presence of Link 3 failure.

When Link 2 fails, the ABR traffic from Node B will
be redirected to Node D through Node A (not Node
Cl.

Note these nodes could communicate with other net-
work components (not shown here) via wired links or
other wireless links.

6.2.2 Impact on bandwidth utilization To exam-
ine the impact on bandwidth utilization on a particular
SWAN link, we conduct an experiment to measure trans-
mission efficiency when different traffic sources have to
be rerouted to share bandwidth of another link in the pres-
ence of link faults. In this experiment, the event of fault on
Link 1 is at time 15th sec., and later the fault is recovered
at time 85th sec. The event of fault on Link 3 starts at time
35th sec., and its recovery happens at time 130th sec. Dur-
ing the link down time, the associated traffic is rerouted to
Link 2, based on the decision made by the network routing
function.

Fig. 8: Received bandwidth in Link 2 using VC-
QoS

Fig. 8 shows the effect of link failure to the bandwidth
usage on Link 2 with respect to various traffic sessions. At
the beginning, traffic d l is able to use up all the bandwidth
until Link 1 fails. When Link 1 fails, traffic V I is rerouted
to Link 2 by the routing mechanism. The QoS scheme on
Link 2 will then allocate bandwidth used by d l to v l , since
ABR has lower priority than CBR. Similarly, when Link 3
fails, v 2 is granted the required bandwidth after rerouting
and d l can only use the bandwidth that is left after V I and
v2. In Fig. 8 we also see that d l regains bandwidth after
the recovery of Link 1 and Link 3.

As a comparison we repeat the same experiment us-
ing a non-QoS scheme (UDPLP). The result is shown in
Fig. 9. In this figure, we observe that due to the lack of
a QoS mechanism, the amount of bandwidth that a con-
nection can utilize is related to how aggressive the traffic
source is. As we have described, v l generates data at 73
Kbps, which is much less aggressive than d l . Therefore
between time 15th and the 85th sec., the quality of V I suf-
fers tremendous fluctuations by having to compete with
d l . Since v 2 is more aggressive (about 145 Kbps) than VI,
thus between the 35th sec. and the 85th sec., the observed
bandwidth shows that all these three sessions get about 1/3
of the bandwidth (Although V I is in fact slightly less than
the other two). When V I stops at time 85th second, v 2 and
d l both get half of the bandwidth. Also note the fluctua-
tion between time 15th and 35th sec. is more significant
than that between time 85th and 130th sec. This is because
V I transmits video frames slower (0.5 framelsec) and tends
to fall behind the competition with d l . However v 2 trans-
mits video at a faster pace (1 framelsec), so it can share the
bandwidth with d l more competitively. Moreover, due to
the overhead of UDPAP headers, the maximum bandwidth
observed by the receiver here (220 Kbps) is less than pre-
viously (240 Kbps) when using QoS VC scheme.

28

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 05:05:06 UTC from IEEE Xplore. Restrictions apply.

As clearly observed, in this UDP experiment where no
QoS is guaranteed, and packets are rerouted correctly after
link faults, none of the video sessions get the bandwidth
they require. Consequently, they become unattractive in
their real-time applications. Furthermore, video session
V I suffers great fluctuations during its link fault, making
the bandwidth it grabs from another link annoying and in-
tolerable to its receivers.

Transmission scheme
Network load
Mean delay (sec)

j i j

i ; : :
/ .Z("+..Z)

0 20 40 60 80 1W 120 140 160
TuneCec)

QoS-VC UDP(no QoS)
Heavy None Heavy None
1.224 1.224 1.474 1.193

Fig. 9: Received bandwidth in Link 2 using UDP

_ . .
Overhead
Variance

6.2.3 Impact on Delay Jitter We also examine the
impact to the delay jitter due to a link fault. This time,
however, we consider the fault on Link 2 that carries ABR
traffic. According to assumption 5 in Section 6.2.1, the
routing function in network layer reroutes the ABR traf-
fic from Link 2 to Link 1 after the link fault occurs. The
distributions of inter-frame delay of the traffic V I carried
by Link 1 before and after the traffic rerouting is shown in
Fig. 10 and Fig. 11.

Fig. 12 and Fig. 13 present results performed under
the UDP protocol for the purpose of comparison. The
results are as expected: under the QoS VC scheme, the
delay jitter is well controlled even in the presence of the
extra traffic due to link fault. On the other hand, using
the UDP protocol experiences a completely different re-
sult. VI has a decent delay distribution before Link 2 fails
(Fig. 12); but once Link 2 fails and d l are rerouted to Link
1, the delay jitters exhibit uncontrolled and unexpected de-
lays(Fig. 13). Table 2 summarizes the results obtained in
Fig. 10 through Fig. 13. We see the UDP (with no QoS)
experiences severe delay jitter problems (23.6% overhead)
in a heavy traffic situation. Our QoS VC mechanism, on
the other hand, is very stable and efficient. Though in Ta-
ble 2 it seems the QoS VC scheme introduces more over-
head (2.6%, computed as the extra delay in relative per-
centage to the UDP with no background traffic) than the
UDP does when no other load is added, overhead intro-

I 2.6% 2.6% 23.6% 0%
I 0.056 0.056 0.112 0.064

duced by the QoS VC scheme is still less significant then
the overhead caused by the TCP/UDP/IP headers.

4w
unurmpru"d Hon. -

1

" 5

Fig. 10: Before Link 2 fails, with QoS support

1

Fig. 11 : After Link 2 fails, with QoS support

Table 2: Summary of delay jitters observed in two
schemes

7 Conclusions
In this paper, we propose a new concept that faults in

telecommunications networks often manifest themselves
as reductions in service quality, which can be addressed
by schemes providing QoS guarantees. We define such a
scheme with an API which allows applications to specify
the required QoS for a connection. Our QoS VC scheme
delivers guaranteed QoS when the radio link is stable.

29

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 05:05:06 UTC from IEEE Xplore. Restrictions apply.

Fig. 12: Before Link 2 fails, without QoS support

Fig. 13: After Link 2 fails, without QoS support

#en the quality changes, the applications gets feedback
from this mechanism. Thus instead of an inadequate per-
formance due to insufficient and varying bandwidth, the
traffic source has a chance to adjust and best utilize the
changing link quality without dropping the connection.

The scheme has been successfully implemented on the
SWAN system, with ABR, CBR and VBR supports made
available in our current prototype. Modern multimedia
applications can be classified into these three categories.
The results obtained from the experimental studies on QoS
management in the presence of network failures show that
our QoS implementation on the wireless ATM network is
a valid, efficient, and powerful mechanism which provides
guaranteed service quality in an unpredictable, error-prone
mobile environment.

Acknowledgements
We would like to acknowledge C. Kintala, P. Agrawal

and the SWAN team of Bell Labs. for their support and
encouragement of this work.

References
[l] P. Agrawal, E. Hyden, P. Krzyzanowski, P. Mishra,

M. B. Srivastava, and J. A. Trotter, “SWAN: A Mo-
bile Multimedia Wireless Network,” in IEEE Per-
sonal Communications, Apr. 1996. pp. 18-33.

[2] A. Banerjea, Ph.D. Thesis, “Fault Management
for Realtime Networks,” University of California,
Berkeley, California, December 1994.

[3] D. Ferrari and D.C. Verma, “A Scheme for Real-
Time Channel Establishment in Wide-Area Net-
works,” in IEEE Journal on Selected Area in Com-
munications, vol. 8, no. 3, April 1990, pp. 368-379.

141 D.J. Goodman, “Cellular Packet Communications,”
in IEEE Transactions on Communications, vol. 38,

[5] M. Holland, G. Gibson, and D. Siewiorek, “Fast,
On-Line Recovery Failure Recovery in Redundant
Disk Arrays,” in Proc. 23rd International Sympo-
sium on Fault-Tolerant Computing (FTCS-23), June

[6] M.R. Lyu (ed.), Sojbvare Fault Tolerance, Wiley,
New York, Feburary, 1995.

[7] A. Merchant and P.S. Yu, “Design and Modeling of
Clustered RAID,” in Proc. 22nd International Sym-
posium on Fault-Tolerant Computing (FTCS-22),
June 1992, pp. 140-149.

[SI D. Patterson, G. Gibson, and R. Katz, “A Case for
Redundant Arrays of Inexpensive Disks (RAID),”
in Proc. Conference on Management of Data (SIG-
MOD’88), June 1988, pp. 109-1 16.

[9] S. Rangarajan, K. Ratnam, and A.T. Dahbura,
“A Fault-Tolerant Protocol for Location Directory
Maintenance in Mobile Networks,” in Proc. 25th In-
ternational Symposium on Fault-Tolerant Computing
(FTCS-25), June 1995, pp. 164-173.

[lo] D.P. Siewiorek and R.S. Swarz, in Reliable Com-
puter Systems: Design and Evaluation, Digital Press,
2nd edition, 1992.

[111 C.J. Sreenan and P.P. Mishra, “Equus: A QoS Man-
ager for Distributed Applications,” in Distributed
Platforms, Publishers Chapman & Ha11,1996, pp

[12] A. S. Tanenbaum, Computer Networks Third Edi-
tion, Prentice Hall, 1996.

[13] J. Trotter and M. Cravatts, “A Wireless Adapter
Architecture for Mobile Computing,” in Proc. 2nd
USENIX Symp. on Mobile and Location-Independent
Comp., Apr. 1994, pp. 25-31.

E141 H.M. Vin, P.J. Shenoy, and S. Rao, ”Efficient Fail-
ure Recovery in Multi-Disk Multimedia Servers,”
in Proc. 25th International Symposium on Fault-
Tolerant Computing (FTCS-25), June 1995, pp. 12-
21.

August 1990, pp. 1272-1280.

1993, pp. 422-431.

496-509.

30

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 05:05:06 UTC from IEEE Xplore. Restrictions apply.

