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ABSTRACT 

In this paper, we propose a novel video summarization method 
that combines video structure analysis and graph optimiza- 
tion. First, we analyze the structure of the video, find the 
boundaries of video scenes, then we calculate each scene’s 
skimming length based on its structure and content entropy. 
Second, we define a spatial-temporal dissimilarity function 
between video shots and model each video scene as a graph, 
then find each scene’s optimal skimming in the graph with 
dynamic programming. Finally, the whole video’s skim- 
ming is obtained hy concatenating the skimmings of the 
scenes. Experimental results show that our approach pre- 
serves the scene level structure and ensures balanced cover- 
age of the major contents of the original video. 

1. INTRODUCTION 

The amount of video data on today’s network is growing 
rapidly, thus giving rise to serious problems for efficient 
video browsing and management. To solve these problems, 
video summarizution, which engages in creating a short sum- 
mary of the original video to present its major content, has 
received more and more attentions in these days. Basically 
there are two kinds of video summaries: srutic video sum- 
mary, which is composed of a set of salient images extracted 
or synthesized from the original video, and dynamic video 
skimming, which is a shorter version of the original video 
made up of several short video clips. 

Compared with the static video summary, the dynamic 
video skimming makes more sense and is more attractive 
to the user. Recently much work has been conducted on 
dynamic video skimming generation. The Informedia sys- 
tem [l]  selects the video segments according to the occur- 
rence of important keywords in the corresponding caption 
text. Later work employs perceptually important features 
to summarize video. In [Z] the authors construct a user at- 
tention curve to simulate the user’s attention toward differ- 
ent video contents. [3] proposes a utility function for each 
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video shot, and video skimmings are generated by utility 
maximization. [4] assigns different weight scores on sev- 
eral important features of the video then selects the video 
skimming that maximizes the feature score summation. [5]  
analyzes video structure by graph modelling then the video 
skimming is generated according to this structure and the 
motion attention values for video shots. 

Edited videos have their intrinsic structures. In [6], the 
video is decomposed into a hierarchical V-TOC (Video Ta- 
ble Of Contents) tree structure. In 171, a scene transition 
graph is constructed by video shot clustering. [5]  uses a 
graph to model the video and obtains the video structure 
by normalized graph cut. 

A video summary should be able to cover the major 
video contents with balance. Although many video skim- 
ming generation techniques have been proposed, few of them 
have stressed on preserving the structure of the video. In 
this paper, we describe a novel video summarization ap- 
proach that combines video structure analysis and graph op- 
timization. We analyze the structure of the original video, 
find the scene boundaries, and determine each video scene’s 
target skim length. We then model each scene into a graph, 
create video skimming for each video scene with graph op- 
timization, and concatenate each local video skimming to 
obtain the final video skimming. Our approach preserves 
balanced structural coverage for the major video contents. 

The rest of the paper is organized as follows. In Sec- 
tion 2 we describe our video summarization method. In 
Section 3 we show experimental results and make some dis- 
cussions. Finally, in Section 4 we draw a conclusion and 
discuss our future work. 

2. VIDEO SUMMARIZATION PROCEDURE 

2.1. Video structure analysis 

A video narrates a story just like an article does. From a war- 
rative point of view, a video is composed of several video 
scenes {Sq ... Sc,}, each of which depicts an event like a 
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paramaph does in the articles. A video scene is composed ?h*"i . _ .  
by several semantic-related video shots {,hl...sh,,}, each 46 
of which is an unbroken image sequence captured continu- 
ouslv hv a camera. A video shot's role is iust like a sentence 

intermediate entity between video scenes and video shots, 
which is comoosed of several visuallv similar and temoo- Fig. 2. Example of loop and progressive scenes 

rally adjacent video shots. Thus from top to down, a video 
has a +level hierarchical structure: Video, Video scenes, 
Video shot groups, and Video shots [6]. Fig. 1 shows the 
hierarchical structure of a video. E n t r o p y ( S ~ )  = -- k 7 ,  lSgj 

log, ( j-). 
sg, ESCi lsc, SC. 

Tim. * With the above definition, given the target video skim- 
ming length L,, and the length of the video L,, the skim 
ratio T. is thus k. We determine the skim length SZ of 

",d- 

4 each scene and each group in the video as follows: , ,  . 

. . .  

I l l  / t i  I I I i L I I 

Fig. 1. Hierarchical video shucture 

In the remaining part of this paper, we use Ishi. isgJ and 
Is.. to represent the length of video shot shi, video shot 
group Sgj, and video scene Sc;, which is the total number 
of images containing in them respectively. 

The structure of video is built in a bottom-up manner. 
First, we decompose the original video into video shots. 
Our shot detection method is similar to the method in [8], 
while we improve the filtering step for more accuracy. Then 
we continue to build up the hierarchical structure with the 
windowed-sweeping method in [6] .  

The detected video scenes can be classified into two 
types: loop scenes and progressive scenes, as shown in Fig 2. 
A loop scene is composed of more than one video shot 
groups, while a progressive scene is composed of a series 
of dissimilar video shots. Loop scenes are often used to 
depict an event happening in a place that needs detailed de- 
scription, e.g., a conversation, while the progressive scenes 
are often used to depict changes between two events. Nor- 
mally the loop scenes contain more important contents that 
need repeated illustrations. 

be more important. For progressive scenes, we simply use 
their length to measure their importance. For loop scenes, 
however, since they are composed of several video shot groups, 
we define the content entropy of a scene Sci as: 

Obviously, longer and more complex video scenes should 

I .  

2. 

For each progressive scene Sc,, SZ, = Zsc= x 7.. If 
S, is less than the preset threshold.tl, we discard this 
progressive scene as too short skim does not make 
sense to people. 

Suppose that after the first round, the left skim length 
is Lb,, for the loop scenes {Scl ... Sc,}, SZ, = Lb3 x 

. In a similar manner, we dis- 
card Sc, if SZ, is less than the preset threshold tz .  

Entropy(Sc.) Y Isc ' xy=, Entropy(Sc,)XLsg 
3. For the remaining loop scenes {Sc: ... Sck}, we set 

Entrow(Sc: )x l s , !  

LT!, Entropy(Sc$)xi,-,,. ' "i = Lb3 

The above skim length assignment algorithm ensures that 
more important scenes are assigned with more skim length. 

2.2. Graph modelling and optimization 

With each scene's skimming length determined, we need 
to select several video shots according to the skim length 
of each video scene and generate the final skimming. The 
selected video shots should cover both the visual diversity 
and the temporal distribution of the original video scene. To 
achieve this, we model each video scene into a graph based 
on the video shots contained in it, then we select the optimal 
skimming by performing optimization on that graph. 

The spatial-temporal dissimilarity function between two 
video shots is defined as: 

Dis(shi, shj)  = 1 - VisualSiiim(sh,, sh j )  X e--lixdT(sh''ahj), 

Here VisuaZSim(shi, sh j )  can be m y  similarity measure 
between video shots, and here we use the color histogram 
correlation between video shot key frames. d*(sh,, s h j )  is 
the temporal distance between the middle frames of video 
shot sh; and shj ,  in terms of frame number. k is the param- 
eter to control the slope of the exponential function, also in 
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terms of frame number. To allow for a good coverage of 
both the visual and temporal contents of the video scene, 
we define the dissimilarity function such that it changes lin- 
early with the visual similarity, hut exponentially with the 
temporal distance. 

tion, we define the spatial-temporal relation graph as fol- 
lows: 

The spatial-temporal relation graph G(V, E )  is a graph 
defined on a video shot set Ssh = {shl,  .... sh,} such that: 

With the shot pairwise spatial-temporal dissimilarity func- 

G(V, E )  is a complete graph. 

Each vertex U, in the vertex set V is corresponding to 
a video shot shi in Ssh and vise versa. On each ui 
there is a weight wi which is equal to the length of 
video shot $hi. 

On each edge e,, there is an edge weight we.> which 
is equal to the.spatial-temporal dissimilarity function 
Dis( .shi , .yhj)  between video shots .shi and shj. The 
direction of edge eij is from the earlier shot to the 
later video shot. Thus G is acyclic. 

A simple example of the spatial-temporal relation graph 
on a scene is shown in Fig. 3. 

sboi I .w * Ml 5M 4 Eh.5 

Fig. 3. Spatial temporal dissimilarjty graph on 5 shots 

Given the target skimming length L,,, we can search a 
path in the spatial-temporal graph then use the video shots 
in that path as the video skimming for the video shot set. 
A path p = {uz,, ... U,,} in the spatial-temporal graph con- 
sists of a set of video shots {ah,,  , ...sl~=,~}, which is a video 
skimming whose total length is the summation ofthe weights 
on the vertexes U % , ,  ...uzm in the path. We use VWS@,) to 
represent the vertex weight summation of the path p i .  The 
length of the path is the summation of the spatial-temporal 
dissimilarity function between consecutive video shot pairs. 

For this path p , ,  we have two goals to meet: first, we 
want to maximize the length of the path L,,, which is the 
summation of dissimilarity function between consecutive 
video shots; second, we wmt  VWS(p,) to be as close to 
L,, as possible, hut not to exceed it. We combine these two 
goals in the objective function f o b j ,  described in the follow- 
ing video skimming generation problem: 

Problem 2.1 GivenasetofvideoshotsS,h = {sh l...sh,}, 
the spatial-tempural graph G(V, E )  built on Ssh, the tar- 
get video skimming length Lu8, and a weight parameter w, 

search thepathp, = {U,?, ... us,} such that it maximizes the 
objectfrrnction f o b j ( p s ,  Lus) = L,  +?U x (VWS(p,) - 
L), and VWS(p.4 5 LS. 

2.3. Solution and algorithm 

Problem 2.1 is a constrained optimization problem. Brute 
force searching is feasible hut inefficient; however, the proh- 
lem has an optimal substructure [9] and can be solved with 
dynamic programming. 

Suppose there are n video shots in the video shot set. 
We add a virtual vertex uo such that WO = 0 and weoj = 0 
for all 0 < j 5 n. We use p:L,17 = {us, ...} to denote a 
path in the spatial-temporal relation graph such that it be- 
gins with vertex U,, and its vertex weight summation is up- 
per bounded by 1,. We then use p z z , f 7  to denote the opti- 
mal path among all such paths, which means f o b j @ E z , 1 7 )  = 
maxi fopl(ph,,l,). T h ~ s p ; ~ , , ~ ~  is the path we want to find. 

Then we have the following optimal substructure: 

1. fobj(Pzx,f,) = W x ( Ish ,  - Lw), for all 1, 5 Loa; 

2. f o b j b z & )  = max~=,+,[Dis(sh,,sh,) + 
f a b j @ E , , l , - i , h , ) + w X I s h , ]  x T ( l v , Y ) , f o r z < n .  

Here 7(I7, y) = 1 if I ,  - Ish, 2 0, 
otherwise T ( I ~ ,  y) = 0. 

With the above optimal-suhstructure we can calculate 
the object function value of the optimal path foPt(p:O,L,s)  
and all optimal sub-solutions. Then we can easily trace hack 
and find the global optimal path as well as the skimming 
shots of the scene. In the case there are multiple global op- 
timal pathes, thc trace hack algorithm will also find all of 
them. We concatenate the skimmings of each video scene 
then get the whole video skimming. Note that the algorithm 
might generate a video skimming that is a little shorter than 
the target length LUs. This will not affect much ahout the 
content coverage of our video skim, in m y  case, we ran- 
domly select some video shots to fill that length. 

The time complexity of this dynamic programming al- 
gorithm is O(nz x L,,), while the spatial complexity is 
O(n x Lva).  For most video scenes, n and L,. would not 
he very large and the algorithm completes quite quickly. 

3. EXPERIMENTS AND DISCUSSIONS 

We implemented the video summarization algorithms then 
applied them to some video clips. We employed a PC with 
2.OG hz P4 CPU on the Win2000 OS for the experiments. 
The exponent control parameter k in the spatial-temporal 
dissimilarity function is set to 250, and the weight factor w 
in the objective function is set to 0.01. The threshold param- 
eters t l ,  t z  are set to 3 seconds and 4 seconds, respectively. 
The selected video clips are from movies and sitcom videos 
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described in Table 1. An example for a scene’s key frames 
(shown as video shot groups) and the selected skimming 
video shots’ key frames arc shown in Fig. 4. 

Fig. 4. Summarized scene key frames 

In our experiments, ten people were invited as test users 
to watch the video skimming generated with two compress 
rates 0.15 and 0.30 then answer several questions about the 
video contents. Suppose there are N key event scenes in the 
video, we use the question “What?” to ask the test users to 
tell how many key events they can perceive by watching the 
video skimming. Then the score for the question “What?” 
is calculated as the average event number that the users can 
find divided by N .  Similarly, question “Who?” deals with 
the key actors in the video. All scores are scaled to 10. 

Table 1 shows the numerical results for the user test. 
From the table we conclude that the video skimmings’ con- 
tent coverage is still quit good at a skim rate of 0.15. More- 
over, when the skim rate is 0.30, the skimming content cov- 
erage is even better. 

Table 1. User test results 

4. CONCLUSION AND FUTURE WORK 

Video summarization is an important technique for efficient 
video browsing and management. In this paper, we formu- 
late the video skimming generation problem as a two-stage 

optimization problem. We obtain the video scene bound- 
aries, determine each video scene’s skim length, then we 
modcl each scene into a spatial-temporal relation graph, and 
employ dynamic programming to find each scene’s optimal 
skimming. The whole video skimming is concatenated by 
each scene’s skimming. We implemented the proposed al- 
gorithm and obtained encouraging experimental results. 

In the future, we will further incorporate audio channel 
analysis to help our skimming generation. Moreover, intra- 
shot compression will be studied to shorten the video shots’ 
length in order to further magnify the content coverage. 
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