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Abst rac t  
Software reliability is an important met- 

ric that quantifies the quality of the software 
product and is inversely related to the number 
of unrepaired faults in the system. Fault re- 
moval is a critical process in achieving desired 
level of quality before software deployment in 
the f i e l d .  Conventional software reliability 
models assume that the time to remove a fault 
is negligible and that the repair process is per- 
f e c t .  In  this paper we examine various kinds 
of repair scenarios, and analyze the effect of 
these fault removal policies on the residual 
number of faults at the end of the testing 
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process, using a non-homogeneous continuous 
time Markov chain. The fault removal rate 
is initially assumed to be constant, and it is 
subsequently extended to cover time and state 
dependencies. These fault removal scenar- 
ios can be easily incorporated using the state 
space view of the non-homogeneous Poisson 
process. 

1 In t roduct ion  

The increase in the production and main- 
tenance costs of software relative to  those 
of hardware in computer systems have 
prompted considerable attention to  the life- 
cycle management of software systems. Soft- 
ware is an integral part of many critical and 
non-critical applications, and virtually any 
industry- automotive, avionics, oil, telecom- 
munications, banking, semiconductors etc., is 
dependent on computers for their basic func- 
tioning. As computer software permeates our 
modern society, and will continue to do so 
at an increasing pace in the future, software 
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quality assurance becomes an issue of critical 
concern. 

Software reliability is accepted as a key 
factor in software quality since it quantifies 
software failures - which can make a power- 
ful system inoperative[Lyu96]. It is defined as 
the probability of failure-free software opera- 
tion for a specified period of time in a speci- 
fied environment[MI087] and is inversely re- 
lated to the number of unrepaired faults in 
the system. Large software systems contain 
millions of lines of code and the sheer size 
of the product poses considerable problems 
in terms of the ability of software design- 
CI'S to rapidly achieve product quality. Most 
software errors are latent, i.e., they exist in 
the software system for a long time before 
they are detected, and they may remain un- 
repaired for a long time even after they are 
detected, which amplifies their impact. 

Conventional software reliability models 
assume that the time to repair a fault is neg- 
ligible and that the process of repairing a 
fault is perfect. This assumption is clearly 
imprxtical a.nd needs to be amended in or- 
der to present inore realistic software testing 
scenarios. The time of removal of the fault, 
in general, does not coincide with the time 
of the original failure. This time lag is not 
explicitly accounted for in the software relia- 
bility models because it significantly compli- 
cates the failure process, making it impos- 
sible to obtain closed form expressions for 
various metrics of interest. The number of 
faults detected and removed by a particular 
time will depend on the actual time taken 
to i'emove the defect, and this number will 
be less than the instanta.neous removal case. 
'l'he residual nuniber of faults in the software 
before it  is deployed in the field are the soul 
cause of software unreliability, and hence is 
an extremely important measure for the soft- 
ware developer. This is specially true for the 
developer of a commercial off-the-shelf soft- 

ware package that will run on thousands of 
individual systems. The reliability of a com- 
mercial software is important to its users, 
however, they never report their reliability 
experience. They report the occurrence of 
a specific failure to the software development 
organization, with the presumption of getting 
the underlying fault fixed, so that the failure 
does not recur. Thus commercial software or- 
ganizations focus on the residual number of 
faults, rather than reliability as a measure of 
software quality[Ken93]. Fault removal pro- 
cesses affect the residual number of faults in 
the software, and thus have a direct impact 
on the quality of a software product. 

In this paper, we examine the various 
kinds of fault removal scenarios and ana- 
lyze the effect of these various types of fault 
removal policies on the residual number of 
faults at the end of the testing process, using 
a non-homogeneous continuous time Markov 
chain. The fault removal rate is initially 
hypothesized to be constant, and is subse- 
quently extended to cover cases covering time 
and state dependencies. These fault removal 
scenarios can be easily incorporated using 
the state space view of the non-homogeneous 
Poisson process. 

The sequel of the paper is organized as 
follows. Section 2 presents an overview of fi- 
nite failure non-homogeneous Poisson process 
(NHPP) models; Section 3 presents the state- 
space view of the non-homogeneous Poisson 
process software reliability models; Section 4 
incorporates finite repair time into the model 
and presents various fault removal policies, 
Section 5 presents some numerical results, 
and Section 6 presents conclusions and future 
work. 

2 Finite Failure NHPP Models 
This section provides an overview of the 

finite failure non-homogeneous Poisson pro- 
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cess software reliability models. This class of 
models is concerned with the number of faults 
detected in a given time and hence are also 
referred to as “fault count models” [G079]. 

Software failures are assumed to display 
the behavior of a non-homogeneous Pois- 
son process (NHPP), in which the param- 
eter of the stochastic process, X ( t )  is time- 
dependent. The function X ( t )  denotes the in- 
stantaneous failure intensity. 

Given X(t) ,  the mean value function 
m(t) = E [ N ( t ) ] ,  where m(t) denotes the ex- 
pected number of faults detected by time t ,  
satisfies the relation, 

r t  

and, 

m(t) = J, X(s)ds 

N ( t )  as defined above follows a Poisson 
distribution with parameter m(t), that is, the 
probability that N ( t )  is a given non-negative 
integer n is determined by, 

n = O , l , .  ..,CO 

The time domain models which assume the 
failure process to be an NHPP differ in the 
approach they use for determining X ( t )  or 
m(t). The NHPP models can be further clas- 
sified into finite failures and infinite failures 
models. 

2.1 Goel-Okumoto Model 
The Goel-Okumoto model is one of the 

most influential NHPP-based software reli- 
ability models. Its mean value function, 
m(t) ,  and the failure intensity, A(t), are given 
by[G079] 

and 
X ( t )  = age-g‘ (5) 

where g is the failure occurrence rate per 
fault. 

2.2 Generalized Goel-Okumoto Model 
The GO model assumes that the failure 

intensity of the software system decreases 
as testing progresses. However, initially the 
testing team is not familiar with the software, 
hence the fault removal is slow, but after a 
certain time the team gains sufficient expe- 
rience and knowledge about the behavior of 
a product under test which leads to  higher 
rates of fault removal until a time is reached 
when a large number of faults have been de- 
tected and removed, thus becoming increas- 
ingly more difficult to detect and remove new 
ones. Therefore, the failure rate increases ini- 
tially and then decreases. A variation of the 
GO model, known as the Generalized GO 
model[Goe85] was proposed to capture this 
increasing/decreasing failure rate. The mean 
value function, m(t), and the failure inten- 
sity, A ( t > ,  of the software are given by 

and 
Finite failures NHPP models assume that ~ ( t )  = ag7e-gt’t7-l (7) 

\ I  

the expected number of failures observed dur- 
ing an infinite amount of testing time, or where g and 7 reflect the quality of testing. 

v 

unlimited resources will be a finite number 
a[Far96]. Some of the popular finite failure 2.3 Delayed S-Shaped 
NHPP models are discussed in the subse- 
quent sections. 

The delayed S-shaped software reliability 
growth model was proposed to model the 
software fault removal phenomenon in which 
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the chain can be truncated to 0 states, where 
0 is given by 

e = r.1 

Figure 1. Non-homogeneous Markov 
chain for NHPP models 

there is a time delay between the actual de- 
tection of the fault and its reporting. The 
test process in this case can be seen as con- 
sisting of two phases: fault detection and 
fault isolation. The mean value function, 
m(t), and the failure intensity, A(t), in this 
case are given by[Y0083] 

where g is the fault removal (failure detection 
and fault isolation) parameter. 

3 State-space view of NHPP 
The NHPP models described in the previ- 

ous section provide a closed-form analytical 
expression for the expected number of faults 
or mean value function] m(t). However, the 
non-homogeneous Poisson process can also be 
represented by a non-homogeneous continu- 
ous time Markov chain as shown in Figure 
1 [TriS2] I 

The expected number of faults can also 
be computed numerically by solving the 
Markov chain shown in Figure 1 using 
SHARPE[ST87]. SHARPE (Symbolic Hier- 
archical Automated Reliability and Perfor- 
mance Evaluator) is a software tool that an- 
alyzes stochastic models. For more informa- 
tion about the tool, the reader is referred to 
[STP95]. The chain in Figure 1 has infinite 
number of states, but for practical reasons 

where a is the expected number of failures 
that would be observed given infinite testing 
time or unlimited resources, as in case of the 
finite failure NHPP models. 

The maximum likelihood estimate of a is 
obtained from the observed software failure 
data using CASRE[LN92]. SHARPE is de- 
signed to solve homogeneous CTMCs, but 
we get around this problem by dividing the 
time axis uniformly into small time intervals, 
where within each time interval] the failure 
intensity, A ( t ) ,  can be assumed to be con- 
stant. Thus, within each time interval, the 
non-homogeneous continuous time Markov 
chain reduces to a homogeneous continuous 
time Markov chain which can then be solved 
using SHARPE. This value of A ( t )  is used 
to obtain the state probability vector of the 
Markov chain at  the end of that time interval. 
These state probabilities then form the initial 
probability vector for the next time interval. 
Let p i ( t )  denote the probability of being in 
state i at time t .  The mean value function] 
m(t), can then be computed as 

8 

m(t) = i * &(t)  (11) 
i = O  

The NTDS data[G07Q1 JM72] from the 
U.S. Navy Fleet Computer Programming 
Center consisting of errors in the develop- 
ment of software for a real-time] multicom- 
puter complex which forms the core of the 
Naval Tactical Data System (NTDS) is used 
in this study. The NTDS software consisted 
of 38 different modules. Each module was 
supposed to follow three stages: the pro- 
duction (development) phase, the test phase, 
and the user phase. The parameters of the 
three NHPP models described above were es- 
timated] and then the mean value function is 
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Expected Number of Faults vs. Time (GO Model) 
(Cwnparison d AnalyUcal and NHCTMC) 

30.0 , 

Tlme 

Figure 2. Analytical and numerical 
mean value functions - GO model 

computed for each of these models by solving 
the Markov chain in Figure 1. Figures 2, 3, 
and 4 show the analytical mean value func- 
tion and the one obtained using a numerical 
solution of the non-homogeneous continuous 
time Markov chain (NHCTMC) for GO, S- 
shaped and the Generalized GO Models re- 
spectively. 

As observed from Figures 2 - 4, the nu- 
merical solution of the mean value function 
obtained using the state-space view of the 
non-homogeneous Poisson process gives us a 
very good approximation to the analytical so- 
lution. This view enables us to incorporate 
more realistic features into the NHPP based 
software reliability models, which were ini- 
tially based on oversimplifying assumptions 
in order to ensure mathematical tractability, 
as discussed in the subsequent sections. 

4 Fault Removal Process 
The NHPP model presented as a non- 

homogeneous continuous time Markov chain 
(NHCTMC) is extended in this section to 

Expected Number of Faults vs. Time (S-shaped Model) 

3o.C 

~1 20.0 

3 
j 
id 
w 10.0 

0.0 

(Compa~Ison of Analytical and NHCTMC) 

Time 

Figure 3. Analytical and numerical 
mean value functions - S-shaped 
model 

Expected Number of Faults vs. Time (Generalized GO Model) 

30.0 

4 20.0 
9 I 

10.0 

0.0 

(Compafison of Anaiylical and NHCTMC) 

100.0 200.0 
Tim 

Figure 4. Analytical and numerical 
mean value functions - Generalized 
GO model 
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incorporate explicit fault removal process. 
Without loss of generality, we use the failure 
rate of the GO model. We assume that test- 
ing continues even during the repair process, 
and none of the faults are so severe that test- 
ing is rendered impossible. Thus, the faults 
are queued until they are repaired. The faults 
are repaired one at a time, and thus the de- 
tected faults form a queue up to a maximum 
of 8 - I ,  where 1 is the number of faults re- 
moved and 8 is as given in Equation (10). 
The state space for the Markov chain in this 
case is a tuple ( i ,  j ) ,  where i is the number of 
faults removed and j is the number of faults 
detected, pending to be removed. 

The fault removal rate is assumed to be of 
the following types: 

0 Constant: This perhaps is the simplest 
possible situation where the fault re- 
moval rate is a constant denoted by 
p ,  and the mean fault removal time is 
given by l/p. Figure 5 shows the non- 
homogeneous continuous time Markov 
chain (NHCTMC) with constant fault 
removal rate. A few attempts[Kre83, 
Lev901 made to incorporate explicit 
fault removal into the software reliability 
models have been restricted to this type. 

0 Fault dependent: The fault removal rate 
could depend on the number of faults 
pending for removal, since the more the 
number of faults pending, the quicker 
they are removed. Figure 6 shows the 
model where the fault removal rate de- 
pends on the number of faults pending 
for removal. If j is the number of faults 
pending for removal, the removal rate p 
is given by 

p = j * k  (12) 

0 Time-dependent: The fault removal rate 
could also depend on time since latent 
faults are harder to remove. The intu- 
ition behind this is that the fault re- 

d' 
Figure 5. NHCTMC - Constant Fault 
Removal Rate 

10) \ l I  

"i 
Figure 6. NHCTMC - Fault Dependent 
Removal Rate 
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Fault Removal Rate vs. Time 

0.20 

0.15 

t 

a“ 

- B 0.10 

1 

0.05 

I 
I 

I 
I 

I 
I 
I 

I 
arpb = 0.19, beta - 0.001 

I , @ha I 0 19. beta = 0.005 
I aiphhe=0.19.beta=0.01 
I 

100.0 200.0 
0.00 

0.0 
Time 

Figure 7. Time-dependent fault re- 
moval rate 

moval rate is lower at the beginning of 
the testing and increases as testing pro- 
gresses or as the deadline for the delivery 
of the software approaches, and reaches 
a constant value beyond which it cannot 
increase. The time-dependent fault re- 
moval rate is hypothesized to be of the 
form 

p( t )  = a(1 - e-Pt)  (13) 

Figure 7 shows the p(t )  for various val- 
ues of Q and p. In this case, the 
NHCTMC shown in Figure 5 is solved by 
approximating the time-dependent fault 
removal rate p ( t )  at every time step in 
a manner similar to that of X(t), so that 
every time step we essentially solve a ho- 
mogeneous Markov chain. 

The expected number of faults removed, 
m ~ ( t )  and the expected number of faults de- 
tected, m ~ ( t ) ,  by time t in case of Figure 5 
and 6 is given by Equation (14), and (15) re- 
spectively. 

a a--i 

i = O  j = O  

a /I-i 

The process of fault removal can also be 
delayed in case of some software development 
projects. Delayed fault removal can be of two 
types: 

0 Fault removal can be deferred till a cer- 
tain number Cp of faults are detected 
and are pending to be removed. The 
NHCTMC in this case is as shown in Fig- 
ure 8. The expected number of faults re- 
moved and detected are given by Equa- 
tions (14) and (15) respectively. 

0 The fault removal process can be de- 
layed and this delay can be incorporated 
into the NHCTMC using a phase type 
distribution[Tri82] as shown in Figure 9. 
l / p ~  denotes the mean time in phase 1 
and l/p2 denotes the mean time in phase 
2. The mean repair time l /p  is given by 

In Figure 9, state (i, j ,  d) implies that 
i faults have been removed, j faults 
have been detected and are queued for 
removal, and “d” implies intermediate 
phase of repair. The expected number 
of faults removed, m ~ ( t )  and the ex- 
pected number of faults detected, mr,(t) 
is given by Equation (17) and (18) re- 
spectively. 

B 8 - ;  
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Figure 8. NHCTMC 
Dependent Delay) 
Rate 

4' Figure 9. NHCTMC - (Time - Delayed) 
w Fault Removal Rate 

... 

6 6 - i  

i = O  j = O  

5 Numerical Results 
d' 

- Delayed (Fault The non-homogeneous continuous time 
Fault Removal Markov chain (NHCTMC) with constant 

fault removal rate is solved for different val- 
ues of p ,  using SHARPE. Figure 10 shows 
the mean value function obtained by solving 
the NHCTMC in Figure 5 for various values 
of p.  

The expected number of faults removed 
decreases as the fault removal rate p de- 
creases which is quite expected. The cu- 
mulative defect removal curve is similar t o  
the cumulative defect detection curve, and 
as the defect removal rate increases, the de- 
fect removal almost follows the defect detec- 
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Expected Number of Faults vs. Time 
(Detected and Removed) 

Utilization vs. Time 
(Constant Remlr Rate) 

Faults Removed (mu = 0.05) 
Faults Removed (mu = 0.1) 

gi 2 0 0 -  
a 

00 100 0 2w 0 
lime 

Figure 10. Mean Value Function 
Constant Fault Removal Rate 

tion curve, and we move closer and closer to 
the original assumption of instantaneous re- 
pair. However, as the fault removal rate is 
made higher and higher, there are increased 
chances that the fault removal mechanism re- 
mains idle during the testing process due to 
the lack of pending faults. The extent to 
which the fault removal mechanism is busy 
is reported by computing the utilization as 
shown in Figure 11. 

The utilization could be used to estab- 
lish bounds on the fault removal rates, since 
in the case of most software development 
projects, the debuggers are the same as soft- 
ware developers, and for cost-effective testing 
we would like to minimize the idle time as 
much as possible, at the mine time achieve a 
desired level of softwa.re quality, by removing 
a maximum number of faults at the end of 
testing. 

Figure 12 shows the expected number of 
faults removed as a function of time, for var- 

100.0 2GQ.O 
0.0 ' 

0.0 
T im 

Figure 11. Utilization for Constant 
Fault Removal Rate 

ious values of k in Equation (12). The fault 
removal rate in this case depends on the num- 
ber of pending faults, and the expected num- 
ber of faults removed is directly related to  the 
proportionality constant k i.e., the expected 
number of faults removed increases as k in- 
creases. 

The expected fault removal rate in this 
case does not have a closed form expression 
and can be computed as a function of time, 
while solving the NHCTMC, and is shown in 
Figure 13. 

The expected number of faults as a func- 
tion of time for delayed fault removal where 
fault removal starts only after a certain num- 
ber 4 of faults is accumulated, is shown in 
Figure 14 for various values of 4. The cu- 
mulative defect removal curve is similar to 
the cumulative defect detection curve, except 
that it is skewed in time due to the defect re- 
pair delay. The actual delay depends upon 
the value of 4. 
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Expected Number of Faults vs. Time 
(Detected and Removed) 

Expected Number of Faults vs. Time 30.0 

Faults Detecled 

/ '  

Thne 

Figure 14. Mean value function - De- 
Time 

Figure 12. Mean Value Function - 
Fault Dependent Removal Rate 
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Fault Removal Rate vs. Time 
(Fault Dependenel Removal Rate) 
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The expected number of faults as a func- 
tion of time for a two phase-delayed repair, 
for different values of p 1 ,  holding p2 constant 
at 0.2 is as shown in the Figure 15. The cu- 
mulative fault removal curve in this case is 
linear with respect to time, and the expected 
number of faults removed decreases as p1 de- 
creases. 

The expected number of faults in case 
of time-dependent fault removal rate is as 
shown in Figure 16. The cumulative defect 
removal curve in this case also is similar to 
the defect detection curve, except that it is 
delayed in time, and this delay depends on 
the value of p, since Q is held constant, where 
(Y and p are as per Equation (13). 

Figure 13. Fault Dependent Removal 6 Conclusions and Future Work 
In this paper, we have incorporated ex- Rate 

plicit fault removal into the finite failure 
NHPP models, which assume instantaneous 
repair to ensure mathematical tractability. 
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Expected Number of Faults vs. Time 
(Detected and Removed) 

Faults Removed (mu1 = 0.1) 
Faults Removed ("11 = 0.05) 
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Figure 15. Mean Value Function - De- 
layed (Time) Removal 

Expected Number of Faults vs. Time 
(Detected and Removed) 

-." I I 

i *O'O - 

i 
i 
w 10.0 - 

Faults Detected 
FaultsRemoved(alpha-0.19. bata=0.001) 

Tim 

Figure 16. Mean Value Function - 
Time Dependent Fault Removal 

Using the state-space view of the non- 
homogeneous Poisson process, the unrealis- 
tic assumption of immediate repair can be re- 
laxed, however, we have to rely on the numer- 
ical solution of the Markov chain, rather than 
obtaining a closed-form expression for the 
mean value function. Various types of fault 
removal policies have been studied, viz., con- 
stant fault removal rate, time dependent fault 
removal rate, and delayed repair. In general, 
finite fault removal time, reduces the number 
of faults removed at  the end of testing time, 
or increases the residual number of faults in 
the software at the end of testing, and thus 
the estimate of the quality of the software 
product obtained using the NHCTMC model 
with explicit fault removal will be more re- 
alistic than that obtained from models using 
instantaneous repair. 

The NHCTMC can be extended to  incor- 
porate fault reintroduction during removal 
process, along with the various repair poli- 
cies. Predictions in the operational phase can 
be made using the NHCTMC, and stopping 
rules can be developed for optimum software 
release times. 

The NHCTMC model should be validated 
using data from real software development ef- 
forts. Simulation techniques can be explored 
for a more complicated fault removal process. 
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