
Model Validation Using Simulated Data

Swapna S. Gokhale1�, Michael R. Lyu2y, Kishor S. Trivedi1z

1 Dept. of Electrical and Computer Engg.2 Computer Science & Engineering Dept.
Center for Adv. Comp. and Commn. The Chinese University of Hong Kong

Duke University, Durham Shatin, Hong Kong
fssg,kstg@ee.duke.edu lyu@cse.cuhk.edu.hk

Abstract

Effective and accurate reliability modeling requires the
collection of comprehensive, homogeneous, and consistent
data sets. Failure data required for software reliability
modeling is difficult to collect, and even the available data
tends to be noisy, distorted and unpredictable. Also, the
complexity of the real world data might obscure the proper-
ties of the reliability models which are based on simpler as-
sumptions. These properties may be revealed by evaluating
the models using simpler data sets. Towards this end, we
have created 20 sequences of interfailure times each from
five software reliability models using rate-based simulation
technique, and validated the models using the simulated
data sets. In this paper, we describe the experimental set-
up, model validation results, and the lessons learned during
the experiment. Having established the credibility of simu-
lation to generate failure data, we also show how the failure
process underlying a failure data set can be described more
accurately by simulating it using a combination of reliabil-
ity models, as opposed to a single model as per conventional
analytical techniques.

1 Introduction

Effective and accurate reliability modeling requires com-
prehensive, complete and consistent data sets. A plethora
of software reliability models to predict the reliability and
error content of software systems have appeared in the lit-
erature in the last 20 years, however, an extensive valida-
tion of these models seems to be lacking. The accuracy of
these models when validated using the very few available

�Supported by a IBM Fellowship
ySupported by the Direct Grant from CUHK
zSupported by a contract from Charles Stark Draper Laboratory and in

part by Bellcore as a core project in CACC

data sets varies significantly, and thus despite the existence
of numerous models, none of them can be recommended
unreservedly to potential users.

Failure data required for software reliability modeling
are very difficult to collect because of a number of reasons.
Industrial organizations are reluctant to release their reli-
ability data for use by external parties, in the fear that it
may reflect badly on the quality of the software product.
As the length of the software life-cycle reduces due to the
various marketing pressures, the amount of resources ex-
pended in testing and validation shrink, further jeopardizing
the collection of failure data. Even when data are available,
they are often noisy, distorted, and unpredictable. Data col-
lected during the testing and validation phases of the actual
projects are influenced by process and product characteris-
tics that are not taken into account in most models. The
complexity of real world failure data thus might obscure
the properties of software reliability models that might be
revealed by validating these models using simpler data sets.

Rate-based simulation offers a viable mechanism to
supply carefully controlled, homogeneous data sets, with
known characteristics which can be used to evaluate the var-
ious assumptions of existing reliability models. We have
created sets of interfailure times using simulation from five
very popular software reliability models, executed the same
five models on each of these sequences, analyzed the behav-
ior of the models on the simulated data, and obtained model
validation results. In this paper we discuss the experimen-
tal set-up, including the difficulties encountered, the results
obtained, and the lessons learned in choosing the most ap-
propriate reliability model. We also compare the results of
this controlled experiment, with the validation results ob-
tained using the interfailure data sets from the Handbook of
Software Reliability Engineering [3]. After having demon-
strated the utility of simulation to generate failure data, we
also show how simulation can be used to reproduce the fail-
ure behavior underlying a failure data set from a software

1

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 10,2021 at 05:14:36 UTC from IEEE Xplore. Restrictions apply.

project more accurately using a combination of reliability
models, rather than a single reliability model as in case of
the conventional analytical techniques.

The sequel of the paper is organized as follows: Sec-
tion 2 presents a brief overview of the NHCTMC pro-
cesses, rate-based simulation for these processes, and the
NHCTMC models used in this study, Section 3 describes
the experimental set-up, and discusses the results of the ex-
periment, Section 4 presents the model validation results
using real data, Section 5 demonstrates the ability of simu-
lation to reproduce the failure process underlying a failure
data set collected during the test phase of a software project,
and Section 6 presents conclusions and directions for future
research.

2 NHCTMC Processes

2.1 Overview

We consider a class of non-homogeneous continuous
time Markov chain (NHCTMC) processes, where the be-
havior of the stochastic processfX(t)g of interest depends
only on a rate function�(n; t). The rate function�(n; t) de-
pends on the state of the system at timet which is denoted
byn, wheren in general is a tuple. LetX(t) be the number
of “events” occurring in an interval(0; t). “Events” here
refers to the number of times the phenomenon of interest
occurs (number of failures, for example) and this number
denotes the state of the system. Thusn in this case is a sin-
gle number, and will be referred to hereafter asn. fX(t)g
can be viewed as a pure death process if we assume that the
maximum number of events that can occur in the time inter-
val of interest is fixed, and the remaining number of events
forms the state-space of the NHCTMC. Thus, the system is
said to be in statei at timet, if we assume that the maxi-
mum number of events that can occur isN , andN�i events
have occurred by timet. It can also be viewed as a pure birth
process, if the number of occurrences of the event forms the
state space of the system. In this case, the system is said
to be in statei at timet, if the event has occurredi number
of times up to timet. Let N0(0; t) denote the cumulative
number of events in the interval(0; t), andm0(0; t) denote
its expectation, thusm0(0; t) = E[N0(0; t)]. The notation
m0(0; t) indicates that the process starts at timet = 0, and
the subscript0 indicates no events have occurred prior to
that time. Pure birth processes can be further classified as
“finite events” and “infinite events” processes (if the events
of interest are failures, then finite failures and infinite fail-
ures), based on the value thatm0(0; t) can assume in the
limit. In case of a finite event pure birth process, the ex-
pected number of events occurring in an interval of infinite
duration is finite (i.e.,lim

t!1
m0(0; t) = a, wherea denotes

the expected number of events that can occur in an infinite

...

(N-1,t)(N,t) (1,t)

0N N-1

λ λ λ

Figure 1. Pure Death NHCTMC

...0 1 2

(0,t) (1,t) (2,t)λ λ λ

Figure 2. Pure Birth NHCTMC

interval), whereas in case of an infinite event process, the
expected number of events occurring in an interval of infi-
nite duration is infinite (i.e.,lim

t!1
m0(0; t) = 1). Although

these definitions are presented for specific initial conditions
(the state of the process is 0 att = 0), they hold in the case
of more general scenarios. Figure 1 and Figure 2 show the
pure death and pure birth NHCTMC, respectively.

2.2 Simulation for NHCTMC Processes

Expressions for the occurrence times of the events of
a NHCTMC process are rarely analytically tractable [6].
However, the sample path of a NHCTMC can be easily sim-
ulated using rate-based simulation. The occurrence time of
a first event of a pure-birth NHCTMC process can be gener-
ated using the algorithm shown in the Figure 3, expressed in
a C-like form [5]. The functionsingle event() returns the
occurrence time of the event. In the code segment above,
occurs(x) compares a random number withx, and returns
1 if random() < x, and0 otherwise. The algorithm de-
scribed above can be modified to generate a sequence of in-
terfailure times, or a sample path of the NHCTMC, and the
modified algorithm is shown in the Figure 4. In the algo-
rithm shown in Figure 4, simulation is conducted till a cer-
tain maximum number of events (denoted bymax events)
occur, or up to a certain maximum time (denoted bytmax),
whichever is earlier. Although the simulation algorithms
presented here are for a pure-birth process, they are equally
applicable to a pure-death process with suitable modifica-
tions.

/* Input parameters and functions are assumed to
be defined at this point */
double single_event(double t, double dt,

double (*lambda) (int,double))
{

int event = 0;
while (event == 0)
{
if (occurs(lambda(0,t) * dt))

event ++;
t += dt;
}
return t;

}

Figure 3. Single Event Simulation Algorithm

2

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 10,2021 at 05:14:36 UTC from IEEE Xplore. Restrictions apply.

/* tmax, dt, beta(n,t), and max_events are
assumed to be set at this point */
double *seq_inter_fail(double tmax, double dt,

double (*lambda) (int,double),
int max_events)

{
int num_events = 0;
double time_detected[max_events],
inter_fail_time[max_events], t = 0.0;
time_detected[0] = 0.0;

while((num_events < max_events) && (t < tmax))
{

if (occurs(lambda(num_events,t)*dt))
{

num_events++;
time_detected[num_events] = t;

}
t += dt;

}
for(i=0;i<num_events;i++)

inter_fail_time[i] = time_detected[i+1]
- time_detected[i-1];

return inter_fail_time;
}

Figure 4. Simulation Algorithm to Generate
Sample Path of a NHCTMC

2.3 NHCTMC Based Software Reliability Models

Some of the popular software reliability models are
NHCTMC based, and thus simulation techniques for the
analysis of NHCTMC processes offers an attractive ap-
proach to study and enhance these models. Table 1 presents
a brief overview of the NHCTMC models used in this study,
in terms of their rate functions, interpretation of the param-
eters of the rate functions, and their classification.

3 Experimental Study

In this section, we describe the experimental set-up, and
discuss the results of the experiment.

3.1 Experimental Procedure

The experimental set-up consists of the following steps:

1. Estimating the parameters: The parameters of the
rate functions of the five models described in Sec-
tion 2.3 are estimated from field data [3]. The field
data consisted of 131 failures in 68000 execution min-
utes.

2. Generating TBE Sequences:20 time between execu-
tion (TBE) sequences are generated from each of the
five models, resulting in a total of 100 sequences.

3. Validating the models: CASRE [4] was used to run
the same five models on the sequences. CASRE is
a software reliability modeling tool implemented in

a Microsoft Windows environment. The core mod-
eling capabilities of this tool are the libraries imple-
mented for version 5 of the software reliability mod-
eling tool SMERFS [2]. Model validation is carried
out using both maximum likelihood (ML) as well as
least squares (LS) methods of parameter estimation.
A recent study by Wood [7] shows that although LS
estimates do not possess desirable properties of unbi-
asedness and minimum variance possessed by the ML
estimates, they are numerically more stable than the
ML estimates.

4. Ranking the Models: The models are then ranked
with respect to KS goodness-of-fit [6], bias, bias trend,
and prequential likelihood. Model bias, bias trend and
prequential likelihood are used to evaluate model ap-
plicability [1].

3.2 Results and Discussion

The results of the experiment described in Section 3.1 are
summarized in this section. For every data set, an overall
rank was computed for each model by equally weighing the
ranks according to KS test, bias, bias trend and prequential
likelihood (PL). The results of model validation for a set of
20 sequences of interfailure times simulated from a particu-
lar model, were summarized by taking averages of the ranks
computed for each of the 20 sequences. Model validation
results obtained from using maximum likelihood parameter
estimation method are summarized in Tables 2-6. Similar
results were obtained for validation using the least squares
estimation method, but are not presented here, due to space
constraints. For Tables 2-6, even-numbered columns give
the average rank of the model across all inputs with respect
to prequential likelihood, model bias, model bias trend, and
KS goodness-of-fit test. Column 1 gives the overall rank
of the model, computed by equally weighting the individ-
ual ranks according to PL, model bias, model bias trend,
and KS test, while odd-numbered columns after the first
column give the standard deviation for the model ranking
given in the preceding column. Modeli is said to be “bet-
ter” than modelj, if the overall rank of modeli is higher,
or the score in the overall rank column is lower for model
i than for modelj. The difference in the overall rank of
model i and modelj will be a judgment of “how better”
modeli is compared to modelj.

JM Model: Table 2 shows that using the data simulated
from the JM model and ML estimation method, MB model
has the highest overall rank, whereas when the LS method
of estimation is used both the MB and the JM model share
the highest overall rank. Since the JM model is a finite fail-
ures model, models based on the same assumption have a
better performance than the infinite failures models.

3

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 10,2021 at 05:14:36 UTC from IEEE Xplore. Restrictions apply.

Table 1. Overview of NHCTMC Models
Model Rate Function Interpretation of parameters Classification

Jelinski-Moranda �(n; t) = �(1� n=n0) n0 - number of faults Pure death
(JM) � - initial failure rate

Musa-Okumoto �(n; t) =
�0

(1+�t)
�0 - initial failure rate Pure birth infinite failures

(MO) � - rate decay factor

Littlewood-Verrall �(n; t) =
�0p
1+�t

�0 - initial failure rate Pure birth infinite failures

(LV) � - rate decay factor

Geometric �(n; t) = De�

[D�e�]t+1
D - initial hazard rate Pure birth infinite failures

(Geo) � = �ln(�), � - proportionality constant
Musa-Basic �(n; t) = �0�1e

��t �0 - maximum number of faults Pure birth finite failures
(MB) �1 - failure occurrence rate per fault

Table 2. Summary of model rankings - Data Simulated using JM & ML
Model Overall SD PL SD Bias SD Trend SD KS Test SD

Littlewood-Verrall 2.5500 1.4318 2.5500 1.3563 2.9000 1.1192 3.1500 1.6944 2.5000 1.3179
Musa-Okumoto 3.5500 1.3563 3.5000 1.2773 4.3000 1.3416 2.5000 0.8272 3.1000 1.2524

Geometric 3.1000 1.3338 3.2500 1.4464 3.5500 0.7592 3.1500 1.2680 3.0000 1.6222
Musa-Basic 2.2500 1.2513 2.8500 1.2680 2.0000 1.0761 2.7500 1.6504 3.1500 1.5652

Jelinski-Moranda 2.6000 1.5355 2.8500 1.6631 2.2500 1.4096 3.4500 1.4318 3.2500 1.3328

LV Model:Using the data simulated from LV model and
ML estimation method, LV and MO models have the high-
est overall rank as seen in Table 3, whereas Geo model has
the highest overall rank when the LS method is used. LV
model is an infinite failures model, and data simulated from
this model prefers the models belonging to the infinite fail-
ures category.

MO Model: Table 4 shows that using the data simulated
from the MO model and ML estimation method, LV has
the best overall rank in case of ML method followed by
MO model, while MO has the best overall rank when LS
method of parameter estimation is used. MO model is an
infinite failures model, and hence the data simulated from
this model prefers models from the same category.

MB Model: Table 5 shows that using the data simulated
from the MB model and ML estimation method, MB model
has the highest overall rank, whereas MB and JM have the
best overall rank when the LS method is used. MB model
belongs to the finite failures category, and hence finite fail-
ures models have better performance than the infinite fail-
ures models.

Geo Model:Table 6 shows that using the data simulated
from the Geo model and ML estimation method, MO model
has the best overall rank. MO model also has the best over-
all rank in case of LS method of estimation. Geo model is
an infinite failures model, and hence models belonging to
the infinite failures category are preferred.

In conclusion, when the data are simulated from a model
which assumes a finite number of failures in a interval of
infinite duration, models based on the same assumption are
preferred over the models from the infinite failures category.
The same holds for models which assume infinite failures

in infinite time interval. Across all the 100 data sets, MO
model has the highest overall rank followed by LV, Geo,
MB and JM models when the ML method is used, while the
order is MO, JM, Geo, MB and LV when the LS method is
used.

4 Model Validation using Real Data

Model validation was then conducted using data sets
from the actual software development projects. We used
the data sets compiled on the CD-ROM accompanying the
Handbook of Software Reliability Engineering [3]. There
are 11 time between execution (TBE) data sets. For most
of the TBE data sets, the estimates of the parameters would
not converge, which would prevent the computation of other
metrics like bias, bias trend etc. One way of overcoming
this problem is to move the parameter estimation end point
to a value higher than its default. The default data ranges
in CASRE use half the data set for estimation, and the re-
maining half in the prediction phase. For some data sets
even after the parameter estimation end point was moved
to a value higher than its default, all the models would not
converge. Partial results (only for some models) obtained
from these data sets were not used to compute the statistics.

When the ML method of parameter estimation is used,
the LV model has the highest overall rank followed by the
MO, Geo, MB and JM models, i.e., infinite failures models
have a better performance over finite failures model. When
the LS method is used, the order is MB, MO, JM, Geo and
LV. Thus, we can see that a finite failures model has a better
performance than a infinite failures model in case of real
data and LS method of estimation, whereas the situation

4

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 10,2021 at 05:14:36 UTC from IEEE Xplore. Restrictions apply.

Table 3. Summary of model rankings - Data Simulated using LV & ML
Model Overall SD PL SD Bias SD Trend SD KS Test SD

Littlewood-Verrall 1.6000 0.8826 1.7000 0.8645 1.9000 1.0712 2.6500 1.5652 2.2500 1.4096
Musa-Okumoto 1.6000 0.3982 1.6500 0.6708 1.5500 0.3104 2.1500 0.9333 2.8500 1.3870

Geometric 2.7000 0.7327 2.6500 0.4894 2.6500 0.3871 3.1500 1.3089 2.6000 0.9947
Musa-Basic 3.8000 0.6156 4.0000 0.0000 3.9000 0.3078 3.3500 1.3870 3.7500 1.3717

Jelinski-Moranda 4.6500 0.7452 5.0000 0.0000 5.0000 0.000 3.7000 1.4179 3.5000 1.5044

Table 4. Summary of model rankings - Data Simulated using MO & ML
Model Overall SD PL SD Bias SD Trend SD KS Test SD

Littlewood-Verrall 1.5500 0.9445 1.5500 0.8870 1.9000 0.9679 2.4000 1.7290 2.3500 1.0894
Musa-Okumoto 1.9000 0.7881 2.4000 0.3026 2.0000 0.7255 2.6000 0.8208 2.9000 1.4473

Geometric 2.3000 0.8645 2.0500 0.8256 2.1500 0.8751 3.3500 1.0894 3.3000 1.3416
Musa-Basic 3.6500 0.6708 4.0000 0.0000 3.9500 0.2236 3.0000 1.3765 3.0500 1.5035

Jelinski-Moranda 4.7500 0.4443 5.0000 0.0000 5.0000 0.0000 3.6500 1.6311 3.4000 1.5694

is reversed in case of simulated data and LS method. LV
model is ranked last in case of both simulated as well as
real data, and LS method of estimation.

5 Simulation of Project Data

In this section we demonstrate the ability of simula-
tion to describe the underlying failure process exhibited by
data collected from an actual software development project.
Simulation allows the flexibility of using a combination of
various models till an “adequate fit” is obtained, as opposed
to analytical techniques which are restricted to applying a
single model to the entire data set.

The algorithm used to choose the most appropriate
model or a combination of models from a suite ofm mod-
els, for a given time interval is described here. Initially, we
identify the suite ofm NHCTMC models to choose from.
We then estimate the parameters of the rate functions of
these models from the observed failure data, and then sim-
ulate the failure profiles corresponding to each of thesem

models. The time interval under consideration is then di-
vided intor non-overlapping segments. One extreme situ-
ation would be to consider every interfailure time as an in-
terval, in which case, there would as many segments as the
number of failures. The other extreme would be to consider
all the failures in a single interval, in which case we fit the
observed failure profile with only one of the analytical mod-
els as per the conventional methods. For every segment, we
then compute the sum of square errors (SSE) between the
actual and the simulated profiles for each model, and de-
termine the model which provides the lowest value of SSE.
This model is then used to simulate the observed failure be-
havior in that segment. The last step consists of simulating
the failure behavior in each of the segments with the model
which has the lowest SSE in that segment.

We explain the heuristic developed with the aid of an
example. For the sake of simplicity, we assume that the
suite consists of two models, viz., Littlewood-Verrall model
and the Musa-Okumoto model. The data set consists of 90

0.0 10000.0 20000.0 30000.0
Time

0.0

20.0

40.0

60.0

80.0

100.0

C
um

ul
at

iv
e

N
um

be
r

of
 F

au
lts

Field Data
LV
MO
LV & MO

Figure 5. Approximation of Field Data using a
Combination of LV and MO models

failures in an interval of28126 time units. We divide the
entire time interval into two segments, such that the first 45
failures lie in the first segment and the next 45 failures lie
in the second segment. The SSE is computed for segments
1 and 2 for both LV and MO models. In case of segment 1,
the SSE for LV model is less than the SSE for MO model,
whereas in case of segment 2 SSE of MO model is less than
SSE of LV model. Thus the LV model is used to simulate
the first 45 failures, while the MO model is used to simulate
the next 45 failures. If only the LV model is used to fit
the entire data, the SSE would be1304:2, whereas if only
the MO model is used to fit the data, the SSE would be
1332:4. If a combination of LV and MO models is used, the
SSE is827:5661. Figure 5 shows the field data, simulated
profile of LV model, simulated profile of MO model, and
simulated profile obtained using the combination of LV and
MO models.

5

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 10,2021 at 05:14:36 UTC from IEEE Xplore. Restrictions apply.

Table 5. Summary of model rankings - Data Simulated using MB & ML
Model Overall SD PL SD Bias SD Trend SD KS Test SD

Littlewood-Verrall 2.8500 1.5652 2.4500 1.5035 2.9000 1.1192 3.3000 1.7800 3.4500 1.6051
Musa-Okumoto 3.1500 1.1367 3.4000 1.1425 3.6000 1.5009 2.7500 0.7164 2.9500 1.3945

Geometric 2.7000 1.3416 2.7000 1.1286 3.1000 1.2096 3.2500 1.2513 2.8000 1.1965
Musa-Basic 2.6500 1.3089 3.2500 1.2085 2.6500 1.1367 2.6000 1.7889 2.9500 1.3169

Jelinski-Moranda 3.0000 1.6222 3.2000 1.8806 2.7500 1.9160 3.1000 1.2937 2.8500 1.5985

Table 6. Summary of model rankings - Data Simulated using Geo & ML
Model Overall SD PL SD Bias SD Trend SD KS Test SD

Littlewood-Verrall 2.3000 1.5594 1.9500 1.1459 2.7500 1.4096 2.6000 1.6670 3.0500 1.6376
Musa-Okumoto 2.0500 0.9445 2.2000 0.6959 2.3000 1.2607 2.4500 1.0501 3.1000 1.2096

Geometric 2.4500 1.0501 2.1500 0.9333 2.4000 0.8826 2.8500 1.2258 3.2500 1.4824
Musa-Basic 3.2000 1.1050 3.9000 0.7182 3.2000 1.3219 3.0500 1.4318 3.0500 1.3563

Jelinski-Moranda 4.3000 1.0809 4.8000 0.6959 4.3500 1.2258 4.0500 1.1910 2.5500 1.4318

6 Conclusions and Future Research

In this paper we have demonstrated the use of simulation
as a powerful and simple mechanism for supplying carefully
controlled and homogeneous data sets. We have described
an experiment where we have generated 100 sequences of
interfailure sequences, 20 each from the five software re-
liability models, validated the models using these 100 se-
quences as well as real data. Data generated using models
which assume finite expected number of failures in infinite
time intervals seem to prefer the models based on the same
assumption. The same holds for infinite failures models. In
addition, we have also developed a heuristic using which
the failure process underlying a failure data set can be more
accurately described by simulating the profile using a com-
bination of reliability models, rather than a single reliability
model as per conventional analytical techniques.

References

[1] A. A. Abdel-Ghally, P. Y. Chan, and B. Littlewood.
“Evaluation of Competing Software Reliability Predic-
tions”. IEEE Trans. on Software Engineering, SE-
12(9), September 1989.

[2] W. H. Farr and O. D. Smith. “Statistical Model-
ing and Estimation of Reliability Functions for Soft-
ware (SMERFS) User’s Guide”. Technical Report
NSWCDD TR 84-373, Revision 1, Naval Surface War-
fare Center Dahlgren Division, September 1993.

[3] M. R. Lyu. Handbook of Software Reliability Engineer-
ing. McGraw-Hill, New York, 1996.

[4] M. R. Lyu and A. P. Nikora. “CASRE-A Computer-
Aided Software Reliability Estimation Tool”. InCASE
’92 Proceedings, pages 264–275, Montreal, Canada,
July 1992.

[5] R. C. Tausworthe and M. R. Lyu.Handbook of Soft-
ware Reliability Engineering, M. R. Lyu, Editor, chap-
ter Software Reliability Simulation, pages 661–698.
McGraw-Hill, New York, NY, 1996.

[6] K. S. Trivedi. “Probability and Statistics with Relia-
bility, Queuing and Computer Science Applications”.
Prentice-Hall, Englewood Cliffs, New Jersey, 1982.

[7] A. Wood. “Predicting Software Reliability”. IEEE
Computer, (11):69–77, November 1996.

6

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 10,2021 at 05:14:36 UTC from IEEE Xplore. Restrictions apply.

