
 1

Simulation Techniques for Component-Based Software Reliability
Modeling with Project Application

 Ruohao Huang , Michael R. Lyu Karama Kanoun

 Dept. of Computer Science and Engineering LAAS/CNRS

 The Chinese University of Hong Kong Toulouse, France

Abstract

In this paper, we consider to combine analytical
models with simulation techniques for software
reliability measurements. We have implemented a set
of failure-rate-based simulation techniques which
can capture the characteristic of software process
and structure in a way that permits us to obtain
quantified results for software reliability measures.
We address two methods to take into account the
functional dependency and error correlation among
components, so that we can treat a software system
as a combination of interdependent components. This
offers a more appropriate approach for analyzing
reliability measurements of component-based
software systems. The results from a project
application indicate that the incorporation of
simulation techniques into analytical models has
the advantages of accurate analyses, early
predictions, and comprehensive evaluations for
software reliability engineering.

Keywords: Software Reliability Engineering,
Analytical Model, Simulation, Component-based
software, Project Application

1. Introduction

Most existing analytical methods to obtain
reliability measures for software systems are
based on the Markovian models [1,2], and they
rely on the assumption on exponential failure
time distribution. The Markovian models are
subject to the problem of intractably large state
space. Methods have been proposed to model
reliability growth of components which can not
be accounted for by the conventional analytical
methods [3, 4], but they are also facing the state
space explosion problem. Discrete event
simulation, on the other hand, offers an attractive
alterative to analytical models as it can capture a
detailed system structure when performing
software reliability analysis. Some simulation
methods have been proposed [6], and a detailed
description of simulation techniques for software

reliability analysis and evaluation can be found
in [1]. However, for component-based software
systems, it is difficult to analyze the influence to
reliability caused by dependency among
components. The main contribution of this paper,
therefore, lies in demonstrating the effectiveness
and flexibility offered by an architecture-oriented
simulation framework to analyze reliability
measures for software systems with dependent
components. The results of a practical application
of our techniques will also be provided.

The rest of this paper is organized as follows:
Section 2 presents rate-based simulation methods
as building blocks for software reliability
measurements. Section 3 gives the
implementation description of the rate-based
simulation techniques, in which two approaches
are given to take into account the
interdependency of components. Section 4 gives
the simulation results of a project application.
Finally, Section 5 presents conclusions.

2. Simulation method

2.1 General description

Here, simulation refers to the technique of
imitating the character of an object or process in
a way that permit us to make quantified
inferences about the real object or process. In the
area of software reliability, simulation can mimic
key characteristics of the processes that create,
validate, and revise documents and code.
Furthermore, simulation can distinguish faults
that have been removed from those that have not,
and thus can readily reproduce multiple failures
due to the same as yet unrepaired fault cases
applied. Generally, there are two main types of
software reliability simulation ways, one is rate-
based simulation, the other is artifact-based
simulation. For the artifact-based simulation: we
consider many aspects of program construction
and testing to investigate the effect of static
features on dynamic behavior, the inputs may

 2

include those which characterize code structure,
coding errors, test input data, test conduct, failure
characteristics, debugging effectiveness, and
computing environment. In this paper, we used
rate-based simulation way to get some results for
studying software reliability measurements.

2.2 Rate-based simulation

It is a rate-controlled event process simulation
way, the fundamental basis of this simulation
method is the representation of a stochastic
phenomenon of interest by a time series x(t)
whose behavior depends only on a rate function,
call it β(t), where β(t)*dt acts as the conditional
probability that a specified event occurs in the
infinitesimal interval (t,t+dt).

We use the following rate functions in our
implemented simulation scheme. Except these
may differ significantly in their assumptions
about underlying failure mechanism, they differ
mathematically only in the forms of their rate
functions.

(1) The Goel-Okumoto (GO) model treats an
overall reliability growth process with
β(t)=n0φe-φt , where n0 and φ are input
parameters, n0φ is the initial failure rate, and
φ is the failure rate decay factor.

(2) The Jelinski-Moranda (JM) model describes
statistics of failure time intervals under the
presumption that βn(t)=β0(1-n/n0), where n0 is
the estimated (unknown) number of initial
software faults and β0 is initial failure rate.

(3) The Littlewood-Verrall inverse linear model
is an overall reliability growth model with
β(t)=β0/(1+θt)1/2 where β0 is the initial failure
rate and θ is a rate decay factor.

(4) The Musa-Okumoto model [6], in which
β(t)= β0/(1+θt), where β0 is the initial failure
rate and θ is a rate decay factor. Both β0 and
θ are input parameters.

(5) The Yamada S-shaped model, its failure rate
function is β(t)=ab2te-bt, where a is the
number of failures to be expect occur and b
corresponding to a failure detect rate.

3. Simulation implementation
In this section we describe the implementation of
the simulation. It is a failure rate-based
simulation, in which the above seven failure rate
functions are used as simulation models. It can
treat a software system as a whole for simulating
reliability measures, which is also known as

black-box simulation. We also provides white-
box simulation, in which the components of a
software system are not be treated as independent
each other, the dependencies among components
of a software system are considered.

3.1 General simulation assumptions

Assumptions and observed data are very
important for software reliability study [7]. For
the simulation we have the following
assumptions. Note they can be seen as the most
common assumptions for software reliability
models [8].

(1) The software under testing remains
essentially unchanged throughout testing,
except for the removal of faults as they are
found.

(2) Removing a fault does not affect the chance
that a different fault will be found.

(3) "Time" is measured in such a way that
testing effort is constant.

(4) All faults are of equal importance (i.e., they
contribute equally to the total failure rate).

(5) At the start of testing, there is some finite
total number of faults, which may be fixed or
random; if random, their distribution may be
known or of known form with unknown
parameters.

(6) Between failures occurrence, the failure rate
follows a known functional form.

3.2 Black-box simulation

For the black-box simulation, we treat software
as a whole as only its interactions with the
outside world are modeled, while the internal
structure and component combinations are not
concerned. This is relatively a simple simulation
approach.

The input to the black-box simulation is a failure
behavior file. This file includes the parameters of
failure rate functions. The parameters can be
obtained by using CASRE (Computer Aided
Software Reliability Estimation) which is a tool
for software reliability measurement [6]. The
output or results of black-box simulation are the
number of cumulative failures and the failure
intensity of the software.

3.3 White-box simulation

In the black-box simulation, the software system
is treated as a whole. The internal structure and
features of software (e.g. the components

 3

correlation) are not concerned. There are some
shortcomings in this approach for software
reliability measurements analysis. On the one
hand, we must perform modeling based on
availability of the whole system data, without
using the unit testing data which is usually
available earlier for each component. On the
other hand, only one model can be applied to the
simulation process; however, it maybe more
appropriate that different components be applied
different models. White-box simulations can
remove these disadvantages. In order to have a
more accurate simulation for software reliability
measures, we developed two white-box
simulation approaches. In the first approach, we
use a variable as the correlation coefficient
between components of software system. This
coefficient can be calculated from testing data of
each component. In the second approach we take
into account the transition probabilities among
components of a software system. Actually, the
dependency or correlation are mainly caused by
the existing transition between components.

3.3.1 Using dependency coefficient

In this kind of simulation, the basic idea is
similar to black-box simulation. We also treat the
software as a whole and the failure event
producing algorithm is same as the black-box
simulation, however, a dependency or correlation
coefficient is introduced into the simulation
process. We think some failures (or faults) in a
component have some relation with another
component or other several components. It means
that removing some faults from a component
may prevent two or several failures in different
components. Therefore, we can use all the
observed data of each component to simulate the
whole software system reliability measures (e.g.
cumulative failures) then adjusting the results by
the dependency coefficient (we call this
dependency coefficient as p). The key things are
deciding p and adjusting policy. In practical, for
deciding p is basically based on observed data
sets of each component. A simple calculation
method for p is: ND/NT, where ND is the total
numbers of reported failures which lead to the
correction of more than one component; NT is
the total number of reported failures of all
components. Table 1 illustrate the failures reports
and the number of dependency failures in three
software systems , we call them sys1, sys2 and
sys3.

Software
System

 Failures
Reports

 Sum of failures of
all components

 sys1 380 440
 sys2 143 161
 sys3 51 58

Table 1. Number of failures and corrected faults in sys1,
sys2, and sys3

For sys1 NT = 440, ND = 440-380=60, p =
60/440≈0.136. The p for sys2 and sys3 are 0.126,
0.137 respectively. Because it is easy to get the
sum of failures in all components (NT), in
practical, we can use it to obtain the input
parameters for simulation, then adjusting the
results by p. Adjusting policy is to change the
cumulative failures number at each time point in
whole simulation process. We do it use the
equation: CUM−CUM×p, CUM is the cumulative
number of failures at each time point produced in
simulation process. There are 27 months, 32
months, 45 months observed data for sys1 sys2
and sys3 respectively. We simulated 47 months,
Table 2 shows the comparison of this simulation
with the sum of failures in all components. From
Table 2 we can see that the sum of failures in all
components is larger than the system observed
data (real data), however, the simulate results are
close to the observed data. Table 2 has validated
the concept of using dependency coefficient. In
practical project, we usually get the failure
number of each component first and easy, then
using experienced dependency coefficient we can
have a good prediction for software system
reliability.

3.3.2 Using transition probabilities

This is another kind method to consider the
dependency among components in simulation
process. We think the dependency are caused by
the transition from one component to another
component during execution of program. In
simulation, the transition probabilities can be
assigned in advance, after producing failure event
the transition probabilities are used to decide
which component will be executed.

In this kind of white-box simulation, it is
necessary to decide which component should be
executed after each step. For this decision, the
transition probabilities between components
should be used. The input of this simulation
are failure behavior of all components and
transition probabilities file. Table 3 shows a four-
component software failure behavior file

 4

 Component
ID

Model Parameter 1 Parameter 2

 1 GO 130.6 0.0048

 2 GO 108.7 0.0053

 3 JM 63.78 0.3288

 4 S-shaped 88.5 0.00988

Table 3. A four-component software failure
behavior file

In Table 3, each row corresponds one component
(first row is for component 1, second row is for
component 2,etc.). First column indicate which
model will be used for the component (e.g.
"GO" represent the Goul-Okumoto model,
"S-shaped" indicate the Yamada S-shaped
model is being used for component 4). The
other real numbers of each row are the
parameters of the used software reliability model.
These parameters can be estimated by using
CASRE. The Table 4 shows a four-component
software transition probability file

 Component ID 1 2 3 4
 1 0.00 0.80 0.00 0.20
 2 0.00 0.00 0.70 0.30
 3 0.00 0.30 0.00 0.70
 4 0.80 0.00 0.20 0.00

Table 4. A four-component software transition
probability file

In Table 4, the first row and firs column are
integer numbers, they indicate the
components ID number. Each real number in
the table represents the transition probability
from component i to component j.

The output or results of this simulation are
number of cumulative failures for each
component and the whole software. Using
this kind of simulation we can apply different
model to different component and we can get the
software reliability measures for both the whole
system and each component. However, in
practical application, it is difficult to decide the
transition probability for a component-based
software system. In our simulation process for
real project data, the transition probabilities are
randomly assigned.

We also use the three software systems sys1,
sys2 and sys3 as example to illustrate this
approach. For simple reason, we just apply GO
model to the three software system in simulation.
Table 5 shows the comparison of this simulation
with the sum of failures in all components. From
Table 2 and Table 5 we can see that the results of

these two kinds of white-box simulation have
better prediction for the software systems than
just adding the failure number in all components.

4. Project application

We have applied the two white-box simulation
approaches into a project software for analyzing
its reliability features. This section introduce the
application results and some comparisons.

4.1. General description of the software

This is the system software of three successive
generations of the Brazilian switching system,
TROPICO-R [9,10]. It is developed jointly by the
R&D center for Brazilian Teleco-mmunications
and some Brazilian manufacturers. To dates,
three successive products have been developed,
and referred to as PRA, PRB and PRC. The
software can be decomposed into two main parts;
the applicative software and the executive
software. Two categories of components can be
distinguished in the TROPICO-R software: i)
Elementary Implementation Blocks (EIB), which
fulfil elementary functions and ii) groups of
elementary implementation blocks according to
the main four functions of the system. We think
PRA, PRB and PRC are software systems
consists of four components, and their reliability
measurements can be simulated by the two
approaches described above.

4.2 Simulate results and comparisons

We have applied our scheme to simulate the
software reliability of three successive
generations products (TROPICO-R, PRA, PRB
and PRC). First , we simulated each function of
each product, then we made simulations for each
product. Three models are applied in these
simulation processes, they are: GO model, JM
model and Yamada S-shaped model. The results
of simulations are cumulative number of
failures for each function component and whole
system. Here, we just give the simulation results
of system for each product. Figure 1 and Figure
2 show the results of simulation and comparisons
in using coefficient and transition probabilities
respectively for the three products.

Figure 1 and Figure 2 demonstrate the two types
of white-box simulation methods can provide a
good prediction for software reliability measures
in some software projects. Although, some

 5

Prediction by sum of failures
in components

Prediction by simulation Actual system
failures

Total
component
failures

Error
percentage

Simulated
system
failures

Error
percentage

Improvement factor

sys1 380 410 7.89% 385 1.32% 5.98
sys2 143 161 12.59% 150 4.9% 2.57
sys3 51 58 13.73% 53 3.92% 3.5
Avarage 191.33 209.67 11.4% 196 3.38% 4.02

 Table2. Comparison for simulation and sum of failures in all components (Using coefficient)

Prediction by sum of failures
in components

Prediction by simulation Actual system
failures

Total
component
failures

Error
percentage

Simulated
system
failures

Error
percentage

Improvement factor

sys1 380 410 7.89% 377 0.79% 9.98
sys2 143 161 12.59% 145 1.4% 8.99
sys3 51 58 13.73% 54 5.88% 2.33
Avarage 191.33 209.67 11.4% 192 2.69% 7.10

 Table 5. Comparison for simulation and sum of failures in all components (Using transition probabilities)

component-based reliability models have been
proposed [11] and there are some research
about failure correlation in software reliability
models [12], in practical projects, using
simulation methods are easier and more
operational especially for considering the
failure correlation of components. From the
simulation results we also get some evaluation
for software reliability measures. For PRA
system, GO model and JM model have better
fitting than S-shaped model during early phase.
This may be explained as: PRA is the first
generation product, there was no inherited
experience for software developers and testers.
Therefore, the faults have more homogeneous
exposure rate during testing phase. For PRB and
PRC systems the S-shaped model has better
fitting during early phase, it can be thought that
in successive generations software, latent faults
are more difficult (take more time) to be found.
In Figure 1 and Figure 2 the simulation results
curves and observed data curves have similar
trends, however, with taking account into the
time, it is difficult to have accurate failure
evaluation or prediction with exact time point.
In other words, for a random failure process,
simulation methods can give a trend or general
prediction, and it can not give the accurate
measures with exact occurrence time.

In order to evaluate the accuracy of simulation,
we calculated the MSE (Mean Square Error) for

both simulation approaches and every model.
n

2
i i

i=1

(S R)
MSE=

n

−∑
, in which, Si is the

simulate result at that time point, Ri is the real
data at that time point, n is the total number of
observed data. Table 6 and Table 7 give the
results of MSE of every model for the two
simulation approaches.

 Model MSE

(PRA)

 MSE

(PRB)

 MSE

(PRC)

 GO 322.98 166.93 15.23

 JM 305.53 288.22 32.23

 S-shape 1810 69.31 11.87

Table 6. MSE for the simulations (using dependency

coefficient)

 Model MSE

(PRA)

 MSE

(PRB)

 MSE

(PRC)

 GO 327.48 215.71 8

 JM 305.53 371 8.25

 S-shape 360.55 57 7.12

Table 7. MSE for the simulations (using transition

probabilities)

 6

From the Table 6 and Table 7, we know that for
few number of failures system S-shaped model
is more appropriate (both MSE values of S-
shaped for PRC are least). Comparing the two
white-box simulation approaches, for S-shaped
model using transition probabili ty is much
better than using dependency coeff icient, for
GO model the results of the two approaches are
close, for JM model using dependency
coeff icient is better than using transition
probabili ties. While we applying the simulation
to PRA, PRB and PRC, because we know li ttle
about the internal architecture of these software
systems, the transition probabili ties are
randomly assigned. However, we think the
correlation and dependency of software
components are mainly caused by the transition
between components, if knowing more
information about the software internal
structure it is possible to get more accurate
simulation results using transition probabili ties.

5. Conclusions

In our work, we combined analytical models
with simulation approaches to give effective
and practical method for software reliabili ty
measures. The main contribution of our work
is: the design and implementation of a set of
rate-based simulation techniques. The
advantages of the simulation are: It is not
computation complexity; it enables models
combination approach; It provides two methods
to take into account the correlation or
dependency between components, so we can
treat a software system as a combination of
some correlative components. This is more
appropriate for analyzing reliabili ty
measurements of component-based software
system. The project application demonstrates
that it can be used for analysis, prediction
and evaluation in software reliabili ty
li terature.

Acknowledgement
The work described in this paper was supported
by two grants from the Research Grant Council
of the Hong Kong Special Administrative
Region: France / Hong Kong Joint Research
Scheme (1999-2001), and Earmark Grant
Project No. CUHK 4193/00E.

References
[1] Michael R. Lyu, Handbook of Software

Reliabilit y Engineering, McGraw-Hill , New
York, 1996.

[2] R.C. Cheung. "A User-Oriented Software
Reliabilit y Model". IEEE Trans. On Software
Engineering, SE-6(2): 118-112, March 1980

[3] S. Gokhale, T. Phili p, and P. N. Marinos. "A
Non-Homogeneous Markov Software
Reliabilit y Model with Imperfect Repair". In
Proc. Intl. Performance and Dependabilit y
Symposium (IPDS '96), pages 262-270, Urbana-
Champaign, IL, September 1996.

[4] S. Gokhale and K. S. Trivedi. "Structure-based
Software Reliabilit y Prediction". In Proc. of
Fifth Intl. Conference on Advanced
Computing (ADCOMP '97), pages 447-452,
Chennai, India, December 1997.

[5] S. Gokhale, Michael R. Lyu, and K.S. Trivedi.
"Reliabilit y Simulation of Fault-Tolerant
Software and Systems". In Proc. Of Pacifi c
Rim International Symposium on Fault-
Tolerant Systems (PRFTS '97), Page 167-173,
Taipei, Taiwan, December 1997.

[6] Musa, J.D., and Okumoto, K., "A Logarithmic
Poisson Execution Time Model for Software
Reliabilit y Measurement," Proceedings seventh
International Conference on Software
Engineering, Orlando, Florida, 1984, pp. 230-
238.

[7] Defamie, Patrick Jacobs, Jacques Thollem.
"Software Reliabilit y: Assump-tions, Realiti es
and Data," Software Maintenance, 1999.
(ICSM '99). Proceedings. IEEE International
Conference on, 1999, Page(s): 337 -345

[8] S. Dalal, M.R. Lyu, and C. Mallow, "Software
Reliabilit y," Chapter in Encyclopedia on
Biostatistics, P. Armitage and T. Colton (eds.),
vol. 5, Wiley 1998, pp. 4550-4555.

[9] Karama Kanoun, Marta Rettelbusch de
Martini, and Jorge Moreira de Souza. "A
Method for Software Reliabilit y Analysis and
Prediction Application to the TROPICO-R
Switching System," IEEE Trans. on Software
Engineering, vol.17, no. 4, 1991.

[10] M. Kaaniche, K. Kanoun, M. Cukier, and M.
Bastos Martini. "Software Reliabilit y Analysis
of Three Successive Generations of a Switching
System," Proceedings of first European
Dependable Computing Conference (EDDCC-
1), Berlin, Germany, 1994, pp. 473-490.

[11] Wen-Li Wang, Ye Wu, and Mei-Hwa Chen.
"An Architecture-Based Software Reliabilit y
Model," Dependable Computing, 1999.

 7

 Proceedings. 1999 Pacific Rim International
Symposium on Dependable Computing , 1999,
Page(s): 143 -150

[12] Goseva-Popstojanova, K.; Trivedi, K. "Failure
Correlation in Software Reliability models"
Software Reliability Engineering, 1999.

Proceedings. 10th International Symposium on,
1999 , Page(s): 232 -241

0

50

100

150

200

250

300

350

400

0 5 10 15 20 25 30 35 40 45

month

cu
m

u
la

ti
ve

 f
ai

lu
re

GO results

JM results

S-shaped
results

Observed data

0

20

40

60

80

100

120

140

160

0 5 10 15 20 25 30 35 40 45

month

GO results

JM results

S-shaped
results

Observed
data

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35 40 45

month

GO results

JM results

S-shaped
results

Observed
data

 Figure 1. Simulate results for PRA, PRB, PRC (using dependency coefficient)

0

50

100

150

200

250

300

350

400

0 10 20 30 40

month

cu
m

u
la

ti
ve

 f
ai

lu
re

GO results

JM results

S-shaped
results

Observed data

0

20

40

60

80

100

120

140

160

0 5 10 15 20 25 30 35 40 45

month

 GO results

JM results

S-shaped
results

Observed data

0

10

20

30

40

50

0 10 20 30 40 50

month

GO results

JM results

S-shaped results

Observed data

 Figure 2. Simulate results for PRA, PRB, PRC (using transition probabilities)

