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Abstract
The context-free language (CFL) reachability problem is a well-
known fundamental formulation in program analysis. In practice,
many program analyses, especially pointer analyses, adopt a re-
stricted version of CFL-reachability, Dyck-CFL-reachability, and
compute on edge-labeled bidirected graphs. Solving the all-pairs
Dyck-CFL-reachability on such bidirected graphs is expensive. For
a bidirected graph with n nodes and m edges, the traditional dy-
namic programming style algorithm exhibits a subcubic time com-
plexity for the Dyck language with k kinds of parentheses. When
the underlying graphs are restricted to bidirected trees, an algo-
rithm with O(n log n log k) time complexity was proposed re-
cently. This paper studies the Dyck-CFL-reachability problems on
bidirected trees and graphs. In particular, it presents two fast algo-
rithms with O(n) and O(n+m log m) time complexities on trees
and graphs respectively. We have implemented and evaluated our
algorithms on a state-of-the-art alias analysis for Java. Results on
standard benchmarks show that our algorithms achieve orders of
magnitude speedup and consume less memory.

Categories and Subject Descriptors F.2.2 [Nonnumerical Algo-
rithms and Problems]: Computations on discrete structures; D.3.4
[Processors]: Compilers; F.3.2 [Semantics of Programming Lan-
guages]: Program analysis

General Terms Algorithms, Design, Experimentation, Languages

Keywords Dyck-CFL-reachability; alias analysis

1. Introduction
The context-free language (CFL) reachability problem is a gener-
alization of the traditional graph reachability problem [27]. Many
program analyses have been formulated as CFL-reachability prob-
lems, such as interprocedural data flow analysis [29], program slic-
ing [28], shape analysis [26], type-based flow analysis [22, 25], and
pointer analysis [31–33, 36, 37, 40]. When the underlying CFL is
restricted to a Dyck language which generates matched parenthe-
ses, the CFL-reachability problem is referred to as Dyck-CFL-
reachability. Although a restricted version of CFL-reachability,
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Dyck-CFL-reachability can express “almost all of the applications
of CFL-reachability” in program analysis [19].

Solving Dyck-CFL-reachability of size k (i.e., k kinds of paren-
theses) is expensive in practice. The traditional dynamic program-
ming style CFL-reachability algorithm [29, 38] runs in O(k3n3)
time. Only recently, the first subcubic algorithm was proposed, re-
ducing the cubic time complexity by a factor of log n [7]. Scaling
Dyck-CFL-reachability-based analyses on real-world applications
is challenging. Various enhancements have been proposed, such as
leveraging demand-driven properties in specific analyses [33, 37,
40], making use of a specialized reduction to set constraints [19],
and approximating the client problems [32, 33]. However, all ex-
isting Dyck-CFL-reachability algorithms relying on the dynamic
programming scheme exhibit a subcubic time complexity. When
the underlying graphs are restricted to bidirected trees, Yuan and
Eugster proposed an algorithm with O(n log n log k) time com-
plexity [39].

In this paper, we focus on the bidirected version of Dyck-
CFL-reachability, as detailed in Section 2.2. The bidirected Dyck-
CFL-reachability is particularly suitable for pointer analysis. All
state-of-the-art demand-driven pointer analyses [31–33, 37, 40] are
formulated by extending Dyck-CFL-reachability and compute on
edge-labeled bidirected graphs. Specifically, matched parentheses
derived from Dyck-CFL-reachability can be used to capture field
accesses (i.e., load/store) in Java [32, 33, 36, 37] and indirections
(i.e., references/dereferences) in C [40]. The bidirectness of graphs
is also a prerequisite for CFL-reachability formulations of pointer
analyses as discussed by Reps [27]. Namely, edges in the origi-
nal graph need to be augmented with reverse edges (a.k.a. barred
edges). Otherwise, two nodes may not be reachable even via stan-
dard graph reachability.

This paper proposes two fast algorithms for solving the bidi-
rected Dyck-CFL-reachability on trees and graphs respectively.
The key insight behind our algorithms is the observation of an
equivalence property on bidirected structures that has not been fully
utilized in previous work. We exploit this property to obtain asymp-
totically much faster algorithms by safely collapsing nodes that be-
long to the same equivalence class. Table 1 compares our new al-
gorithms and some of the existing algorithms for bidirected Dyck-
CFL-reachability, where n and m denote the numbers of nodes and
edges in the graph respectively. We also present the design and
implementation of our algorithms, and apply them to a state-of-
the-art alias analysis [37]. Empirical results on the standard bench-
marks show that our proposed algorithms achieve orders of magni-
tude speedup and consume less memory compared to the traditional
CFL-reachability algorithm.

The principal contributions of our work are as follows:

• For the case of bidirected trees, we give an algorithm that runs
in O(n) time and O(n) space, which answers the Dyck-CFL-
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Type Time Space Reference
Tree O(n log n log k) O(n log n) [39]
Graph O(k3n3) O(kn2) [29, 38]
Graph O(kn3) O(kn2) [19]
Graph O(kn3/ log n) O(kn2) [7]
Tree O(n) O(n) Algorithm 4
Graph O(n+m log m) O(n+m) Algorithm 5

Table 1. Bidirected Dyck-CFL-reachability algorithms.

reachability queries for any node pair in O(1) time. This result
improves the O(n log n log k) time and O(n log n) space al-
gorithm proposed by Yuan and Eugster [39].

• For the case of bidirected graphs, we give an algorithm that runs
in O(n+m log m) time and O(n+m) space, which answers
the Dyck-CFL-reachability queries for any node pair in O(1)
time. This result improves the traditional subcubic time result
in the literature [7].

• We apply our algorithms to a state-of-the-art context-insensitive
alias analysis for Java [37]. Our fast algorithms can be directly
used in the analysis. Experimental results show that our al-
gorithm achieves orders of magnitude speedup on real-world
benchmarks.

The rest of the paper is structured as follows. Section 2 reviews
the background material on Dyck-CFL-reachability. Section 3 dis-
cusses the equivalence property and a naı̈ve all-pairs Dyck-CFL-
reachability algorithm. Sections 4 and 5 present our fast algorithms
on bidirected trees and graphs respectively. Section 6 describes an
existing state-of-the-art alias analysis for Java as the client applica-
tion for our algorithms. Section 7 describes our empirical compar-
ison of the performance of our algorithm versus the performance
of the CFL-reachability algorithm using the client alias analysis.
Section 8 surveys related work, and Section 9 concludes.

2. Preliminaries
This section reviews basic background on Dyck-CFL-reachability
and defines its bidirected variants. We also include the traditional
subcubic solution for reference and completeness.

2.1 Dyck-CFL-Reachability

Let CFG = (Σ, N, P, S) be a context-free grammar with alphabet
Σ, nonterminal symbols N , production rules P and start symbol
S. Given a context-free grammar CFG = (Σ, N, P, S) and a
directed graph G = (V,E) with each edge (u, v) ∈ E labeled
by a terminal L(u, v) from the alphabet Σ or ε, each path p =
v0, v1, v2, . . . , vm in G realizes a string R(p) over the alphabet Σ
by concatenating the edge labels in the path in order, i.e., R(p) =
L(v0, v1)L(v1, v2)L(v2, v3) . . .L(vm−1, vm). A path in G is an
S-path if the realized string can be derived from the start symbol
S. Node v is S-reachable from node u iff there exists an S-path
from u to v.

The CFL-reachability problem has four variants:

(1) The all-pairs S-path problem: For every pair of nodes u and v,
is there an S-path in the graph from u to v?

(2) The single-source S-path problem: Given a source node u, for
all nodes v, is there an S-path in the graph from u to v?

(3) The single-target S-path problem: Given a target node v, for all
nodes u, is there an S-path in the graph from u to v?

(4) The single-source-single-target problem: Given two nodes u
and v, is there an S-path in the graph from u to v?

2 3
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(a) The directed graph case.
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(b) The bidirected graph case.

Figure 1. Example graphs illustrating a directed graph and its
corresponding bidirected graph.

The Dyck-CFL-reachability is defined similarly by restricting
the underlying CFL to a Dyck language, which generates strings of
properly balanced parentheses. Consider an alphabet Σ over the set
of opening parentheses A = {a1, a2, . . . , ak} and the set of their
matching closing parentheses Ā = {ā1, ā2, . . . , āk}. The Dyck
language of size k (i.e., k kinds of parentheses) is defined by the
following context-free grammar:

S → SS | a1Sā1 | ... | akSāk | ε
where S is the start symbol and ε is the empty string. Specially,
we say node v is Dyck-reachable from node u iff there exists an S-
path from u to v, where S is the start symbol in the Dyck grammar
above. We call such a path joining nodes u and v a Dyck-path.

2.2 Bidirected Dyck-CFL-Reachability
In this paper, we focus on the bidirected Dyck-CFL-reachability
problems, which require the underlying graph to be bidirected and
edge-labeled. For any directed edge (u, v) in the graph that is not
labeled by ε, if it is labeled by an opening parenthesis ai ∈ A,
there must be a reverse edge (v, u) which is labeled by a matching
closing parenthesis āi ∈ Ā, and vice versa. Formally, we have the
following definition.

DEFINITION 1 (Bidirected Dyck-CFL-Reachability). Given a bidi-
rected graph G = (V,E) and a Dyck language of size k, the
labels of directed edges in the graph must satisfy the following
constraints:

• ∀u, v ∈ V, if L(u, v) = ε, L(v, u) must be ε;
• ∀u, v ∈ V, if L(u, v) = ai, L(v, u) must be āi;
• ∀u, v ∈ V, if L(u, v) = āi, L(v, u) must be ai.

The bidirected Dyck-CFL-Reachability and its four variants are
defined similarly as Dyck-CFL-Reachability.

The Dyck-CFL-reachable node pairs (u, v) can be defined as a
binary relation D.

DEFINITION 2 (Dyck-CFL-Relation). Given a bidirected graph
G = (V,E), we call a binary relation D on V × V a Dyck-CFL-
relation iff for all (u, v) ∈ D, v is Dyck-reachable from u in G.

We give an example to illustrate the Dyck-CFL-reachability and the
bidirected Dyck-CFL-reachability problems.

EXAMPLE 1. Consider the two graphs in Figure 1. The graph to
the left shows a directed graph for Dyck-CFL-reachability, and the
one to the right is its bidirected counterpart. In both graphs, the
realized string R(p) of the path p = 1, 2, 3, 4, 5 is “a1ā1a2ā2”,
with properly matched parentheses. Therefore, node 5 is Dyck-
reachable from node 1. However, the path 1, 4, 5 is not a valid
Dyck-path.

The bidirected Dyck-CFL-reachability formulation has wide
applications in pointer analysis. For pointer analysis problems, the
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Algorithm 1: The standard CFL-reachability algorithm.
Input : Edge-labeled directed graph G = (V,E),

normalized CFG = (Σ, N, P, S)
Output: the set {(i, j) | S〈i, j〉 ∈ G}

1 add E to W
2 foreach production X → ε ∈ P do
3 foreach node v ∈ V do
4 if X〈v, v〉 �∈ E then
5 add X〈v, v〉 to E and to W

6 while W �= ∅ do
7 select and remove an edge Y 〈i, j〉 from W
8 foreach production X → Y ∈ P do
9 if X〈i, j〉 �∈ E then

10 add X〈i, j〉 to E and to W

11 foreach production X → Y Z ∈ P do
12 foreach outgoing edge Z〈j, k〉 from node j do
13 if X〈i, k〉 �∈ E then
14 add X〈i, k〉 to E and to W

15 foreach production X → ZY ∈ P do
16 foreach incoming edge Z〈k, i〉 to node i do
17 if X〈k, j〉 �∈ E then
18 addX〈k, j〉 to E and to W

directed edges in the underlying graph must be augmented with re-
verse edges (a.k.a. barred edges) [27], otherwise, two nodes may
not be reachable from each other even by standard graph reachabil-
ity. All existing CFL-reachability formulations for pointer analysis
require the underlying graph to be bidirected. In addition, many
pointer analyses employ Dyck-CFL-reachability to match certain
properties, such as field accesses (i.e., load/store) in Java [32, 33,
36, 37] and indirections (i.e., references/dereferences) in C [40],
which naturally satisfy the requirements of bidirected Dyck-CFL-
reachability.

2.3 CFL-Reachability Algorithm

In the literature, there is a popular dynamic programming style al-
gorithm [29, 38] for solving the CFL and Dyck-CFL-reachability
problems. The algorithm is in Algorithm 1, where W denotes a
worklist, and X〈u, v〉 denotes the directed edge (u, v) with label
L(u, v) = X . The main algorithm has two steps: (1) CFG Nor-
malization — The underlying CFG must be converted to a normal
form, similar to the Chomsky Normal Form. When the grammar is
in the normal form, all production rules are of the form X → Y Z,
X → Y or X → ε, where X is nonterminal, Y and Z are terminals
or nonterminals, and ε denotes the empty string; and (2) “Filling
in” New Edges — In order to compute the S-paths, new edges are
added to the graph. For example, lines 11-14 describe that for the
production rule X → Y Z and edge Y 〈i, j〉,all outgoing edges of
node j are considered. If there is an outgoing edge Z〈j, k〉, a new
edge X〈i, k〉 is added to E if it is not already in E. The algorithm
terminates if there are no more new edges to be inserted.

The complexity of Algorithm 1 is cubic in terms of the number
of nodes in the input graph [21]. Chaudhuri [7] shows that the well-
known Four Russians’ Trick [5] can be employed on lines 12-13
and 16-17 in the CFL-reachability algorithm to immediately yield
a subcubic algorithm with O(n3/log n) time complexity.

3. Dyck-CFL-Relation
3.1 An Equivalence Property
We first study an equivalence property of Dyck-CFL-relations D
on bidirected trees and graphs, which has not been fully utilized
in previous work. Since trees are simply graphs without cycles,
we use the more general term “graph” to illustrate the equivalence
property. A binary relation ∼ ⊆ B×B on a set B is an equivalence
relation iff it is reflexive, symmetric and transitive. Specifically,

• ∼ is reflexive if ∀a ∈ B, a ∼ a;
• ∼ is symmetric if ∀a, b ∈ B, a ∼ b =⇒ b ∼ a; and
• ∼ is transitive if ∀a, b, c ∈ B, a ∼ b ∧ b ∼ c =⇒ a ∼ c.

For a given bidirected graph G = (V,E), we consider the
Dyck-CFL-relation D over V × V . Based on the definition of
relation D, node v ∈ V is Dyck-reachable from node u ∈ V iff
(u, v) ∈ D. We list below the properties of relation D on bidirected
graphs:

• Relation D is reflexive: This is because the start symbol S in
the Dyck grammar is nullable (i.e., it generates the empty string
ε). Therefore, (u, u) ∈ D for all u ∈ V .

• Relation D is symmetric: One can identify a symmetric relation
by showing it is equal to its inverse. For the bidirected graphs,
the realized string R(p) on a path p from node u to v is the
reverse of R(p′) on the reverse path p′ from v to u. It is easy
to show R(p) is generated by the Dyck grammar iff R(p′) is
generated by the Dyck grammar with a simple induction on the
path length. As a result, if v is Dyck-reachable from u (i.e.,
(u, v) ∈ D), u is also Dyck-reachable from v (i.e., (v, u) ∈ D).

• Relation D is transitive: That is, for any three nodes u, v, w ∈
V in graph G = (V,E), if v is Dyck-reachable from u (i.e.,
(u, v) ∈ D) and w is Dyck-reachable from v (i.e., (v, w) ∈ D),
w is Dyck-reachable from u (i.e., (u,w) ∈ D). It is immediate
that the realized string R(p1) for any path p1 connecting node
u and v can be derived from the start symbol S in the Dyck
grammar. Similarly, the realized string R(p2) for any path p2
connecting nodes v and w is also generated from the Dyck
grammar. Consequently, the concatenated string R(p1)R(p2) is
generated by the Dyck grammar because of the rule S → SS.
Hence, the path p1p2 from node u to w is also a Dyck-path.

The discussions above lead to the following lemma.

LEMMA 1. The Dyck-CFL-relation D on a bidirected graph is an
equivalence relation.

The key insight in our algorithms is that the equivalence prop-
erty can be exploited to obtain asymptotically much faster algo-
rithms. All nodes in the Dyck-CFL-relation D are equal to the other
nodes in the graph, and thus nodes that belong to the same equiva-
lence class can be safely collapsed to a single representative node.
For example, in Figure 1(b), node 3 is Dyck-reachable from 1, thus,
they can be collapsed into a single representative node {1, 3} indi-
cating that they are in the same equivalence class. Similarly, node 5
can be collapsed to the representative node {1, 3} as well. Finally,
we have a representative node {1, 3, 5} reflecting the fact that the
three nodes are Dyck-reachable from each other in the graph.

3.2 A Naı̈ve Approach
We proceed to give a naı̈ve all-pairs Dyck-CFL-reachability algo-
rithm by collapsing the nodes in the graph that are in the Dyck-
CFL-relation D. Let ai〈u, v〉 denote the directed edge (u, v)
labeled by ai ∈ A. We note that while collapsing two Dyck-
reachable nodes x and y in the graph, there always exists a node
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z such that ai〈x, z〉 = ai〈y, z〉. For example, in Figure 1(b), we
have a1〈1, 2〉 = a1〈3, 2〉. Without loss of generality, given a bidi-
rected graph G(V,E), the naı̈ve algorithm can work on a directed
graph G′(V ′, E′) by removing all edges labeled by closing paren-
theses from the original graph, i.e., V ′ = V and ai〈u, v〉 ∈ E′

iff ai〈u, v〉 ∈ E for all labeled edges in E′. The basic idea of
the naı̈ve approach is to explicitly maintain a list W of nodes. For
every item z popped from W , we pick two incoming neighbors x
and y whose edges are labeled by the same opening parenthesis
i.e., ∃ai〈x, z〉 = ai〈y, z〉, and then collapse x and y since they
are Dyck-reachable via z. Due to the collapsing between nodes, E′

may possibly contain multiple edges. The whole algorithm termi-
nates if W is empty.

The naı̈ve algorithm is given in Algorithm 2, where Eq nodes[v]
denotes the equivalence set of node v and Set[v] denotes the
equivalence set number that node v belongs to. The procedure
HAS-SAME-IN(v) traverses all incoming neighbors of node v,
and returns true if there exist two neighbors u1 and u2 such
that ai〈u1, v〉 = ai〈u2, v〉. In Algorithm 2, line 1 transforms the
given graph G to G′, and lines 2-5 initialize W and Eq nodes[v].
Lines 10-26 collapse node y to x w.r.t. node z, and remove y. The
detailed procedure on collapsing y to x is given in Section 5.1.1.
Finally, lines 29-31 assign the equivalence set number to each node
v, such that any query can be answered in O(1) time.

Complexity Analysis. The time complexity of the naı̈ve algo-
rithm is O(kn2). We begin by analyzing the maximum number
of steps that the “while” loop on line 6 can be executed. We note
that Algorithm 2 adds items to W only through lines 5 and 25. On
line 25, item x can be added to W for at most n − 1 times, since
line 26 can be executed for at most n − 1 times. On line 5, W is
initialized with n items. Therefore, the worklist W can be filled
with at most 2n − 1 items by Algorithm 2. In the “while” loop,
only line 28 removes an item from W , thus, the “else” part of the
“if” statement can be executed for at most 2n − 1 times. Since
the “then” part of the same “if” statement can be executed for at
most n − 1 times, the “while” loop can be executed for at most
(n − 1) + (2n − 1) = 3n − 2 = O(n) times. For each item z
popped from W in the “while” loop, lines 8-28 take O(kn) time
to process. Specifically, the procedure HAS-SAME-IN(v) on lines 8
and 25 takes O(kn) time to traverse all neighbors of node v, and
the two “foreach” loops on lines 15 and 16 are bounded by |A| = k
and |V ′| = n respectively. Therefore, Algorithm 2 takes O(kn2)
time. The space complexity is O(n+m), since the input graph can
be stored using FDLL to be introduced in Section 5.1.2 with O(m)
space and the worklist W takes O(n) space. Putting everything to-
gether, we have the following theorem:

THEOREM 1. Algorithm 2 pre-processes the input graph in O(kn2)
time and O(n + m) space to answer any online bidirected Dyck-
CFL-reachability query in O(1) time.

In the following two sections, we describe two improved algo-
rithms. They share the same insight with the the naı̈ve approach,
which have better time complexities on bidirected trees and graphs
respectively. Specifically, our tree algorithm in Section 4 uses a sin-
gle tree walk to find all equivalence sets because trees do not con-
tain cycles. Our graph algorithm in Section 5 employs improved
data structures to track nodes in W and to merge edges on x and y.

4. Dyck-CFL-Reachability Algorithm on
Bidirected Trees

This section presents our algorithm for solving the all-pairs Dyck-
CFL-reachability problem on bidirected trees. Its time and space
complexities are O(n) and O(n) respectively, and it answers any
reachability query in O(1) time. We remind the reader that the pre-

Algorithm 2: A naı̈ve Dyck-CFL-reachability algorithm.
Input : Edge-labeled directed graph G = (V,E)
Output: Set[v] for all v ∈ V

1 transform the input graph G to G′ = (V ′, E′)
2 initialize W to be empty
3 foreach v ∈ V ′ do
4 Eq nodes[v] = {v}
5 if HAS-SAME-IN(v) then add v to W

6 while W �= ∅ and |V ′| > 1 do
7 let z be the front node from W
8 if z ∈ V ′ and HAS-SAME-IN(z) then
9 let x, y be two nodes such that ∃ai〈x, z〉 = ai〈y, z〉

10 Eq nodes[x] = Eq nodes[y] ∪ Eq nodes[x]
11 foreach ai ∈ A do
12 if ai〈y, y〉 ∈ E′ then
13 if ai〈x, x〉 /∈ E′ then add ai〈x, x〉 to E′

14 remove ai〈y, y〉 from E′

15 foreach ai ∈ A do
16 foreach w ∈ V ′ do
17 if ai〈w, y〉 ∈ E′ then
18 if ai〈w, x〉 /∈ E′ then
19 add ai〈w, x〉 to E′

20 remove ai〈w, y〉 from E′

21 if ai〈y, w〉 ∈ E′ then
22 if ai〈x,w〉 /∈ E′ then
23 add ai〈x,w〉 to E′

24 remove ai〈y, w〉 from E′

25 add x to W if x /∈ W and HAS-SAME-IN(x)
26 remove y from V ′

27 else
28 remove z from W

29 foreach v ∈ V ′ do
30 foreach u ∈ Eq nodes[v] do
31 Set[u] = v

vious best result on bidirected trees [39] has O(n log n log k) time
and O(n log n) space complexities. First, we describe a linear-
sized data structure to store the all-pairs reachability information.
We then show how to utilize the equivalence property to solve the
all-pairs Dyck-CFL-reachability problem using a single walk on
trees.

4.1 The STRATIFIED-SETS Representation

In our algorithm, the all-pairs Dyck-CFL-reachability information
is stored in disjoint sets. Two nodes u and v are Dyck-reachable
from each other in the tree iff they belong to the same set. In
other words, each disjoint set C corresponds to an equivalence class
described by relation D, i.e., u, v ∈ C iff (u, v) ∈ D. We name the
disjoint set representation in our main algorithm as STRATIFIED-
SETS.

The STRATIFIED-SETS consist of several disjoint sets spanning
over different layers. Each disjoint set stores the nodes that are
Dyck-reachable from each other in the bidirected tree. The layers
are indexed by an integer i. Note that the layer information is only
used for providing a better explanation. The layer index i grows
downward, i.e., layer i is the upper layer in any two adjacent layers
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i and i + 1. The disjoint sets on the same layer i have no edges
directly connecting each other. For any two adjacent layers i and
i + 1, there exists at least one edge connecting two disjoint sets
C from layer i and C′ from layer i + 1. Specially, the connecting
edge is labeled by L(u, v) ∈ A, respecting the fact that there exist
u ∈ C and v ∈ C′ such that (u, v) is a directed edge in the tree
with the same label L(u, v) ∈ A. Note that there can be at most
k edges connecting the set C ′ with the distinct sets from the upper
layer i. However, more than k edges are possible for connecting the
set C with the distinct sets from the lower layer i + 1. Figure 2(b)
shows an example STRATIFIED-SETS representation, where there
are seven sets spanning four layers.

The STRATIFIED-SETS representation is implemented using
three ingredients: one integer variable curset, two integer arrays
Set[v] and Up[Set[v]][ai]. Set[v] records the equivalence set num-
ber that node v belongs to, and Up[Set[v]][ai] stores the equiva-
lence set number of the set from the upper layer that is connected
to Set[v] w.r.t. the edge labeled by the opening parenthesis ai ∈ A.
The STRATIFIED-SETS uses the integer variable curset to keep
track of the current total number of disjoint sets. Due to the Up

array, the tree algorithm does not need the layer information ex-
plicitly. The STRATIFIED-SETS implementation also permits three
operations: Init(v), Find(v) and Add(v, e) described in Proce-
dure 3. The functioning of procedures Init(v) and Find(v) is fairly
straightforward. The procedure Init(v) takes a node v as input,
assigns it to a new set indexed by curset in STRATIFIED-SETS,
and increases the curset count. Find(v) returns the equivalence set
number that node v belongs to.

We detail the description of procedure Add(v, e) to illustrate
the idea of collapsing nodes in relation D. We use Add(v, e) to
insert the node v to the STRATIFIED-SETS with regard to the
edge e = (u, v) and the edge label L(u, v) in the tree. Node v
is added to STRATIFIED-SETS by either assigning it to an new
set (lines 3 and 9) or collapsing it to an existing set (line 13).
Consider the example input tree in Figure 2(a), node 3 and edge
(2, 3) are processed by Add(v, e). The resulting STRATIFIED-SETS
is in Figure 2(b). Node 3 is assigned to a new set on layer 3. The
new set is then linked with the set containing node 2 on layer 2
respecting the fact that L(2, 3) = a1. Then, node 4 and edge (3, 4)
are processed. Node 4 is collapsed to the set on layer 2 that contains
node 2 respecting the facts that L(3, 4) = ā1 and node 4 is Dyck-
reachable from node 2 (i.e., (2, 4) ∈ D). Formally, if the edge label
L(u, v) in the tree is an opening parenthesis ai ∈ A, v is assigned
to a new set indexed by curset in STRATIFIED-SETS. This new set
is then linked with the set returned by Find(u) on the upper layer
as described by lines 2-5 . If the edge label is a closing parenthesis
āi ∈ Ā, we simply collapse node v to the equivalence set that is
connected via a matched opening parenthesis ai ∈ A from u’s
upper layer. The equivalence set is indexed by Up[Find(u)][ai] as
described by line 13. Lines 9-11 indicate that, for node u whose
link node does not exist, we assign node v to a new set indexed by
curset and link the set returned by Find(u) to the new set from the
upper layer.

Note that the Up array used in Procedure 3 is indeed a map:
(Num → A) → Num , where Num denotes the domain of the set
numbers. For each set in STRATIFIED-SETS, line 8 in Procedure 3
needs to find a particular edge ai from O(k) link edges in Up[s],
where s ∈ Num . The time taken to search such O(k) edges
depends on the actual implementation of the Up array. For example,
if the Up array stores such O(k) edges for each set s using a binary
search tree, the lookup for an ai edge in Up[s] takes O(log k) time
as mentioned in Yuan and Eugster’s work [39]. In our algorithm, we
implement the Up array using the FDLL data structure illustrated
as Example 3 in Section 5.1.2, thus a lookup takes expected O(1)
time. The space required is O(m) since there are m edges in a tree,

Procedure 3: Add(v, e) to add a node v to STRATIFIED-SETS
according to the directed edge e = (u, v).

1 if L(u, v) ∈ A then
2 let ai = L(u, v)
3 Set[v] = curset

4 Up[curset][ai] = Find (u)
5 curset ++

6 if L(u, v) ∈ Ā then
7 let āi = L(u, v)
8 if Up[Find(u)][ai] does not exist then
9 Set[v] = curset

10 Up[Find(u)][ai] = curset

11 curset ++
12 else
13 Set[v] = Up[Find(u)][ai]

where m = n − 1. Therefore, the time complexity of Procedure 3
is O(1), and the space complexity of the Up array is O(n).

4.2 Main Algorithm

This section presents the main algorithm. The key idea is to operate
on the linear-sized STRATIFIED-SETS data structure to build the
all-pairs Dyck-CFL-reachability information during a single tree
walk.

The goal of our algorithm is to assign nodes u and v to the same
set in STRATIFIED-SETS, for all (u, v) ∈ D. The overall algorithm
takes two steps:

(1) Initializing a leaf node: In this step, we pick an arbitrary leaf
node v from the tree and invoke the Init(v) procedure to ini-
tialize the given node v.

(2) Processing each encountered edge: For each edge (u, v) with
label L(u, v) encountered during the tree walk, we process the
edge w.r.t. the edge label and insert the node v to STRATIFIED-
SETS according to the Add(v, e) procedure.

The complete algorithm is shown as Algorithm 4. In the main
algorithm, lines 1-6 initialize the relevant data structures, and
lines 7-14 describe a standard depth-first search (DFS) starting
at node v. For a given bidirected tree T = (V,E) with n nodes,
DFS takes O(n) time. For every node v, the Add(v, e) procedure
takes O(1) time. The space required by Algorithm 4 depends on
the STRATIFIED-SETS representation, which is essentially imple-
mented using the Up array. Therefore, the space complexity is
O(n).

EXAMPLE 2. We consider the bidirected tree in Figure 2(a), where
reverse edges are omitted for brevity. Algorithm 4 outputs the
STRATIFIED-SETS in Figure 2(b). The STRATIFIED-SETS repre-
sentation contains seven disjoint sets: {1, 5, 7, 8, 11, 12}, {2, 4},
{6}, {9}, {10}, {3} and {13}. The nodes in the same set are
Dyck-reachable from each other in the tree. Note that the layer
information is only used for providing a better explanation. Algo-
rithm 4 uses the Up array for finding a set from the upper layer in
STRATIFIED-SETS.

After constructing the STRATIFIED-SETS, any Dyck-CFL-
reachability query (u, v) can be answered in O(1) time by sim-
ply checking whether the indices returned by Find(u) and Find(v)
are the same. Putting everything together, we have the following
theorem.
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ā1 ā1

ā3
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Figure 2. A running example for Dyck-CFL-reachability on trees.

Algorithm 4: Dyck-CFL-reachability algorithm on trees.
Input : Edge-labeled bidirected tree T = (V,E)
Output: the STRATIFIED-SETS

1 initialize the Up array to be empty
2 foreach v ∈ V do
3 visited[v] = false
4 Set[v] = 0

5 stack.push(a leaf node v)
6 curset = 0
7 Init (v)
8 while stack is not empty do
9 v = stack.pop

10 if not visited[v] then
11 visited[v] = true
12 foreach unvisited neighbor u of v do
13 stack.push(u)
14 Add (u, e(v, u))

THEOREM 2. The bidirected Dyck-CFL-reachability problem on
trees can be pre-processed in O(n) time and O(n) space to answer
any online query in O(1) time.

5. Dyck-CFL-Reachability Algorithm on
Bidirected Graphs

In this section, we study the Dyck-CFL-reachability problems on
bidirected graphs. Computing Dyck-CFL-reachability on graphs
is harder than that on trees because graphs may contain cycles.
Consequently, the algorithm introduced in Section 4 based on
the STRATIFIED-SETS representation cannot be directly applied
to graphs.

Although Dyck-CFL-reachability on bidirected graphs is more
complicated, the Dyck-CFL-relation D shares the same equiva-
lence properties as for trees. For bidirected graphs, we utilize the
idea of edge merging to collapse the node pairs (u, v) ∈ D. For
a bidirected graph with n nodes and 2m edges, our algorithm pro-
cesses the given graph in O(n + m log m) time with O(n + m)
space, and can answer any Dyck-CFL-reachability query over any
pair of nodes (u, v) in O(1) time.

5.1 Basic Idea
As the naı̈ve approach, given a bidirected graph G(V,E), our algo-
rithm works on the same directed graph G′(V ′, E′) by removing
all edges labeled by closing parentheses from the original graph,

(a) 1 2 3 4 5 6 7

(b) 1 2 3 4 5 6 7

(c) 1 2, 4 5, 7

3 6

(d) 1, 5, 7

2, 4

3

6

a1 a1 ā1 ā1 a1 ā1

ā1 ā1 a1 a1 ā1 a1

a1 a1 a1 a1 a1 a1

a1 a1

a1 a1 a1
a1

a1

Figure 3. A Dyck-path example.

i.e., V ′ = V and ai〈u, v〉 ∈ E′ iff ai〈u, v〉 ∈ E for all labeled
edges in E′. Therefore, G′ has n nodes and m edges. The key idea
behind our algorithm is to collapse any node pair (u, v) connected
by a Dyck-path in the graph because such pairs (u, v) are in the
Dyck-CFL-relation D. As in the naı̈ve approach, E′ may possibly
contain multiple edges due to the collapsing between nodes.

To make the above idea more concrete, we consider the example
in Figure 3. Figure 3(a) shows the original path in G which contains
two non-trivial sets of nodes that are Dyck-reachable from each
other: {1, 5, 7} and {2, 4}. Figure 3(b) shows the corresponding
reduced path in G′. In such directed cases, node 5 is “connected”
to node 7 via node 6, and a1〈5, 6〉 = a1〈7, 6〉. Since nodes 5 and
7 are Dyck-reachable from each other, the two edges a1〈5, 6〉 and
a1〈7, 6〉 should be merged to collapse nodes 5 and 7 into a single
representative node {5, 7} in Figure 3(c). We define a node like
node 6 to be the merging node. Formally, we have the following
definition.

DEFINITION 3 (Merging Node). If a node v ∈ V has at least two
incoming edges labeled by ai ∈ A, we say node v merges ai edges.
We define a node as a merging node iff it merges some ai ∈ A
edges.

Like the naı̈ve algorithm in Algorithm 2, our main algorithm
fulfills the following two tasks:

(1) Merge edges for each merging node: For any merging node in
the graph G′, the algorithm finds the incoming nodes with the
same labeled edges, and merges the two edges to collapse the
nodes. In the path in Figure 3(b), nodes 3 and 6 are two merging
nodes. The relevant incoming edges should be merged.

(2) Track the new merging nodes: During edge merging, new merg-
ing nodes can be introduced into the graph G′. The algorithm
tracks all new merging nodes in order to perform another edge
merging. For the same example in Figure 3(c), collapsing nodes
2 and 4 generates a new representative node {2, 4}, which is
also a merging node. Its corresponding edges should also be
merged. The final output is shown in Figure 3(d).

In the naı̈ve approach, nodes x and y are arbitrarily picked on
line 9. Merging edges from y to x by enumerating all neighbors
of y exhaustively takes O(kn) time. Moreover, node tracking is
achieved by simply traversing all neighbors of node z on line 8,
which takes O(kn) time as well. When the given graph is sparse,
we can use additional data structures to improve the two tasks
of merging edges and tracking nodes. Next, we describe them in
detail.

5.1.1 Merging Edges

For the directed graph G′, edge merging in G′ picks a merging node
z that has two incoming edges (x, z) and (y, z) with ai〈x, z〉 =
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Figure 5. The illustration of the FDLL data structure.

ai〈y, z〉, and collapses nodes x and y. Specifically, if we choose
to merge edge (y, z) to edge (x, z), all edges connecting y and
its neighbor w should be deleted from G′. Node w is made a
neighbor of x by inserting the relevant edges to G′. Finally, node y
is removed from G′, because it has been collapsed to x.

The order of edge merging is important. The naı̈ve method in
Algorithm 2 performs edge merging by collapsing nodes x and y
arbitrarily with regard to the merging node z. If one adopts this
approach, the time complexity can be O(kn2). When the graphs
are sparse, it is possible to do edge merging faster. To this end, we
employ a technique that is similar to the weighted-union heuristic
(also known as the “union-by-size” heuristic) used in the disjoint
sets data structures [9]. Namely, for each edge merging operation,
we always collapse the node with a smaller degree to the node
with a larger degree. Our new method bounds the total numbers
of edge merging for each edge to O(log m). We provide a detailed
complexity analysis in Section 5.3.

Taking the naı̈ve approach in Algorithm 2 as an example, we
discuss the process of edge merging. Specifically, our handling of
edge merging from node y to node x has three phases, as illus-
trated in Figure 4. We assume that the degree of node x is larger
than that of y, and all irrelevant edges are omitted in Figure 4. Fig-
ure 4(a) shows the original graph before edge merging. Figure 4(b)
illustrates the handling in the first phase. If y has a self loop, the
self loop is removed and added to x if x does not already have one
(lines 11-14 in Algorithm 2). Second, we consider all neighbors
of node y. As in Figure 4(c), for all shared neighbors z of x and
y, those edges between z and y are removed; for those neighbors
w that only belong to y, new edges between w and x are inserted
(lines 15-24 in Algorithm 2). Finally, Figure 4(d) shows that node
y is removed from the graph and degrees for relevant nodes in edge
merging are updated.

5.1.2 Tracking Nodes
During edge merging, the in-degrees of merging nodes may change.
We need to explicitly maintain a list of merging nodes whose in-
degrees w.r.t. an opening parenthesis are at least 2. This section
describes the design of our data structure to effectively maintain
this information.

In the naı̈ve algorithm, tracking nodes is achieved using a work-
list W , which is typically implemented using a list. In our improved
algorithm, we uses a doubly-linked list (DLL) and a hash map. We
name the data structure FAST-DOUBLY-LINKED-LIST (FDLL). It

is important to note that traditional list W used by the naı̈ve ap-
proach on line 25 takes O(n) time to find an element while FDLL
takes expected O(1) time. Figure 5 depicts an example FDLL. All
elements in the FDLL are stored using a DLL and a hash map.
The hash map associates each element with its position in the DLL,
represented by arrows in Figure 5, to help quickly locate every el-
ement in the DLL. The insertion and pop operations on FDLL are
nearly identical to DLL (or list), both of which take O(1) time.
Moreover, the FDLL supports two additional operations in expected
O(1) time:

• Query: Querying the membership of a particular element in
FDLL is the same as querying the relevant membership in the
hash map, which can be done in expected O(1) time.

• Deletion: According to the hash map, the position of the ele-
ment to be deleted can be found in expected O(1) time. Thus
removing the element at the specified position in the DLL can
also be done in O(1) time. Finally, the hash map entry associ-
ated with that element is erased in O(1) time.

EXAMPLE 3. In the tree algorithm, the Up array can be imple-
mented using FDLL to support the expected O(1) time lookup. Re-
call that the Up array is indeed a map: (Num → A) → Num . For
each set s ∈ Num , we use an FDLL A[s] to store the set of opening
parentheses ai, such that there exists an ai labeled edge connecting
set s and the set from the upper layer. For each ai ∈ A[s], we use
another FDLL U [s i] to store the corresponding set from the upper
layer. For example, to look up an edge a3 of set 2, we query whether
a3 ∈ A[2]. If such an a3 exists, U [2 3] keeps the corresponding set
number. The two lookups both take expected O(1) time.

5.2 Main Algorithm

We now present our algorithm solving bidirected Dyck-CFL-
reachability on graphs in Algorithm 5, combining the ideas of
merging edges and tracking nodes.

Before delving into the main algorithm, we first illustrate the use
of FDLL in our main algorithm. For each node v in the input graph
G′ = (V ′, E′), the set of opening parentheses of v’s incoming
edges is represented using an FDLL, denoted as Ain[v]. For each
ai ∈ Ain[v], we use the FDLL In[v i] to store all v’s incoming
neighbors. We denote the size of In[v i] as In[v i].size(). Node
v merges edge ai iff In[v i].size() > 1. We represent Out[v i]
and Aout[v] similarly. Finally, the worklist FDLLw is also repre-
sented using an FDLL.

Algorithm 5 uses the array D̂[v] to represent the total degree
of node v, which is initialized to v’s degree in the original graph.
Notations eq nodes[v] and Set[v] are defined in the same way as
the naı̈ve approach. The functioning of the algorithm proceeds as
follows. On line 1, the original bidirected graph G is pre-processed
to obtain the directed graph G′ = (V ′, E′). From lines 2-5, the
equivalence set Eq nodes[v] is initialized with node v and the
FDLLw is initialized with v i indicating node v merges ai. The
FDLLw in the main algorithm is used to implement the idea of
node tracking. The main algorithm then proceeds to handle edge
merging as follows:

• Lines 7-11: The algorithm pops one z i from the FDLLw,
then chooses its two neighbors x and y for edge merging.
Specifically, node y with a smaller total degree is collapsed to
node x with a larger total degree.

• Lines 12-18: The self loop on node y is handled as described in
Figure 4(b). During edge merging, if a node v becomes a non-
merging node for ai (i.e., In[v i].size() < 2), v i is removed
from the FDLLw. Similarly, when node v becomes a merging
node that merges ai edges, v i is inserted to the FDLLw. Note
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Figure 6. A running example for bidirected Dyck-CFL-
reachability on graphs.

that when an edge is inserted/removed from E′, all of In[v i],
Ain[v], Out[v i] and Aout[v] need to be updated accordingly.

• Lines 19-31: All incoming and outgoing neighbors of y are
handled as described in Figure 4(c). The update on FDLLw for
merging nodes is similar to the handling of self loop.

• Line 32: Node y is removed from V ′. Note that we do not need
to remove z i because it was once w i.

The edge merging ends when the FDLLw is empty, i.e., there
are no merging nodes in the final graph. Lines 33-35 indicate that
all nodes u in the equivalence set Eq nodes[v] are enumerated to
associate Set[u] with v.

After the main algorithm terminates, Set[v] stores the equiva-
lence set number that node v belongs to. Similar to the tree case,
any Dyck-CFL-reachability query (u, v) can be answered in O(1)
time by simply checking the equivalence set numbers of nodes u
and v.

EXAMPLE 4. Figure 6 shows an example. All edges are labeled by
a1 ∈ A. The original edges labeled by ā1 ∈ Ā are removed first.
Nodes 3 and 5 are two merging nodes. In the first iteration, nodes 2
and 4 are collapsed by edge merging. Then node 6 is collapsed as
well. Finally, node 1 is collapsed due to its self loop in the graph. In
the final graph, all of the nodes in the original graph are distributed
into two disjoint sets.

5.3 Algorithm Correctness and Complexity Analysis
This section discusses the correctness and complexity of our pro-
posed algorithm. First, we establish its correctness.

THEOREM 3 (Correctness). Algorithm 5 correctly finds all Dyck-
paths in the input graph.

Proof. It is clear that any Dyck-path reported by Algorithm 5
is indeed a Dyck-path due to the observed equivalence property
(Lemma 1). Thus, our proof focuses on the other direction, that is
Algorithm 5 finds all Dyck-paths in the input graph.

Any trivial Dyck-path generated by rule S → ε is handled
correctly, because every node v in the graph is marked as Dyck-
reachable from itself due to line 3 in Algorithm 5. Dyck grammar
essentially generates the properly matched parentheses. Therefore,
the length of any non-trivial Dyck-path in the graph is even. We
prove by induction on the length |p| of any non-trivial Dyck-path.

Base case. |p| = 2. Let the Dyck-path be p = v1v2v3, with the
realized string R(p) = L(v1, v2)L(v2, v3) = aiāi. Because
the graph is bidirected, we have L(v3, v2) = L(v1, v2) = ai.
Nodes v1 and v3 are collapsed due to the merging node v2.

Inductive step. Suppose Algorithm 5 correctly finds all non-trivial
Dyck-paths of length |p| in the graph. According to the Dyck
grammar, any non-trivial Dyck-path of length |p| + 2 is gener-
ated by the following two rules:
• S → aiSāi indicates that the new S-path is generated by

prepending an open parenthesis and appending by a match-

Algorithm 5: Dyck-CFL-reachability algorithm on graphs.
Input : Edge-labeled bidirected graph G = (V,E)
Output: Set[v] for all v ∈ V

1 transform the input graph G to G′ = (V ′, E′)
2 foreach v ∈ V ′ do
3 Eq nodes[v] = {v}
4 foreach ai ∈ Ain[v] do
5 add v i to FDLLw if In[v i].size() > 1

6 while FDLLw �= ∅ do
7 let z i be the front item from FDLLw

8 let x and y be two front nodes from In[z i]

9 let x denote the node such that D̂[x] � D̂[y]

10 D̂[x] = D̂[x] + D̂[y]
11 Eq nodes[x] = Eq nodes[y] ∪ Eq nodes[x]
12 foreach ai ∈ Ain[y] do
13 if ai〈y, y〉 ∈ E′ then
14 if ai〈x, x〉 /∈ E′ then
15 add ai〈x, x〉 to E′

16 add x i to FDLLw if x i /∈ FDLLw and
In[x i].size() > 1

17 remove ai〈y, y〉 from E′

18 remove y i from FDLLw if y i ∈ FDLLw and
In[y i].size() < 2

19 foreach ai ∈ Ain[y] do
20 foreach w ∈ In[y i] do
21 if ai〈w, x〉 /∈ E′ then
22 add ai〈w, x〉 to E′

23 add x i to FDLLw if x i /∈ FDLLw and
In[x i].size() > 1

24 remove ai〈w, y〉 from E′

25 remove y i from FDLLw if y i ∈ FDLLw and
In[y i].size() < 2

26 foreach ai ∈ Aout[y] do
27 foreach w ∈ Out[y i] do
28 if ai〈x,w〉 /∈ E′ then
29 add ai〈x,w〉 to E′

30 remove ai〈y, w〉 from E′

31 remove w i from FDLLw if w i ∈ FDLLw and
In[w i].size() < 2

32 remove y from V ′

33 foreach v ∈ V ′ do
34 foreach u ∈ Eq nodes[v] do
35 Set[u] = v

ing closing parenthesis. Let the path be p = v1v2 . . . v3v4,
where L(v1, v2) = ai and L(v3, v4) = āi. The realized
string R(v2 . . . v3) = S indicates that nodes v2 and v3 are
Dyck-reachable, where the Dyck-path joining v2 and v3 is
of length |p|. According to the induction hypothesis, they
have been collapsed into a single representative node. Such
a node is the merging node for v1 and v4. Thus, v1 and v4
are collapsed according to Algorithm 5.

• S → SS indicates that the new S-path is composed of
two S-paths. Let the path be p = v1 . . . v2 . . . v3, where
R(v1 . . . v2) = R(v2 . . . v3) = S. Note that the length of
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any non-trivial Dyck-path is at least 2. Since the new S-
path is of length |p|+2, the lengths of both path v1, . . . , v2
and path v2, . . . , v3 are less than or equal to |p|. According
to the induction hypothesis, both v1, v2 and v2, v3 are col-
lapsed into a single representative node. As a result, v1 and
v3 are collapsed into the same representation node as well.

�

Next we analyze the complexity of Algorithm 5. Note that the
total degree D̂[v] used in our algorithm is different from the degree
D[v] of node v respecting the fact that the total degree D̂[v] admits
duplicated edges. For example, in Figure 4(c), D̂[x] = 4 + 2 = 6,
but D[x] = 5, because edge (y, z) is duplicated with (x, z) accord-
ing to the final representative node {x, y} in Figure 4(d). Therefore,
the total degree D̂[v] never decreases during edge merging. Our al-
gorithm processes the merging node z and collapses its neighbor y
with a smaller D̂[y] to node x with a larger D̂[x]. Nodes y and x
are collapsed into a single representative node {x, y}. As a result,
the total degree of y after merging is the same as the total degree
of x according to line 10, namely, D̂[x] = D̂[x] + D̂[y]. On line 9,
we have D̂[x] � D̂[y]. Combining the analysis of the two lines, the
following lemma is immediate:

LEMMA 2. For each edge merging in Algorithm 5, D̂[y] is dou-
bled.

Let m denote the number of edges in graph G′, i.e., 2m =∑
v∈V D[v]. Due to the duplicated edges, D[v] may decrease dur-

ing edge merging. Similarly, m̂ denotes the total number of edges
in graph G′ w.r.t. D̂[v] that admits duplicated edges, i.e., m̂ =
∑

v∈V D̂[v]. For each edge (x, z) in graph G′, we say it is “moved”
if either the total degree D̂[x] or D̂[z] is doubled according to
Lemma 2. For all v ∈ V , we have D̂[v] � m̂ � 2m, because
in the worst case, all nodes are collapsed into a single represen-
tative node (with m duplicated edges) in the final graph. Com-
bined with Lemma 2, an edge is “moved” at most (log D̂[x] +

log D̂[z] � 2 log 2m) times. The “while” loop on line 6 in Al-
gorithm 5 takes time proportional to the number of times that an
edge is “moved”. Therefore, the total running time for the “while”
loop is O(m log m). For lines 33-35, it takes O(n) time to enumer-
ate all nodes u in the equivalence set Eq nodes[v] and to associate
Set[u] with v. Therefore, the time complexity of our algorithm is
O(n + m log m). At the beginning, each node is associated with
two FDLLs In[v i] and Out[v i]. In each iteration of edge merg-
ing, there is one node removed from G′, decreasing the number of
edges m in G′. As a result, O(n + m) space is required for pro-
cessing the graph. Putting all these together, we have the following
theorem:

THEOREM 4. Algorithm 5 pre-processes the input graph in O(n+
m log m) time and O(n + m) space to answer any online bidi-
rected Dyck-CFL-reachability query in O(1) time.

In practice, since the graphs in client analyses are typically
sparse, Algorithm 5 performs in O(n log n) time. When the graphs
are dense, we can use the naı̈ve approach in Algorithm 2 for pre-
processing. As a result, we have the following theorem:

THEOREM 5. The bidirected Dyck-CFL-reachability problem on
graphs can be pre-processed in O(min{kn2, n+m log m}) time
and O(n+m) space to answer any online query in O(1) time.

6. Application: Scaling an Alias Analysis for Java
This section describes a practical application of our results in
speeding up an alias analysis for Java [37]. The goal of alias anal-

ysis is to determine if two pointer variables can point to the same
memory location during program execution. The aliasing infor-
mation obtained by an alias analysis is a prerequisite for many
compiler optimizations and static analysis tools (e.g., software ver-
ifiers [10], data race detectors [23], and static slicers [18]).

Many state-of-the-art alias analyses [31, 36, 37, 40] are for-
mulated using CFL-reachability. Dyck-CFL-reachability plays an
important role in these analyses. For instance, it has been used
to model the matched references and dereferences in C [40], and
has also been employed to describe the field loads and stores in
Java [36, 37] to capture the “balanced-parentheses property” ob-
served by Sridharan et al. [33]. Yuan and Eugster’s recent work [39]
further shows that Dyck-CFL-reachability on bidirected trees can
be used to solve a simplified context-insensitive pointers-to analy-
sis problem.

To demonstrate the practical applicability of our results, we
leverage a recent demand-driven context-sensitive alias analy-
sis for Java [37] formulated using CFL-reachability. Dyck-CFL-
reachability is used to formulate its context-insensitive variant. The
analysis is demand-driven in the sense that it solves the single-
source-single-target Dyck-CFL-reachability problem. We show
that our fast algorithms for all-pairs Dyck-CFL-reachability ap-
plies directly to this context-insensitive alias analysis.

6.1 Symbolic Points-to Graph

The underlying graph representation of the alias analysis is called
the Symbolic Points-to Graph (SPG) [36, 37]. It extends the locally-
resolved points-to graph representation [33] by introducing addi-
tional symbolic nodes as placeholders for abstract heap objects.
The SPG contains three kinds of nodes: variable nodes v ∈ V
representing variables, allocation nodes o ∈ O representing allo-
cations for new expressions, and symbolic nodes s ∈ S representing
abstract heap objects. It also consists of the following three types
of edges:

• edges v → oi ∈ V × O to represent that variable v points to
object oi;

• edges v → si ∈ V × S to represent that variable v points to an
abstract heap object.

• edges oi
f−→ oj ∈ (O∪S)×Fields× (O∪S) to represent that

field f of oi points to oj .

A Java program’s SPG is constructed in three steps. First, sym-
bolic nodes are introduced for each procedure parameter, method
invocation and field access. Second, the set of abstract heap loca-
tions O ∪ S that a variable may point to1 is computed. The rele-
vant points-to edges are inserted to the SPG. Third, the field access
edges oi

f−→ oj are added with regard to field loads and stores. The

SPG also includes the barred edges (i.e. oj
f̄−→ oi edges) implicitly.

6.2 Context-Insensitive Alias Analysis

The context-insensitive alias analysis computes the aliasing relation
over variables within a method. In the analysis, the method invoca-
tion edges (i.e., entry and exit edges) are of no interest. Specifically,
the memory aliasing between the allocation or symbolic nodes that
variable nodes x and y may points-to indicates the aliasing rela-
tion between x and y. The memory alias relation defined in [37]
over (O∪S)× (O∪S) is described by the following context-free

1 In the original work that using SPG [36, 37], the flowsTo edges are used. A
flowsTo edge is obtained on the flow graph by computing a regular language
reachability. An abstract heap object flowsTo a variable if it is in the points-
to set of that variable.
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x = w.f;
w.f = y;
u = x.g;
v = y.g;
v = w.g;

(a) A code snippet.

u x w y v

u x w y v
g f f g

g

(b) Its SPG.

Figure 7. An example of alias analysis with the SPG.

grammar:

memAlias → f̄1 memAlias f1 | . . . | f̄k memAlias fk

| memAlias memAlias | ε
Note that the alias analysis based on memAlias reachability

is a simplification of the alias reachability presented by Sridha-
ran et al. [32, 33]. The field edges between abstract symbolic
nodes in an SPG approximate the field loads and stores in the flow
graph [32, 33]. The approximation may lead spurious aliasing as
detailed by Xu et al. [36, Section 4]. However, the experimental
results show that the overall performance is better than that pro-
posed by Sridharan et al. [32, 33] in practice. The precision loss is
insignificant enough compared to the performance gains.

EXAMPLE 5. Consider the example in Figure 7. The Java code
snippet (left) and its SPG (right) are shown. In the SPG, the boxes
denote symbolic nodes, and the circles denote variable nodes. The
reverse edges (a.k.a. barred edges) are omitted for brevity. Note
that the Dyck-CFL-reachability formulation used in the client alias
analysis represents the barred edges as the opening parentheses.
There are two pairs of memAlias nodes: (x, y) and (u, v), because
the realized strings of the two joining paths are “f̄f” and “ḡf̄fg”
respectively, which can be generated from the memAlias grammar.
However, the node pair (x, v) is not memAlias because the realized
strings of two possible joining paths are “f̄g” and “f̄fg”, such
that the parentheses along the paths are not properly matched.

6.3 Applying Our Fast Algorithms
Since the CFL used to describe the context-insensitive memory
aliasing is a Dyck-CFL with k kinds of parentheses, the two Dyck-
CFL-reachability algorithms presented in this paper can be directly
applied. Note also that this alias analysis is demand-driven in
the sense that the original algorithm solves the “single-source-
single-target” Dyck-CFL-reachability problem, because solving
“all-pairs” reachability is considered computationally much more
expensive in these analyses. Both our algorithms are intended to
solve the “all-pairs” Dyck-CFL-reachability problem. Next, we
show how our “all-pairs” algorithm performs in practice.

7. Empirical Evaluation
In this section, we compare the traditional CFL-reachability algo-
rithm with our proposed algorithm for solving the all-pairs Dyck-
CFL-reachability problem on graphs for standard, real-world Java
benchmarks. The input graphs are generated from the context-
insensitive alias analysis for Java described in Section 6. The re-
sults show that our algorithm outperforms the traditional CFL-
reachability algorithm by several orders of magnitude.

7.1 Experimental Setup
Benchmark Selection. The benchmark suite used in our evalua-
tion is the DaCapo suite [1]. We include the entire DaCapo-2006-
10-MR2 suite which consists of 11 benchmarks with five additional
large benchmarks form the DaCapo-9.12bach suite. Table 2 de-
scribes the benchmarks. For each benchmark, columns 2 and 3 list

the numbers of methods and statements in intermediate representa-
tions of the underlying analysis infrastructure, respectively.

Graph Collection. We have used the same code as Xu et al. [36]
and Yan et al. [37] to generate the Symbolic Points-to Graphs
(SPGs). The analysis is built on top of the Soot program analysis
framework for Java [34].

All benchmarks are processed with the nightly-build version2 of
Soot. To measure scalability, we use the latest release of JDK 1.6
(version 1.6u37) as the base analysis library for Soot. The five large
benchmarks from DaCapo-9.12bach are processed with the help of
Tamiflex [6] for reflection resolution.

Implementation. We implemented the proposed graph algorithm
to compare with the traditional CFL-reachability algorithm. Both
algorithms are implemented in C++ with extensive use of the Stan-
dard Template Library (STL). The FDLL data structure described
in Section 5 is implemented using STL unordered map and list.
The underlying graphs are represented using adjacency lists imple-
mented with FDLL.

Our code is compiled using gcc-4.6.3 with the “-O2” optimiza-
tion flag. Both algorithms take the same SPG as input. Their outputs
are verified to ensure the consistency and correctness . All exper-
iments are conducted on a Dell Optiplex 780 machine with Intel
Core2 Quad Q9650 CPU and 8 GB RAM, running Ubuntu-12.04.

7.2 Time and Memory Consumption
Table 2 shows the performance comparison of the two algorithms
over our benchmark set. Column 4 and 5 list the numbers of nodes
and edges in each SPG respectively. Column 6 lists the aliasing
pair counts. Column 7 shows the number of different kinds of
parentheses (i.e., the size of each Dyck grammar) in each SPG. The
remaining columns list the time and memory consumption of the
traditional CFL-reachability algorithm versus that of our algorithm.
We denote our algorithm as FAST-DYCK.

The results indicate that our algorithm significantly improves
over the traditional CFL-reachability algorithm. We observe that
the running time of our algorithm grows very slowly w.r.t. the
growth of the number of nodes. For example, the running time of
the CFL-reachability algorithm on “jython09” is 30 times over that
on “xalan06”. While, it is only 4 times for our algorithm on the
same benchmarks. We also note that our algorithm consumes less
memory than the traditional CFL-reachability algorithm.

7.3 Discussion
Understanding the Asymptotic Behavior. The SPGs generated
from the benchmarks are very sparse — there are fewer edges than
nodes across all SPGs. This is expected for the client alias analysis
and is consistent with the information in the original papers [36,
37]. For sparse graphs with m = O(n), the asymptotic complexity
of our algorithm is O(n log n).

Moreover, in the traditional CFL-reachability algorithm, the
grammar rules should be scanned for each iteration for inserting
new summary edges. Specifically, for the Dyck language of size k,
each edge popped from the worklist (line 7) in Algorithm 1 needs to
be compared with the O(k) rules in the given grammar. However,
in our algorithms, the above is unnecessary. It takes expected O(1)
time to find a relevant edge labeled by a matched parenthesis in
both our tree algorithm and graph algorithm due to the use of the
FDLL.

Understanding the Memory Consumption. Both our algorithm
and the traditional CFL-reachability algorithm demand moderate
amount of memory for the client alias analysis. The memory cost
for representing the input graphs in both algorithm is similar. The

2 As of 2012-10-23.
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Benchmark #Methods #Statements SPG Time Memory
#Nodes #Edges #S-pair #para CFL FAST-DYCK CFL FAST-DYCK

antlr 9904 170402 16735 13878 19385 1087 37.42 0.041 29.68 20.21
bloat 11818 206857 20320 16224 23080 1197 43.09 0.048 35.09 23.89
chart 25184 448984 44584 36329 50670 2948 253.06 0.119 76.75 52.02
eclipse 10447 181101 17527 14411 20335 1182 42.26 0.042 30.97 21.19
fop 23643 431569 39977 31515 45837 2724 219.53 0.101 67.99 46.08
hsqldb 9177 156265 15015 12693 17615 998 33.39 0.038 27.10 18.22
jython 12802 216068 21615 17381 24487 1240 49.57 0.052 37.20 25.32
luindex 9668 164598 16098 13336 18716 1071 35.15 0.040 28.64 19.45
lusearch 10196 175354 17003 14195 19911 1117 40.22 0.043 30.34 20.73
pmd 11167 193375 18167 14958 20843 1168 40.28 0.046 32.00 21.90
xalan 9181 155180 15030 12645 17608 996 32.93 0.038 26.93 18.21
batik 22938 404097 40273 32052 46225 2565 206.50 0.100 68.77 46.60
eclipse 18741 354818 37531 31889 54471 2221 366.39 0.103 70.82 44.54
jython 41518 642242 63516 49005 85552 2855 947.49 0.163 112.14 72.18
sunflow 22346 385873 39321 31339 45161 2484 196.23 0.096 67.22 45.57
tomcat 25123 441606 45966 37338 63414 3013 622.36 0.124 83.98 53.56

Table 2. Benchmarks and performance comparison: time in seconds and memory in MB.

traditional CFL-reachability algorithm needs more iterations to
compute the graph closure than those in our algorithm, therefore, it
requires more space as well.

Note that we only used the cubic CFL-reachability algorithm
(without applying the Four Russians’ Trick) in our comparison. The
subcubic CFL-reachability algorithm demands non-trivial memory
for storing the input graphs in our client application. For instance,
given a medium-sized graph from our client analysis with 15000
nodes and 1000 parentheses, the subcubic algorithm needs about
26.2 GB memory to store the graph. It is an interesting topic to scale
the subcubic CFL-reachability algorithm on real-world analysis.

Interpreting the Alias Analysis. In the field-sensitive, context-
insensitive alias analysis for Java, the aliasing pairs are typically
sparse. All benchmarks in our evaluation have O(n) aliasing pairs
(the #S-pair column in Table 2). This indicates that for real-world
applications, most of the variables are not aliases. We have also
observed from the experiments that the length of an aliasing path
is small; almost all of the aliasing paths are simple paths with-
out cycles. This observation is consistent with the state-of-the-art
demand-driven analyses [33, 37, 40].

Demand-Driven vs. Exhausted. We now discuss perhaps one of
the most interesting implications from our study. We have noticed
that the performance of our all-pairs algorithm for field-sensitive,
context-insensitive alias analysis is extremely fast. Such an exhaus-
tive analysis with small time and memory cost is particularly suit-
able for application scenarios that need client analyses to be able to
respond instantly, such as just-in-time (JIT) optimizations and in-
teractive development environments (IDEs). Compared to demand-
driven analyses, our exhaustive alias analysis can answer any query
in O(1) time.

In practice, the two algorithms introduced in this paper can be
combined to achieve better performance. For a connected compo-
nent of the SPG encountered during analysis, it is straightforward
to check whether the component is a graph or a tree by counting
the number of nodes and edges. Furthermore, one can design an
effective analysis switching between our tree and graph algorithms
to achieve even better performance.

8. Related Work
There are two strands of closely related work: CFL-reachability and
alias analysis.

8.1 CFL-Reachability

The CFL-reachability framework was initially proposed by Yan-
nakakis [38] for Datalog chain query evaluation. Later, it has been
used to formulate interprocedural dataflow analysis [29] and many
other program analysis problems [11, 19, 22, 25, 27, 31–33, 36,
40]. The central theme in the CFL formulations is that many pro-
gram analyses have the balanced-parentheses property that can
be captured by Dyck-CFL-reachability. The CFL and Dyck-CFL-
reachability problems are also studied in the context of recursive
state machines [4], visibly pushdown languages [3] and stream-
ing XML [2]. Specially, when the recursive state machines are re-
stricted to allow a constant number of entry/exit nodes per module,
reachability is solvable in linear-time. CFL-reachability-based al-
gorithms have cubic worst-case complexity, commonly known as
“the cubic bottleneck in flow analysis” [14]. Finding more effi-
cient algorithms for CFL-reachability is a difficult problem as any
breakthrough in CFL-reachability may lead to faster algorithms for
CFL parsing [27]. Chaudhuri showed that the well-known Four
Russians’ Trick [5] could be employed to speed up in the original
CFL-reachability algorithm to immediately yield a subcubic algo-
rithm [7]. Similar techniques were used in Rytter’s work [30] for
CFL parsing. Besides the subcubic result, Kodumal and Aiken [19]
described a specialized set constraint reduction for Dyck-CFL-
reachability on graphs and Yuan and Eugster [39] proposed an ef-
ficient Dyck-CFL-reachability algorithm on bidirected trees. Our
paper introduces asymptotically faster algorithms for Dyck-CFL-
reachability on both bidirected trees and graphs.

8.2 Alias Analysis

Alias analysis has been extensively studied in the literature. Its goal
is to decide if two pointer variables may point to the same memory
location during program execution. The problem is first formulated
by Choi et al. [8] and Landi and Ryder [20]. Points-to analysis is
recognized as a natural approach to alias analysis because aliasing
relation can be decided by consulting the points-to sets of the two
variables. We refer the reader to Hind’s survey paper [16] on a large
body of points-to analysis work.

Deciding aliasing is a computationally hard problem [17, 24].
Approximations must be made for any practical alias analysis. Var-
ious techniques have been proposed to scale alias analyses, such
as improving the underlying points-to analysis [12, 13], making
the analysis demand-driven [15, 37], and using novel data struc-
tures [35]. Specifically, Zheng and Rugina [40] proposed an ap-
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proach based on CFL-reachability such that the aliasing informa-
tion can be directed computed without first obtaining the points-to
information. The client alias analysis [36, 37] in our evaluation is
built on the same insight. We show in this paper that our fast al-
gorithms help dramatically speed up the context-insensitive alias
analysis.

9. Conclusion
In this paper, we have proposed two fast algorithms for solving
Dyck-CFL-reachability on bidirected trees and graphs respectively.
We have also applied our graph algorithm to a state-of-the-art alias
analysis. The experimental results show that our graph algorithm
help bring orders of magnitude speedup on real-world benchmarks.
The key insight behind both our algorithms is that the reachabil-
ity relation is an equivalence relation. However, this property does
not hold over general trees or graphs. Some existing analyses (e.g.,
dataflow analysis) do not seem to be good applications for the bidi-
rected restriction. As a result, fast results for solving Dyck-CFL-
reachability on general trees and graphs are still of both theoretical
and practical interests.
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