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Abstract—Software that continuously runs over a long period 
of time has been frequently reported encountering “gradual 
degradation” issues. As time progresses, software tends to ex-
hibit degraded performance, deflated capacity, exhausted 
physical resource or deteriorated QoS (Quality of Service). 
Different from transient software anomalies, this issue is a 
chronic degrading process and usually persists until the soft-
ware is eventually unavailable. We name it “Software Degra-
dation” or “Degradation” for short. In this paper, we propose 
a framework GVAR, utilizing Granger Causalities to predict 
and diagnose software degradation. GVAR is evaluated via an 
8-day experiment on a VoD (Video on Demand) platform He-
lix-Serv. The experimental results show that GVAR can pre-
dict the TTF (Time to Failure) of degraded software in an ac-
curacy of 80.1%, remarkably outweighing the widely used 
ARMA and Sen’s Slope Estimator approaches. Moreover, 
GVAR can guide diagnosing the potential root cause of degra-
dation issues. 

Keywords-Performance Degradation; Causality Analysis; 
Granger Causality Test; Vector Auto-Regression;   

I. INTRODUCTION 

Software degradation was initially discovered and report-
ed from multi-user telecommunication systems at AT&T [1]. 
As time progresses, the communication platform will enter a 
“failure-prone” state. That is, even not within the time-frame 
of peak workloads, it became inclined to lose ongoing calls. 
Moreover, the response time for telephonic connect was sig-
nificantly prolonged and highly possible to be denied even-
tually. In most cases, after the system maintainers halt the 
“crippled” platform and enforce it to reboot, the platform 
could resume to normal conditions and its service quality 
could recover as well. Through extensive investigation, re-
searchers found this phenomenon highly resembles the pro-
cess of “physical-fitness degradation”. Thus in this sense, we 
correspondingly name it “Software Degradation”. 

Software degradation is usually an accumulative process 

caused by activation of faults that reside in software, espe-
cially those faults related to memory management, resource 
management, concurrency control, fragmentation, round-off 
error and data corruption. For example, the software degra-
dation problem of JVM is validated most related to memory 
leak [7]. Accumulation of memory leaks will gradually ex-
haust the available memory of JVM and significantly de-
grade JVM performance in 3 ways: (1) the frequency of GC 
will become higher and higher due to shortage of memory 
and excessive GC will bring great burden to system through-
put (2) long-term accumulation of leaked objects (objects 
that are useless but still referenced) will lead sever memory 
fragmentation in JVM heap and requests for allocating con-
tinuous (e.g. an integer array of 1MB) area is very probable 
to fail (3) JVM may crash with an “Out of Memory” error 
when all available memory is depleted. 

To counteract software degradation, “Software rejuvena-
tion” [2] is an effective anti-degradation approach to assure 
high availability for software systems. Rejuvenation usually 
involves stopping the running software occasionally and 
“cleaning” its internal state.  The “cleaning” measures usual-
ly include: (1) garbage collection to clean unreferenced ob-
jects (2) flushing kernel PCBs to clean orphan and zombie 
processes (3) unlocking unreleased mutexes/spinlocks long 
enough (4) eliminating processes which are resource-hogs (5) 
restarting the components that with no response (6) reboot-
ing the VMs in virtualized environment (7) and halting and 
restarting a staggering physical node. However, there are two 
problems, which are decisive to the cost and effectiveness of 
rejuvenation. 

Problem 1: At what time to execute rejuvenation actions? 
Software rejuvenation must be executed prior to the time 
point when the system degrades to be unavailable (usually 
crash or hang). Thus for a running system, we must in ad-
vance predict the “unavailable deadline” caused by degrada-
tion and schedule rejuvenation actions proactively.  
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Problem 2:  What kind of rejuvenation actions to schedule? 
The rejuvenation measures must be selected in accord with 
the root cause of software degradation. Otherwise, the reju-
venation will be in vain and waste computing resources. 

To answer these two questions, we propose a framework 
GVAR (based on Granger Causality Analysis and Vector 
Auto-Regressive Model). The contributions of GVAR can be 
briefly summarized in three perspectives. 

Contribution 1- Detecting software degradation via the 
monitored “health conditions” of a target software system. 
In GVAR, we deploy tracer to monitor performance (e.g., 
response time, throughput), resource utilizations (e.g., CPU 
utilization, Working-set size), service quality (e.g., video 
streaming bandwidth) and other relevant system metrics to 
detect whether there exists degrading trend within the moni-
tored “health data”. To detect degrading trends of “health 
data”, we design a Modified Cox-Stuart Test for statistical 
detection of software degradation. 

Contribution 2- Modeling and forecasting the perfor-
mance, resource utilizations, and QoS of a target system. 
According to results of forecasting, TTF (Time to Failure) or 
TTE (Time to Exhaustion of Resources) can be estimated 
and the “deadline” for rejuvenation can be determined. To 
model and predict the TTF/TTE from monitored metrics, we 
design a Granger Causality augmented Vector Auto Regres-
sive Model (VAR), which outperforms the popular perfor-
mance modelling techniques ARMA (introduced by Grottke 
[5]) and Sen’s Slope Estimator (introduced by Garg [4]). 
(Machine Learning models are usually inappropriate for fast, 
automatic prediction of system performance, since feature 
selection or over-fit tuning usually requires human heuristics 
and the training phase is generally time-consuming. Thus 
ARMA model is prevailing since it makes a much better 
trade-off between accuracy and complexity and does rely on 
human tricks.)  

Contribution 3- Diagnosing the potential root causes of 
software degradation. From the monitored “software health” 
metrics that are detected degrading trends, we utilize Multi-
variant Granger Causality Analysis to construct a causality 
map between these “degraded” software metrics. After that, 
we apply Pearce-Kelly Topological Sort Algorithm to trans-
form the causality map into a causality tree and then back-
traverse the tree to identify the root cause of the degradation 
issue. In our 8-day experiment on a VoD platform Helix-
Serv, we have successfully identified one potential root 
cause of the degradation problem of Helix-Serv. 

The rest of this paper is organized as follows: In Section
II, we review some related work contributing to software 
degradation analysis. In Section III and Section IV, we re-

spectively introduce Multivariate Granger Causality Test 
and Vector Auto-Regression Model. In Section V, software 
health monitoring is explained. In Section VI, degradation 
detection and degradation diagnosis are introduced.  In Sec-
tion VII, we evaluate modelling and prediction accuracy of 
GVAR. Finally in VII, we conclude this paper. 

II. RELATED WORK 

Current software degradation analysis can be divided in-
to two categories: the analytical model-based methodologies 
and the measurement based-methodologies. In general, re-
lated analytical models contain Markov process [2], semi-
Markov process, semi-Markov reward process, hidden-
Markov process, stochastic petri net and so on. The basic 
idea of analytical model-based methodologies is to construct 
a stochastic process to model of the state transition of target 
systems. Usually the primary contributions are to solve 
these models for determining the optimal rejuvenation strat-
egy. The optimal rejuvenation strategy will maximize sys-
tem availability and minimize the cost due to outage.      

Measurement-based methodologies lay particular em-
phasis on statistical or machine learning-based approaches. 
Performance metrics or resource utilizations are collected 
periodically during operational monitoring of the target sys-
tem. The collected multi-dimensional data (that corresponds 
to multiple parameters) can be seen as features reflecting the 
health condition of the system. When it runs over a certain 
period, statistics can be estimated from the collected data to 
test whether degrading trend exists. The data collected can 
also be used to train measurement-based models, for exam-
ple ARMA [5], linear regression model [4], M5P [6], MSET 
and so on. Then the models can forecast performance (or 
resource usage) in the near future, or decide whether degra-
dation occurs (treat this as a binary classification problem).  

In [5], Grottke et al. studied the development of resource 
usage in an Apache web server while subjecting it to an arti-
ficial workload. They first collected data on several system 
resource usage & activity parameters. Non-parametric statis-
tical methods were then applied toward detecting & estimat-
ing trends in the data sets. Finally, they fit time series models 
(ARMA model, Auto Regressive & Moving Average model) 
to the three parameters collected: (1) response time (2) 
throughput (3) used swap space. The ARMA model could 
adequately predict the future resource usage of the Apache 
web server in this paper. Based on the models employed, 
proactive management techniques like software rejuvenation 
triggered by actual measurements can be built. 

The ARMA models used in [5] are completely unrelated 
and mutual influences between performance (or resource) 
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metrics are not taken seriously. In this paper, we will im-
prove the ARMA model by our GVAR in three ways: (1) 
Detecting the statistical causalities between performance (or 
resource) metrics, via Granger Causality Test. (2) Taking 
advantage of causalities between performance (or resource) 
parameters to model and forecast the dynamic progress of 
software degradation more accurately (3) Making use of the 
causalities between performance (or resource) parameters to 
guide root cause analysis 

III. GRANGER CAUSALITY ANALYSIS 

In many fields of science or engineering, a problem of 
great importance is to detect whether there exist unidirec-
tional or bidirectional causal relations among a group of var-
iables. Causal relations have diverse definitions in different 
situations. Here we adopt the concept of causal relation (or 
Causality) defined by Wiener: Given two time series A and 
B that are measured synchronously, if the prediction accura-
cy of A can be improved by incorporating the information of 
B, B is statistically causal to A. In another way, it means that 
there exists causality from B to A. Clive Granger applies 
Wiener’s definition of causality and proposes a method using 
linear regression model to detect the causality between two 
time series. Meanwhile the magnitude of causality can be 
measured. This method is widely used in economics and 
neurosciences, called Granger Causality Test (GCT). It was 
improved by Gewek and Seth [16] to extend the bivariate 
GCT to multivariate GCT, and our starting point is to utilize 
multivariate GCT to analyze the causal relations among the 
monitored performance (or resource) parameters.   

Firstly, we provide some brief introductions to bivariate 
(pairwise) GCT and the later the extension of multivariate 
GCA will be demonstrated. Suppose there are two different 
time series X(t) and Y(t), and we define: 

 
(1) 

 
(2) 

 
Equation (1) is called unrestricted model and Equation (2) is 
called restricted model. p1, p2, p3 are the maximal number 
of lagged observations incorporated into the model, and they 
are all called Lag Order for endogenous or exogenous varia-
bles. ε1(t) and ε2(t) are the regression residuals respectively 
for X(t) and X*(t). If the variance of ε1(t) is less than the var-
iance of ε2(t) (that is to say by incorporating the information 
of Y(t), the variance of ε2(t) is reduced to ε1(t)) , it is claimed 
that Y(t) is the Granger Cause of X(t) (Y(t) X(t) in abbre-

viation).The magnitude of causality from Y(t) to X(t) can be 
measured by the log ratio of the residuals: 

 
                                                                                        (3) 
 
For test whether the causality from Y(t) to X(t) is statisti-

cally significant, we use: 
 

          (4) 
 
RSS1 is the sum of square for time series ε1(t) and RSS2 

is the sum of square of time series ε2(t). The larger FY(t) X(t), 
the more probable Y(t) X(t). And F-test can be used to test 
whether or not Y(t) X(t) because FY(t) X(t) follows F-
distribution.  

Importantly, bivariate Granger causality test is easy to 
generalize to the multivariate (conditional) case in which the 
causality from Y(t) to X(t) is tested in the context of multiple 
additional variables Z(t), P(t), R(t) . . . (Geweke [15]). In this 
case, Y(t) X(t) if knowing Y(t) reduces the variance in 
X(t)’s prediction error when all other variables Z(t), P(t), 
R(t) . . . are also included in the regression model. To illus-
trate, for a system of three variables (1,2,3), we represent the 
noise covariance matrix of the unrestricted model as: 

 
 
                                                                                       (5) 
 
 

where all εiU(t) (i=1, or 2, or 3) are the residuals from the 
unrestricted linear models including all variables. A useful 
partition of the matrix is given by the second equality. For n 
variables, there are n unrestricted models and n restricted 
models, with each restricted model omitting a different pre-
dictor variable. For example, the noise covariance matrix of 
the restricted model omitting variable 2, with its partition, is: 

 
     (6) 

, where all εiR(t) are estimated from the restricted model 
omitting variable 2. The Granger causality from variable 2 to 
variable 1, conditioned on variable 3, is given by: 

 
                                                                                       (7) 

F2 1|3 also follows F-distribution, therefore through F-test 
Granger Causality from 2 to 1 for a group of 3 variables can 
be tested. This situation of three variables can be easy to 
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extend to multiple variables and this is the MGCT (Multivar-
iate Granger Causality Test).  

IV. VECTOR AUTO-REGRESSIVE MODEL 

VAR (Vector Auto-Regressive) model was introduced by 
Sims [14] to Econometrics and VAR has been acknowledged 
the most successful and flexible multivariate model in time 
series analysis, to describe and analyze the dynamics of 
complex systems. The mathematical formulation of VAR is: 
where ε(t) is discrete white noise, and y(t) represents re-
sponse variables of a dynamic system and x(t) represents the 
variables have significant granger causalities to y.  In this 
paper, the response variables are the parameters indicating 
system performance or resource utilizations. 

 
 
                                                                                        (8) 
 
 
 
 
 
 

    From Equation (8), it shows that each endogenous variable 
in VAR is not only in an “Auto-Regressive” fashion but also 
influenced by other variables. The elements in coefficient 
matrix Φ represent the magnitude of influence (or Causality). 
When an element φmn in Φ is very close to zero, it means that 
the corresponding causality can be neglected. All the coeffi-
cients can be estimated by LMS (Least Mean Square) esti-
mation method. 

 In [5], Grottke estimates three independent ARMA 
models to model and predict the dynamic progress of system 
performance and resource utilizations (i.e. response time, 
throughput and used swap space). These three independent 
ARMA models constitute a simultaneous linear equations-
based model to describe and model the process of software 
degradation. The disadvantage of this methodology is that it 
ignores the mutual influence (i.e. causalities) between per-
formance or resource parameters. In this paper, we will show 
that GVAR takes advantages of these causalities, which can 
more accurately model and predict the process of software 
degradation, and can help diagnose the root cause of soft-
ware degradation (cf. Section VII).  

V. SOFTWARE DEGRADATION MONITORING 

Helix Server is a universal streaming media delivery plat-
form with industry-leading performance, integrated content 
distribution, user authentication, Web services support, and 

native delivery of RealMedia. Helix Server is developed and 
distributed by the RealNetworks Enterprise, a renowned 
digital media service corporation. Helix Server supports mul-
tiple On-Demand-Streaming protocols such as RTSP (real-
time streaming protocol), RTP (real-time transport protocol), 
HTTP (hyper-text transport protocol) and MMS (multimedia 
messaging service). Report Server Statistics (RSS) is a sub-
system of Helix Server, which can periodically write perfor-
mance statistics into rotated logs. We implement configura-
tive scripts and programs to extract and parse the perfor-
mance statistics into a database. RSS supports more than 50 
distinct performance metrics for system monitoring and 
troubleshooting, however, only 24 of them (performance 
metrics in categories of system resource utilization and ser-
vice quality of VOD) are relevant to software degradation 
analysis (most of the irrelevant statistics are associated with 
network multicast/broadcast protocols). The monitored met-
rics of our experiments are listed below (within one RSS log 
period): 

A. Time Report Category: (1) Uptime (TT) indicates the 
elapsed time since the server booted. 

B. QoS Category: (2) Total Bandwidth Output (TBO) indi-
cates the actual rate at which Helix Server is delivering 
outgoing streams. (3) Total Bandwidth Subscribed (TBS) 
means the cumulative bandwidth added by all Subscribe 
Request issued from client media players. If a clip is 
512Kbps encoded, each client accessing this clip issues 
a 512Kbps Subscribe Request to inform Helix Server to 
allocate appropriate output bandwidth (referenced 
512Kbps) for transmitting streams of this clip. (4) Sub-
scription Fulfillment (SF) equals to Total Bandwidth 
Output divides Total Bandwidth Subscribed, a percent-
age value to measure the general playback quality of cli-
ent media players.  

C. CPU Usage Category: (5) User Time (UT) indicates the 
percentage of processor time slots allocated to process 
rmserver.exe (Helix Server), not counting kernel time. 
(6) Privilege Time (PT) indicates the percentage of time 
slots used by the OS kernel on behalf of Helix Server.  

D. Memory Usage Category: (7) Working Set (WS) means 
the amount of physical memory allocated to Helix Serv-
er. (8) Cache Hit Ratio (CHR) indicates percentage of 
memory operations that are carried out using the serv-
er’s memory cache. The cache is defined and managed 
by Helix Server and unrelated to L1/L2 hardware cache). 
(9) Mallocs (MA) is the number of calls to Helix Serv-
er’s shared memory block allocator. (10) Frees (FR) is 
the number of calls to the server’s shared memory block 
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deallocator. (11) Page Faults (PF) is the number of vir-
tual memory pages failing to be addressed in RAM and 
must either be mapped immediately in memory or re-
trieved from the pagefile in hard drive. (12) Memory Al-
located Overhead (MAO) is the amount of memory allo-
cated but not in use. 

E. Client Connection Category: (13) Total Subscribers (TS) 
is the number of players connected online. (14) New 
Subscribers (NS) is the new player connections since the 
start of this RSS interval.  

F. Network Transmission Category: (15) Packets (PK) is 
the number of network packets written to Network Inter-
face Controller within this RSS Period. (16) NoBufs (NB) 
is the number of ENOBUFS erros returned form UDP 
sockets. (17) WouldBlocks (WB) is the number of 
blocked packet in queue. (18) Resend (RS) is the number 
of packets resent. (19) Accepts (AC) the number of in-
coming socket connections.  

G. Mutex Collisions Category: (20) Mutex Collisions (MC) 
(21) CPU Spinning (CPS)  

H. Handle Category: (22) Opened Files (OF) 23 Concur-
rent Threads (CT)  

I. Process Activity Category: (24) Main Loop Iterations 
(MLI) 

The testbed is composed of a VOD server (Helix-Serv 
5.3.0) and three client terminals connected via a LAN. Spe-
cific hardware configuration is as follows: Intel Xeon 8 core 
1.6GHZ Processor, plus 4GB Memory plus 1Gbps Network 
Adapter for VOD server and Intel Pentium4 2.59GHZ plus 
1GB plus 100Mbps for each client machine. Helix server 
supports a great many streaming media formats such 
as .rm, .ra, .rmvb, .mov and .mpeg. During our experiments, 
we deployed 160 .rmvb files on Helix-Serv. These files were 
the popular movies in the recent years within our campus. 
We requested all the movies and the popularities that they 
were played from the VOD Center on our campus. Unfortu-
nately we could not get their server access logs for workload 
replay. Thus, we implement a workload generator (i.e., Cli-
ents Simulator), adopting RTP/RTSP protocol for generating 
user connections concurrently. The simulated users were 
created and removed on the client side periodically to simu-
late the diurnal pattern of real workloads. Each user requests 
media files on Helix server according to a designated proba-
bility distribution. The probability density of each file is pos-
itively related to the playback frequencies of a movie in our 
campus. Preliminary server capacity estimation was also 
executed as a preparing work. Each Client Simulator will 
generate no more than 200 clients at a time to prevent over-

load. The RSS monitoring period is set to 1 minute and the 
log rotation duration is set for a week. The entire experi-
ments continued for 8 days (defacto 12356 minutes) and 
eventually rmserver.exe is exceptionally crashed. From our 
data collection procedures, we totally obtain 12356 consecu-
tive data points for each of the 24 performance metrics listed.  

VI. DEGRADATION DETECTION AND DIAGNOSIS 

A. Software Degradation Detection 
The most typical syndrome of software degradation is 

gradual deterioration of system performance, gradual deple-
tion of system resource, or gradual reduction of QoS, all of 
which can be embodied by long-term descending or ascend-
ing trends of specific performance, resource utilization, or 
QoS metrics. By this means, trend detection, sometimes 
called statistical test for trend utilizes statistical hypothesis 
test to examine whether metrics in representation of time 
series data generally exhibit a chronic increasing or decreas-
ing trend. More specifically, we devise a modified Cox-
Stuart (cf. Fig.1), to detect the “degrading trend” of all met-
rics. Eventually among all the 24 metrics, with statistical 
significance level 0.05 and 12356 testing samples for each of 
them, 10 metrics are detected exhibiting degrading trends. 
They are: (1) PK with statistical significance (p-value) 4.3e-4, 
(2) UT with 1.7e-5, (3) PT with 2.6e-5, (4) CHR with 8.2e-3, 
(5) PF with 1.01e-3, (6) MLI with 3.7 e-5, (7) TBO with 
2.8e-4, (8) TBS with 9e-5, (9) NS with 0.0067, and (10) 
MAO with 3.4e-4.   

B. Mining Causalities Between Metrics with Degradation 
Trend 
As introduced in Section III, we apply Multivariate 

Granger Causality Test (MGCT) to inspect the causalities 
between metrics that exhibit significant software degradation 
phenomenon. There are two points to be noticed: (1) Cau-
sality is not identical to correlation (i.e. Pearson Correlation 
Coefficient). Correlation measures non-directional, linear 
relation between two variables while causality is directional 
dependency not confined to just linear relation. (2) MGCT is 
a joint probability approach, not identical to pairwise 
Granger causality test for multiple variables. The result of 
MGCT for the 10 aged performance, service quality or re-
source metrics is illustrated in Fig. 2. Non-aged metrics are 
not considered for MGCT because we believe a pattern that 
“aged metric A” causes “non-aged metric B” and B causes 
another “aged metric C” is unlikely. In this figure, bidirec-
tional arrows indicate bidirectional causalities between two 
metrics, unidirectional arrow indicate A Granger causes B 
where A is the arrow-tail and B is the arrowhead. 
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C. Software Degradation Diagnosis based on MGCT 
Even though multiple distinct performance metrics ex-

hibit software degradation features, not all of the aged met-
rics are the root causes of software degradation. In our exper-
iment, metrics affiliated to CPU usage, memory utilization, 
VOD service quality, network transmission, and player con-
nection are all detected aged, but it is unlikely they all of 
simultaneously trigger and arouse the degradation process of 
software degradation. Thus to discriminate “superficial deg-
radation” and “internal degradation” is crucial for diagnosis. 
Fortunately, MGCT graph provides us good opportunities 
but still needs some additional work: (1) Applying DFS 
(Depth-First-Search) for each node (metric) in MGCT graph, 
to detect whether there exists cycles. If discovered, eliminate 
the edge that forms this circle with least statistical signifi-
cance of Granger causality test (i.e. with largest p-value). 
This procedure continues until all circles in this graph are 

eliminated and consequently the MGCT graph turns into a 
DAG (Directed Acyclic Graph). The temporal complexity is 
O(V!). (2) Applying Pearce-Kelly Topological Sort Algo-
rithms [17] to find a linear ordering of all metrics, in com-
plexity O(V2+E). (3) Eliminate all transitive causalities that 
is if VA is the precursor of VB after topological sort and VB is 
the precursor of VC and VA→VC, then eliminate this causali-
ty, in complexity O(V2).  

After topological sort, the Diagnosis Map based on Cau-
sality (DMC) is eventually yield by GVAR, with vertices 
representing abnormal metrics and the edges representing the 
magnitude of causality between the two metrics. The root (or 
roots) of DMC are the metric causing almost all others met-
rics to exhibit software degradation patterns, thus in statisti-
cal sense, the most probable root cause of degradation is in-
spected. The diagnosing result is shown in Fig. 3.  From the 
figure, we can obtain some instructional knowledge: (1)  PK, 
UT, PT, CHR and PF are on top level of the DMC, which are 
“external” degradation symptoms. (2)  MLI, TBO, TBS are 
middle-level transitive metrics which propagate degradation. 
(3) MAO and NS are the “internal” degradation factors, 
which are high possibly the root cause of degradation. 

 
 
Fig. 1  Modified Cox-Stuart Test 
 
 

 
 
Fig. 2  Multivariate Granger Causality Graph 

 

 
 
Fig. 3  Diagnosis Map based on Causality (DMC) 
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D. Explanations on the Diagnosis  
Memory Allocated Overhead (MAO) represents memory 

allocated but not in used. The inflating trend of MAO im-
plies two possibilities, memory leak and zombie clients (or 
zombie threads) of Helix Server. Since Working set (WS) 
does not exhibit depletion trend, thus zombie clients seem to 
be the most probable cause of degradation. Additional cor-
roborative evidences are MAO causing decreasing of NS and 
transitively causing reducing of TBS, TBO and MLI. Since 
zombie clients (just like zombie processes conventionally in 
OS, occurs when streaming for clients exceptionally termi-
nate but Helix Server is not aware this and still conserve the 
session state plus file cache for it) accumulate and occupy 
more and more available capacity of Helix Server, new arri-
val clients will more and more likely to be rejected, until 
Helix Server is fully saturated and stuck by inactive clients 
and finally crashed. Therefore, the total requested bandwidth 
(TBS) and reduced, causing actual output bandwidth de-
creased. Due to Helix Server becomes more and more inac-
tive, thus main loop iterations (MLI) for admitting and han-
dling video requests will be more and more infrequent, thus 
thereupon CPU time (UT plus PT), memory access (CHR 
plus PF) and network transmission (PK) of Helix Server all 
degrade as time progresses. In fact, during our experiment 
when Helix Server approaches the final crash point. CPU 
time degrades to no higher than five percent and all other 
metrics are also at extremely low level, which additional 
strengthen our analysis of zombie clients.  

Unlike a speculative diagnosis derived from a single met-
ric or multiple mutually independent metrics, the DMC pro-
vided by GVAR utilizes an evidence chain to diagnose the 
root cause of software degradation. Diverse degradation 
phenomena in our experiments seemingly coincide with the 
diagnosing result of GVAR, which is a good supporting case 
for GVAR. 

VII. MODELLING AND PREDICTING SOFTWARE 

DEGRADATION  

GVAR utilizes MGCT to improve the explanatory varia-
ble selection of VAR model to achieve the augmented 
TTF/TTE prediction of degradation. For example, to model 
and predict MLI, the VAR model should only incorporate 
explanatory variable TBS, TBO and NS (according to 
MGCT, cf. Fig. 2). However, in comparison, classic VAR 
model must incorporate all other nine variables, even though 
they may have no relation with the degradation of MLI. This 
gratuitously increases model complexity and the risk of pre-
diction inaccuracy.  

In this section we evaluate the modelling and prediction 
accuracy of GVAR, together with Sen’s Slope Estimator and 
ARMA models, over the 10 aged metrics detected in Section 
VI-A. Sen’s Slope Estimator  (introduced by Garg [4]) and  
ARMA model (introduced  by  Grottke  [5]), are  both  well 
acknowledged  techniques  in  modeling & prediction  of  
software performance or resource usage. The modelling ac-
curacy is quantified as fitness-of-fit (defacto Coefficient of 
Determination, Adjusted R2) on the training data set (75% of 
the 12356 data points for every metric) and the prediction 
accuracy is quantified as the relative accuracy on TTE (time 
to exhaustion, defacto the crash time in our experiment). The 
optimal lag orders for GVAR and VAR are estimated ac-
cording to BIC criterion through our automatic trial-and-
error preliminary tests. GVAR incorporates the causal varia-
bles for a variable to model and predict, (e.g. incorporating 
main loop iterations for user-mode processor time and privi-
lege processor time). Form the standpoint of information 
theory, extending information source can enhance accuracy 
of decision, thus theoretically GVAR is superior to those 
univaritate models. The comparative results are shown in 
Table I., which testifies that GVAR outperforms ARMA 
model and Sen’s Slope Estimator in both modelling and pre-
dicting TTE/TTF of degradation.  

VIII. CONCLUSIONS 

In this paper, we propose a framework GVAR, in combi-
nation of Multivariate Granger Causality Analysis and Vec-
tor Auto-Regression Model for diagnosis and TTF (Time to 
Failure) prediction of software degradation. Via an 8-days-
long experiment on a Helix-Serv VoD platform, GVAR suc-
cessfully identifies the root cause of a real degradation issue, 
by virtue of multi-variant causality analysis. Moreover, 
through evaluation, GVAR generally exhibit accuracies of 
98.17% and 80.17%, respectively in modeling and forecast-
ing the TTF/TTE of software degradation, and significantly 
outperforms classic methodologies such as Sen’s Slope Es-
timator and ARMA. 
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Table I.  Evaluation Result for Software Aging Modeling and TTE/TTF Forecasting 
 

Performance/QoS/Resource 
Usage Metrics 

ARMA Model Sen’s Slope Estimator GVAR Model 
Lag order 
for ARMA 

model 

Adjusted R2 
for Modelling  

Accuracy  
for TTE 

Prediction  

Adjusted R2 
for Modelling  

Accuracy  
for TTE 

Prediction 

Lag order 
for VAR 
model 

Adjusted 
R2 for 

Modelling  

Accuracy  
for TTE 

Prediction 
PK 7 0.972 0.765 0.726 0.698 6 0.991 0.747 
UT 32 0.978 0.638 0.709. 0.886 2 0.987 0.862 
PT 34 0.984 0.624 0.635 0.755 2 0.997 0.851 

CHR 16 0.943 0.823 0.627 0.683 2 0.973 0.806 
PF 12 0.908 0.615 0.614 0.822 4 0.982 0.716 

MLI 16 0.921 0.726 0.754 0.707 15 0.976 0.702 
TBO 68 0.909 0.783 0.807 0.716 4 0.968 0.849 
TBS 54 0.912 0.715 0.605 0.763 4 0.994 0.824 
NS 2 0.928 0.931 0.684 0.676 1 0.986 0.953 

MAO 9 0.937 0.741 0.725 0.752 9 0.963 0.761 
Average 25 0.9392 0.7361 0.6863 0.7458 5 0.9817 0.8071 
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