
A Hierarchical Matrix Factorization Approach for
Location-based Web Service QoS Prediction

Pinjia He, Jieming Zhu, Jianlong Xu and Michael R. Lyu
Shenzhen Research Institute, The Chinese University of Hong Kong, China

{pjhe, jmzhu, lyu}@cse.cuhk.edu.hk

Abstract—With the rapid growth of population of service-
oriented architecture (SOA), services are playing an important
role in software development process. One major issue we should
consider about Web services is to dig out the one with the best
QoS value among all functionally-equivalent candidates. However,
since there are a great number of missing QoS values in real
world invocation records, we can hardly do a detailed comparison
among those selectable Web services. To address this problem,
we propose a location-based hierarchical matrix factorization
method to make efficient and accurate QoS prediction. In our
method, we consider both global context and local information.
We first apply matrix factorization (MF) on global user-service
records and obtain a global prediction matrix. After that, we use
MF to predict QoS values on some user-service groups, which
are clustered by K-means algorithm. Then we combine global
and local predicted QoS values to provide our final prediction.
Extensive experiments show the effectiveness of our hierarchical
approach which outperforms other popular methods.

Keywords—Web service; QoS prediction; Location-aware; Clus-
tering

I. INTRODUCTION

Web services are reusable, self-describing and loosely-
coupled software components designed to construct distributed
systems over the Internet. Because of the booming of Web
2.0, more and more companies tend to develop their software
systems by means of combining existing Web services. Using
Web service is convenient and can greatly accelerate the
system development process. But the accompanying problem is
how to select the most suitable Web services that can not only
provide the functions we need, but also provide non-functional
good performance.

To select a Web service, we will pay attention to its func-
tionality first. That is, we have to find out those Web services
which provide the function we want. After that, we will have
a set of functionally-equivalent Web services and what we
need to do next is to select one from them for the purpose
of giving us the best non-functional performance according to
QoS values (e.g. response time, throughput, reliability, etc.).

One common precondition of the selection process is that
we have already known QoS values of those candidate Web
services. However, this may not be true due to the following
reasons: (1) Service users (i.e. software system developers)
usually requested very few Web services compared with the
amount of all available ones. A lot of QoS values are still
unobserved so that historical records may not be helpful. (2)
It’s impractical for service users to try out all the candidates
when they want to select the best one. Because it’s time-
consuming and sometimes will cost a good deal of money.

(3) From the service providers’ perspective, imagine that they
have to respond to many requests while most of which are
sent for the purpose of testing or collecting QoS data. It will
be quite annoying because those ”fake” requests will cost a
lot of computing resource as well as network communication
resource. Therefore, owning all Web services’ QoS values is
almost impossible. There are a great number of missing values
in historical records and we have to find a method to predict
these values.

QoS prediction is such a technique that use existing QoS
values in invocation records to calculate and predict those
unobserved ones. Collaborative filtering (CF) is a popular
and effective way to do QoS prediction. In real case, many
user-service matrices are sparse, for which some collaborative
filtering methods can not fit well. Matrix factorization is one
of those state-of-the-art collaborative filtering approaches that
can help us when the user-service matrix comes across sparsity
attribute. This method assumes there are some latent factors
that affect QoS values. Hence, in matrix factorization, the user-
service matrix will be separated into two low rank matrices
which can reveal the significance of each latent factor and
prediction will be given based on them.

To improve the prediction accuracy, we are natural to
explicitly take more factors into consideration. Geographical
information is a factor that we can collect and make use of
because user-perceived QoS is closely related to the location
of users as well as services. It’s easy to imagine that users
located in the same region are more likely to enjoy similar
service quality. Besides, services deployed in the same area
often provide services with QoS values alike. Because users
and services in the same region share identical network in-
frastructure so that they have similar network workload and
bandwidth. Thus, it will be better to predict QoS values on
matrix whose users and services both located in the same place.
We propose a hierarchical QoS prediction approach which
considers both local context and global information. Users
and services are separated into several user-service groups
according to their geographical information, which is longitude
and latitude of the corresponding node in this paper. We will
conduct QoS prediction globally first, utilizing the whole user-
service matrix. After that, we predict those missing QoS values
locally, making use of geographical information. At last, we
combine globally and locally predicted values and derive our
final prediction.

For the purpose of describing this problem intuitively, an
example is given here. In Fig. 1, users and services in the
same ”cloud” means that they are in the same geographical
region, while each arrow among them indicates a Web service

2014 IEEE 8th International Symposium on Service Oriented System Engineering

978-1-4799-3616-8/14 $31.00 © 2014 IEEE

DOI 10.1109/SOSE.2014.41

290

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 11,2020 at 04:28:12 UTC from IEEE Xplore. Restrictions apply.

Service1

Service2

Service3

Service4

Service5

Tom

Jeremy

Henry

Jane

David

Fig. 1. A Simple Example of Web Service Invocations

call. Suppose that we want to predict the response time when
Jeremy invokes Service2. From typical point of view, we
will regard all the user-service invocation records as a big
matrix and apply matrix factorization on it. But this method
only considers global context. In our hierarchical method, we
will also do matrix factorization on each ”cloud”, which is a
small user-service matrix. After that, we will combine both
global and local predicted QoS values to get a more accurate
prediction.

The key contribution of this paper includes:

• We combine location information with matrix factor-
ization approach, which makes fully use of location
as well as historical request data.

• We propose a hierarchical way to perform matrix
factorization, which can effectively improve the pre-
diction accuracy.

• Extensive experiments are conducted on a real-world
dataset which contains 1,974,675 invocation records.
Experiment result shows that our prediction perfor-
mance outperforms other state-of-the-art collaborative
filtering methods.

The rest of this paper is organized as follows: Section II
introduces the overall structure of hierarchical prediction
method. Section III details steps in our model. Section IV
presents experiment results. Related works are discussed in
Section V. Finally Section VI concludes the paper.

II. FRAMEWORK OF OUR SYSTEM

Fig. 2 illustrates the framework of our location-based
hierarchical recommendation system. Firstly we will collect
and preprocess those existing service invocation records, keep
a record of user list, service list, QoS values (e.g. response
time, throughput) and other related information such as IP ad-
dresses. We implement matrix factorization on global historical
invocation records first. Then our system will apply K-means
algorithm on the dataset including all users as well as services
according to their geographical information. (We will explain
it in detail in Section IV) After clustering, we will get several
groups, each one of which contains some users and services
located in a close region. One single group itself forms a local
user-service matrix. What our system do next is to apply matrix
factorization approach on each one of them. The final work is
to combine outcomes of global and local MF to produce the

hierarchical prediction. We will introduce each step mentioned
above in next Section.

III. HIERARCHICAL WEB SERVICE RECOMMENDATION

In this section, we will explain our hierarchical recom-
mendation approach in detail. We will first introduce the
representation of geographical information in this paper and
how we utilize it. After that, we will talk about how to
form small user-service groups by K-means algorithm. Finally,
hierarchical matrix factorization is explained.

A. Geographical Information

Longitude and latitude is the geographical information that
we use. We design a tuple (logi, lati) to represent the longitude
and latitude value of user i or service i. Both logi and lati are
floating-point numbers ranging from −180 to 180. We map
all users and services into a 2-dimensional space by using
their longitude and latitude as their coordinates. Thus, we can
apply clustering algorithms on this 2-dimensional space and
form some user-service groups.

B. Finding User-service Groups

We apply K-means algorithm on both user nodes and
service nodes to form clusters, which can reveal the geograph-
ical similarity between nodes. After clustering, we abandon
clusters with only a handful of users or services because to
get a reasonable and accurate prediction result, the number of
users or services have to be bigger than the number of latent
factors defined in matrix factorization. In K-means algorithm,
we select initial center points first, and then we use an EM-
type local search until the algorithm converges. We choose K-
means algorithm because it is fast and has a good performance
on low-dimension data (Our problem is 2-dimensional). The
biggest drawback of K-means algorithm is that its performance
is highly related to the given initial center points. But in
the context of this paper, what we want to cluster are some
nodes on a 2-dimensional geographical map. Thus we can
easily choose the most suitable initial centers by drawing a
2-dimensional map of all users as well as services according
to their longitude and latitude. When we finish the clustering
step, we will get several clusters containing a number of users
and services. We transform each cluster into a local user-
service matrix by extracting corresponding QoS values from
the big global matrix. An example is showed here to explain
the transformation step in detail.

Assume that we have 4 users and 5 services, then we
can form a global QoS matrix such as Fig. 3(a). After K-
means clustering, we find out that user u2, u3 and u4 as
well as service s1, s2 and s5 are in the same cluster. Then
those corresponding QoS values, which are cells with grey
background color in Fig. 3(a), will be extracted to form a local
user-service matrix such as Fig. 3(b). In real world problems,
we will form several clusters and transform them to different
local user-service matrices. These matrices as well as the
global user-service matrix will be the input of our hierarchical
matrix factorization approach.

291

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 11,2020 at 04:28:12 UTC from IEEE Xplore. Restrictions apply.

Invocations

Users

Services

Cluster 1
.
.

Cluster k

Geographical
Information
Extraction

Invocation History
Extraction

Global QoS
Prediction

Local QoS
Prediction

Prediction Fusion

Fig. 2. Framework of Hierarchical Web Service Recommendation System

2.1 0.2 0.3 ? 0.2

1.3 ? 0.5 0.2 ?

0.3 0.6 ? ? ?

? 1.2 ? 0.5 0.6

1u
2u
3u
4u

1s 2s 3s 4s 5s

(a) Global matrix

1.3 ? ?

0.3 0.6 ?

? 1.2 0.6

2u
3u
4u

1s 2s 5s

(b) Local matrix

Fig. 3. A Simple User-service Group Example

C. Hierarchical Matrix Factorization

To predict QoS values of both global matrix and local
matrices, we use probabilistic matrix factorization model [1]
(same as matrix factorization mentioned above). Matrix factor-
ization is a state-of-the-art model-based collaborative filtering
approach which can complete a matrix containing a lot of
missing values. In user-service context discussed in this paper,
matrix factorization model assumes there are several latent
factors that affect both user side and service side of Web
service invocation process. Thus, it approximates a matrix by
the product of two low-rank matrices, each of which reveals
the relationship between latent factors and users as well as
services, respectively.

In this concrete problem, we suppose there are m users
and n services. Hence we have an m × n matrix R. A cell
in the matrix with index (i, j) is the QoS value generated by
invocation from user i to service j. Since a user usually only
called a few services before, the user-service matrix will be
very sparse. To address this problem by matrix factorization,
we will approximate matrix R by the product of two low rank
matrices:

R ≈ UTS (1)

where one of which is a d × m matrix U , while the size
of the second low rank matrix S is d × n. Each column of
matrix U and S reveals the importance of latent factors for
the corresponding user or service. For example, Udi reflects
how much latent factor d affects the QoS values perceived
by user i. Then we need to minimize the following term to

calculate those missing values:

1

2

m∑
i=1

n∑
j=1

Iij(Rij − UT
i Sj)

2 (2)

where Iij indicates whether user i has invoked service j before.
Its value is 1 when there’s an invocation record between the
corresponding user and service, while equals 0 otherwise. To
avoid overfitting, two regularization terms are added to Eq. 2:

λ1

2
‖U‖2Fro +

λ2

2
‖S‖2Fro (3)

where ‖·‖2Fro denotes the Frobenius norm. Then the following
equation is used as objective function to perform prediction for
those missing values:

L(R,U, S) =
1

2

m∑
i=1

n∑
j=1

Iij(Rij − UT
i Sj)

2

+
λ1

2
‖U‖2Fro +

λ2

2
‖S‖2Fro (4)

In [1], gradient descent is used on both matrix U and matrix S
to get the local minimum of the objective function L. We also
use this method because it is fast and fits well in Web service
context according to previous literatures [2]. The following
equations are adopted to update values in matrix U and matrix
S:

U
′
= U − η1(

n∑
j=1

Iij(U
T
i Sj −Rij)Sj + λ1Ui) (5)

S
′
= S − η2(

m∑
i=1

Iij(U
T
i Sj −Rij)U

T
i + λ2Sj) (6)

where η1 and η2 are learning rates of this algorithm. Then this
matrix factorization method is applied to all the matrices we
have, including global matrix and those local ones. We assume
that after doing K-means clustering, we formed k clusters,
which are then transformed to k local matrices. We say that
an invocation record (i, j) ∈ Lk when user i and service j
are both in cluster k. Our hierarchical matrix factorization

292

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 11,2020 at 04:28:12 UTC from IEEE Xplore. Restrictions apply.

approach is defined as:

Pi,j =

{
R̂ij if (i, j) /∈ Lk

βR̂ij + (1− β)R̂k ij if (i, j) ∈ Lk

where R̂ij is the QoS value between user i and service j
predicted by matrix factorization on the global matrix, while
R̂k ij is the corresponding predicted QoS value given by using
matrix factorization on local matrix k. β is the parameter to
indicate how much global prediction affects our final outcome.
This parameter can be tuned to find out the best balance
between global context and local information.

IV. EXPERIMENTS

In this section, we conduct experiments to evaluate pre-
diction accuracy of our model. More specifically, we aim at
answering these following questions:

• How does our method perform on real-world dataset
compared with other methods?

• What is the influence of matrix density on our ap-
proach?

• How does β affect the prediction accuracy of our
method?

A. Dataset

We use a public Web service dataset which contains
information of 339 users, 5,825 services and 1,974,675 invo-
cation records between them. There are two kinds of records:
response time and throughput. It was collected by Zheng et al
and detailly introduced in a related paper [3]. While including
longitude and latitude of users, this dataset doesn’t record
services’ geographical information. We collect longitude and
latitude data of services according to their IP addresses by
sending requests to IPLocation1 and crawl the information we
need in those responding web pages. In order to clearly clarify
our idea, among all QoS values, we will only consider response
time in this paper.

B. Metric

Mean Absolute Error (MAE) is used to evaluate the
prediction accuracy of the hierarchical matrix factorization
method. MAE is defined as:

MAE =
1

N

∑
i,j

|Rij − R̂ij | (7)

where Rij is the QoS value of service j observed by user

i, R̂ij represents the corresponding predicted QoS value, N is
the number of predicted QoS values. MAE reflects the overall
difference between predicted values and real world invocation
records. It’s a negatively-oriented metric, which means lower
values are better.

1http://www.iplocation.net/

C. Comparison

In this section, we conduct experiments on state-of-the-art
methods and compare them with the method proposed by this
paper:

• UPCC: This is a memory-based collaborative filtering
method, which calculates the similarity between each
user pair and then use those most similar ones to
predict for a certain user.

• IPCC: The main idea of this method is the same
as UPCC. But instead of similar users, this approach
focuses on discovering similar services. After finding
those similar services, this approach does prediction
based on them.

• UIPCC: This hybrid method is the linear combination
of UPCC and IPCC, which can absorb the advantages
from both UPCC method and IPCC method.

• PMF: This is a state-of-the-art model-based collabo-
rative filtering method which performs well in com-
pleting matrix with a great deal of missing values.
It assumes there are several latent factors affecting
values in the matrix and uses the product of two low-
rank matrices to do approximation.

• HMF: This is our method which uses hierarchical
matrix factorization to predict missing QoS values.

As we mentioned above, the user-service matrix is quite
sparse because each user may only invoke a few services. To
make our experiments more convincing, we randomly remove
some QoS values in the user-service matrix. After this prepro-
cessing, we conduct experiments on user-service matrices with
different density, which are 10%, 15%, 20%, 25% and 30%.
A matrix with density 10% means that among all invocation
values in that matrix, 90% of them are missing. In our
prediction model, we set λ1 = λ2 = 50, η1 = η2 = 0.0002.
The dimension is 10, which indicates 10 latent factors in our
model. We set β = 0.6 because it gives us the best balance
between global context and geographical information. (We will
explain the impact of β in detail in Part IV-E.)

We run each approach 10 times and present the calculated
average MAE values in Table I. Our model presents the lowest
MAE values under all density settings, which indicates the
hierarchical matrix factorization approach outperforms other
methods. Thus, taking geographical information into consid-
eration and using it in a hierarchical way really improve the
prediction performance.

D. Impact of Density

In our model, the density of a user-service matrix means
the ratio of the number of historical invocation records against
the number of all the elements in that matrix. We conduct
experiments on matrices with different density by randomly
removing some QoS values. In our experiments, matrix density
ranges from 10% to 50%, with interval of 5%. For other param-
eters, we set β = 0.6, λ1 = λ2 = 50 and η1 = η2 = 0.0002.
For each density, we run our model 10 times and show the
average MAE values in Fig. 4.

293

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 11,2020 at 04:28:12 UTC from IEEE Xplore. Restrictions apply.

TABLE I. PERFORMANCE COMPARISON

Density = 10% Density = 15% Density = 20% Density = 25% Density = 30%Methods
MAE MAE MAE MAE MAE

UPCC 0.560 0.520 0.491 0.471 0.457
IPCC 0.599 0.524 0.463 0.439 0.421

UIPCC 0.552 0.500 0.453 0.431 0.415
PMF 0.515 0.471 0.446 0.428 0.416
HMF 0.508 0.467 0.442 0.425 0.413

0.1 0.2 0.3 0.4 0.5
0.35

0.4

0.45

0.5

0.55

M
A

E

Matrix Density

Fig. 4. Impact of Density on HMF

0 0.2 0.4 0.6 0.8 1.0
0.5

0.51

0.52

0.53

0.54

0.55

M
A

E

β

Fig. 5. Impact of β on HMF

Fig. 4 shows that when density of the matrix increases
from 10% to 50%, the MAE of our model continuously goes
down. That indicates more historical invocation records are
helpful for our prediction accuracy, because it provides us with
more information to analyze and make the performance of our
approximation better. Besides, the curve goes down at a high
speed at first but becomes smoothly as density increases. This
phenomenon tells us that when the matrix is pretty sparse,
knowing more historical invocation records is important for us
to get an excellent prediction. But when the user-service matrix
is not that sparse, bringing in more observed QoS values will
only improve the performance of our model to little extent.

E. Impact of β

In our approach, the parameter β indicates how much
will global context affects our final prediction. When β de-
creases, we will bring more geographical information into

consideration. If β = 1, our method performs just the same as
PMF since we don’t gain any information from user-service
clusters. When β = 0, we directly use locally-predicted QoS
values if both the corresponding users and services are in user-
service groups. To dig out the most suitable β, we conduct
extensive experiments, varying the value of β from 0 to 1 at
the step of 0.1. For other parameters, we set density = 0.1,
λ1 = λ2 = 50 and η1 = η2 = 0.0002.

Fig. 5 shows the impact of β on our model. We can see
that when β is small, which indicates we mainly take local
prediction result into consideration, the MAE of our model is
large. Because when we mainly predict corresponding QoS
values by local prediction results, the number of available
invocation records are quite small. Especially for a sparse
matrix, information given by a user-service group is too little
for location MF to dig out the relationship between latent
factors and users as well as services. As β becomes bigger, the
MAE of our model goes down. When β = 0.6, we get the
smallest MAE, which indicates that 0.6 is the most suitable
value for parameter β. When β > 0.6, the MAE goes up as
β increases. That shows it really counts that we incorporate
global context and local information. Because when we tend
to use only global predicted values, the performance of our
model degrades.

V. RELATED WORK

As the service-oriented architecture becomes pervasive, an
increasing number of literature [4], [5], [6] raised discussion
on Web services QoS field. Services composition [7], [8] and
Web services selection [9], [10], [11] are two major problems
that attract much attention from industry as well as academia.
In terms of services composition, Alrifai et al. [12] proposed
a hybrid method which allows us to tremendously reduce the
overhead of finding a Web service combination strategy that
satisfies a number of end-to-end QoS constraints. In service
selection, Mohana el at. [13] classify existing service selection
protocols into semantic or non-semantic class and design a
fuzzy expert system to look for best service based on QoS
values. For service composition and selection problems men-
tioned above, there is an premise that we have already known
all the QoS values between users and services. However, this
precondition is not always satisfied in real world web services
circumstances. Because each user may only invoked a few
services in the registry, there will be a lot of missing values
and the user-service matrix might be quite sparse. To address
this problem, we propose a model-based collaborative filtering
method to predict those missing values.

Collaborative filtering is widely used in recommendation
systems, whose main idea is to analyze the existing user-item
records, dig out the relationship between users, items or both.

294

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 11,2020 at 04:28:12 UTC from IEEE Xplore. Restrictions apply.

In recent years, a great deal of Web service related literature
use collaborative filtering techniques to get accurate predicted
Web services QoS values, which is necessary in most of service
composition or service selection works. The most popular
and common-used collaborative filtering methods fall in two
categories: memory-based and model-based. In memory-based
approach, the overall idea is to find out some neighbors first
and use their QoS values to implement prediction. We have
several ways to define the word ”neighbor”. User-based meth-
ods [14] look for similar users, who are defined as ”neighbors”
to the current user, and predict QoS value for current user
according to neighbours’ invocation records. Zheng et al. [15]
proposed a hybrid method which take advantage of both related
users and services. Tang et al. [16] designed a location-aware
hybrid memory-based collaborative filtering method to further
improve the prediction accuracy.

Model-based collaborative filtering methods use existing
user-service invocation records to train a well designed model.
After that, the trained model can predict those unobserved QoS
values we want. In these model-based approaches, we separate
user-service matrix into the product of two low rank matrix,
which are user-latent factor matrix and service-latent factor
matrix. We assume that only a few factors, which we may not
know, determine user-perceived QoS values. User-latent factor
matrix and service-latent factor matrix contain the relationship
between user and latent factor as well as service and latent
factor, respectively. Zhang et al. [17] proposed a real-time
performance prediction method for cloud component based on
tensor factorization. Lo et al. [2] added a location-related reg-
ularization term to original matrix factorization model which
make use of users’ altitude and latitude information.

VI. CONCLUSION AND FUTURE WORK

This paper presents a location based hierarchical matrix
factorization approach to predict missing QoS values. Instead
of doing matrix factorization on the whole large user-service
matrix, such as most existing model-based collaborative fil-
tering methods do, we make use of both global context and
geographical information of users as well as services. We apply
matrix factorization on user-service groups, which are smaller
matrices, clustered by longitude and latitude information of
each user and service node. Finally, we combine the prediction
result given by global matrix factorization and locally predicted
QoS values. Experiments show that our hierarchical approach
obtain higher accuracy than other similar methods.

In the future, to continuously improve our prediction per-
formance, we have three aspects of things to do. First, we can
try out other location information such as AS (Autonomous
System), IP prefix and continent information of nodes. Besides,
from the clustering algorithm’s perspective, we may consider
K-means Parallel and BFR since they are scalable clustering
algorithm, which can arm us the ability to deal with web
service prediction problem in big data circumstance. In terms
of matrix factorization itself, we will find out some other
factors except location to improve the prediction outcome.

ACKNOWLEDGMENT

The work described in this paper was supported by the
National Basic Research Program of China (973 Project No.

2011CB302603), the National Natural Science Foundation of
China (Project No. 61100078), the Shenzhen Basic Research
Program (Project Nos. JCYJ20120619153834216), and the
Research Grants Council of the Hong Kong Special Adminis-
trative Region, China (Project No. CUHK 415311).

REFERENCES

[1] A. Mnih and R. Salakhutdinov, “Probabilistic matrix factorization,” in
Advances in neural information processing systems, 2007, pp. 1257–
1264.

[2] W. Lo, J. Yin, S. Deng, Y. Li, and Z. Wu, “An extended matrix factor-
ization approach for qos prediction in service selection,” in Proceedings
of the 9th International Conference on Services Computing (SCC’12).
IEEE, 2012, pp. 162–169.

[3] Z. Zheng, Y. Zhang, and M. R. Lyu, “Distributed qos evaluation for
real-world web services,” in Proceedings of the 17th International
Conference on Web Services (ICWS’10). IEEE, 2010, pp. 83–90.

[4] M. Alrifai and T. Risse, “Combining global optimization with local
selection for efficient qos-aware service composition,” in Proceedings
of the 18th international conference on World Wide Web (WWW’09).
ACM, 2009, pp. 881–890.

[5] J. Zhu, Y. Kang, Z. Zheng, and M. R. Lyu, “Wsp: A network coordinate
based web service positioning framework for response time prediction,”
in Proceedings of the 19th International Conference on Web Services
(ICWS’12). IEEE, 2012, pp. 90–97.

[6] Z. Zheng and M. R. Lyu, “Personalized reliability prediction of web
services,” ACM Trans. Softw. Eng. Methodol., vol. 22, no. 2, pp. 12:1–
12:25, Mar. 2013.

[7] J. E. Haddad, M. Manouvrier, G. Ramirez, and M. Rukoz, “Qos-driven
selection of web services for transactional composition,” in Proceedings
of the 6th International Conference of Web Services (ICWS’08), 2008,
pp. 653–660.

[8] D. Hamlet, “Tools and experiments supporting a testing-based theory of
component composition,” ACM Trans. Softw. Eng. Methodol., vol. 18,
pp. 12:1–12:41, June 2009.

[9] L. Mei, W. K. Chan, and T. H. Tse, “An adaptive service selection ap-
proach to service composition,” in Proceedings of the 6th International
Conference of Web Services (ICWS’08), 2008, pp. 70–77.

[10] P. Bonatti and P. Festa, “On optimal service selection,” in Proceedings
of the 14th international conference on World Wide Web (WWW’05),
2005, pp. 530–538.

[11] A. Goscinski and M. Brock, “Toward dynamic and attribute based
publication, discovery and selection for cloud computing,” Future
Generation Comp. Syst., vol. 26, no. 7, pp. 947–970, 2010.

[12] M. Alrifai, T. Risse, and W. Nejdl, “A hybrid approach for efficient
web service composition with end-to-end qos constraints,” ACM Trans-
actions on the Web (TWEB’12), vol. 6, no. 2, p. 7, 2012.

[13] R. Mohana and D. Dahiya, “Approach and impact of a protocol
for selection of service in web service platform,” SIGSOFT Softw.
Eng. Notes, vol. 37, no. 1, pp. 1–6, Jan. 2012. [Online]. Available:
http://doi.acm.org/10.1145/2088883.2088896

[14] J. S. Breese, D. Heckerman, and C. Kadie, “Empirical analysis of
predictive algorithms for collaborative filtering,” in Proceedings of the
14th conference on Uncertainty in artificial intelligence. Morgan
Kaufmann Publishers Inc., 1998, pp. 43–52.

[15] Z. Zheng, H. Ma, M. R. Lyu, and I. King, “Wsrec: A collaborative
filtering based web service recommender system,” in Proceedings of
the 16th International Conference on Web Services (ICWS’09). IEEE,
2009, pp. 437–444.

[16] M. Tang, Y. Jiang, J. Liu, and X. Liu, “Location-aware collaborative
filtering for qos-based service recommendation,” in Proceedings of the
19th International Conference on Web Services (ICWS’12). IEEE,
2012, pp. 202–209.

[17] Y. Zhang, Z. Zheng, and M. R. Lyu, “Real-time performance prediction
for cloud components,” in ISORC Workshops. IEEE, 2012, pp. 106–
111.

295

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 11,2020 at 04:28:12 UTC from IEEE Xplore. Restrictions apply.

