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ABSTRACT
Logging is a common programming practice of great importance
in modern software development, because software logs have been
widely used in various software maintenance tasks. To provide
high-quality logs, developers need to design the description text in
logging statements carefully. Inappropriate descriptions will slow
down or evenmislead themaintenance process, such as postmortem
analysis. However, there is currently a lack of rigorous guide and
specifications on developer logging behaviors, which makes the
construction of description text in logging statements a challenging
problem. To fill this significant gap, in this paper, we systemati-
cally study what developers log, with focus on the usage of natural
language descriptions in logging statements. We obtain 6 valuable
findings by conducting source code analysis on 10 Java projects and
7 C# projects, which contain 28,532,975 LOC and 115,159 logging
statements in total. Furthermore, our study demonstrates the poten-
tial of automated description text generation for logging statements
by obtaining up to 49.04 BLEU-4 score and 62.1 ROUGE-L score
using a simple information retrieval method. To facilitate future
research in this field, the datasets have been publicly released.

CCS CONCEPTS
• Software and its engineering→ Software developmentmeth-
ods; • Computing methodologies → Natural language process-
ing;
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1 INTRODUCTION
Logging is a common programming practice of practical importance
for modern software developers. Developers mainly conduct log-
ging by writing logging statements (e.g., printf(), logging.info()) and
inserting them into the code snippets. As in-house debugging tools
(e.g., debugger), all too often, are inapplicable in production settings
[62], software logs have become the principal source of information
when diagnosing a problem. Specifically, software logs have been
used in various reliability enhancement tasks, including anomaly
detection [18, 57], fault diagnosis [55, 63], program verification
[17, 51], performance monitoring [27, 43], etc. The performance of
these tasks highly depends on the quality of the collected logs. Thus,
for modern software development and maintenance, appropriate
logging statements are of great importance.

Typically, a logging statement contains description text and vari-
ables. Real-world examples of logging statements can be found
in Fig. 2. Description text describes the specific system operation
in runtime, which is the main focus of this paper, while variables
record necessary system status (e.g., IP address). Elaborate descrip-
tion text can accelerate reliability enhancement tasks by providing
better understanding of the system runtime information. On the
contrary, immature description text (e.g., outdated text) slows down
the log analysis process or may even mislead the developers [13].

However, logging is not easy because of the following reasons.
First, there is currently a lack of rigorous specification on logging
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practice. For example, Fu et al. [19] find that even in a leading soft-
ware company like Microsoft, it is difficult to find rigorous (i.e.,
thorough and complete) specifications for developers to guide their
logging behaviors. Moreover, with the popularity of source code
sharing platforms (e.g., Github), modern software may consist of
components written by multiple developers all over the world. This
further increases the difficulty for a developer to align with the
project logging style. This problem is compounded by the fact that
logging statements update frequently in modern software devel-
opment (e.g., hundreds of new logging statements every month
[56]). Although there are some existing logging frameworks (e.g.,
Microsoft’s ULS [6] and Apache’s log4net [1]), developers still need
to make their own logging decisions [62]. Thus, where to log and
what to log have become crucial but challenging problems.

Recently, Cinque et al. [15] summarize empirical rules regarding
logging placement. Zhu et al. [62] propose LogAdvisor, which rec-
ommends whether developers should write a logging statement in
a code snippet or not. They focus on the "where to log" problem,
while do not consider "what to log". Yuan et al. [60] develop Lo-
gEnhancer, a tool that can enhance logging statements by adding
informative variables. However, their method focuses on existing
statements and does not consider the description text.

To fill in this significant gap of "what to log", we conduct the first
empirical study on the context of logging statements, with focus
on their natural language descriptions. Specifically, we collect 10
Apache Java projects and 7 C# projects, which contain 28,532,975
LOC and 115,159 logging statements in total. We first study the
purpose of logging by manually inspecting 383 logging statements
and their surrounding code snippets. Then, we study the repeti-
tive usage of certain n-grams (i.e., a sequence of n tokens), which
we call n-gram patterns, in the natural language descriptions. For
simplicity, in the following, we use logging descriptions to repre-
sent the natural language description text in logging statements.
In particular, could we generate the logging descriptions based on
historical logs using n-gram language model [5]? Are logging de-
scriptions locally repetitive (e.g., in a source file)? Moreover, based
on the manual inspection experience and quantitative evaluation,
we further study the possibility of automated logging description
generation. In particular, is it potentially feasible to implement a
logging description suggestion tool to assist developers in deter-
mining what to log? By answering the above questions through
systematic analysis, this investigation helps to characterize the
current usage of logging descriptions and serves as the first step
towards automated logging description generation.

The results of our study show that there are generally three cat-
egories of logging descriptions, including description for program
operation (37.34%), description for error condition (39.16%), and de-
scription for high-level code semantics (23.5%) (Finding 1). Besides,
compared with common English, the repetitiveness in logging de-
scriptions can be better captured by statistical language models.
(Finding 2). However, the n-gram patterns in different projects vary
a lot (Finding 3), which is caused by the localness [53] of logging
descriptions. In particular, the n-gram patterns in logging descrip-
tions are endemic to one source file or frequently used in a few
source files (Findings 4∼5). In addition, we evaluate the potential
feasibility to automatically generate logging descriptions based on
historical logs. The high BLEU score [45] and ROUGE score [39]

imply that automated logging description generation is feasible and
deserves more future exploration (Finding 6).

In summary, our paper makes the following contributions:
• This paper conducts the first empirical study on the usage
of natural language in logging practice by an evaluation of
10 Java projects and 7 C# projects.
• It summarizes three categories of logging descriptions in
logging statements, including description for program op-
eration, description for error condition, and description for
high-level code semantics, covering all the scenarios ob-
served in our study.
• We demonstrate the repetitiveness in logging descriptions
globally (i.e., in a project) and locally (i.e., in a source file),
and further present the potential feasibility of automated
logging description generation.
• The datasets studied have been publicly released [3], allow-
ing easy use by practitioners and researchers for future study.

The remainder of this paper is organized as follows. Section 2 ex-
plains the methodology in our study. Section 3 summarizes logging
descriptions into different categories. Section 4 characterizes the
natural language descriptions by quantitative analysis. Based on
the evaluation results, the potential feasibility of automated logging
description generation is assessed in Section 5. We discuss potential
directions to improve logging in Section 6. Section 7 introduces
related work. Finally, we conclude this paper in Section 8.

2 STUDY METHODOLOGY
In this paper, we study the logging statements of 10 Java projects
and 7 C# projects, which contain 28,532,975 LOC and 115,159 log-
ging statements in total. In particular, the Java projects are collected
from Apache Project List [2] with more than 15 committers, while
the C# projects are widely-used software with more than 1,000 stars
on Github.

Table 1 presents the details of these open-source projects. These
projects are of great variety, ranging from distributed system, data-
base, enterprise service bus, SDK, to IDE.Description presents a brief
introduction of the project. Version shows the date of the last com-
mit to the master branch in the repository when we downloaded the
project source code. LOC indicates the corresponding project’s line
of code. # of Logging Statements is the number of logging statements
in the project. # of Logging Descriptions is the number of logging
statements that have natural language descriptions. Tokens in Logs
counts the total tokens extracted from the logging descriptions;
while Distinct Tokens counts the distinct tokens.

We can observe that a majority of the logging statements contain
logging descriptions. In particular, 81.9% of the logging statements
in ActiveMQ have logging descriptions; while the average per-
centage of all projects is 69.8%. Thus, we can find that logging
descriptions are important and widely adopted by developers.

The lengths of the logging descriptions in all of the projects are
illustrated in Fig. 1. In this paper, by length, we mean the number
of tokens in a logging description. The lengths of more than 90% of
the logging descriptions are in range [1, 10]. Different from other
text in software engineering, such as code or documentation, the
length of logging description is shorter. Thus, we expect different
characteristics of the natural language used in logging descriptions.
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Table 1: Java and C# project details.

# of Logging # of Logging
Description Version Statements Descriptions Total Distinct

ActiveMQ Message Broker 20180212 689.9K 6.8K 5.6K (81.9%) 23,659 2,200
Ambari Hadoop Monitor 20180220 798K 5K 3.7K (75.2%) 22,590 2,104
Brooklyn Distributed System Manager 20170901 483.5K 4.5K 3.6K (79.7%) 24,255 2,458
Camel Integration Framework 20180126 1.8M 11.7K 8.8K (75.5%) 45,288 3,521
CloudStack Cloud Computing Software 20180131 838.8K 12K 9.8K (81.6%) 67,753 3,579
Hadoop Distributed Computing Platform 20171214 1.9M 13.9K 11.0K (79.4%) 59,825 4,669
HBase Distributed Database 20170804 957K 8.3K 6.6K (79.8%) 36,782 2,969
Hive Data Warehouse 20170812 1.5M 7.3K 5.9K (81.2%) 32,756 3,151
Ignite Distributed Database 20171031 1.6M 4.6K 3.5K (77.3%) 18,476 1,737
Synapse Enterprise Service Bus 20171204 586.3K 8.1K 5.1K (64.0%) 31,489 1,436

# of Logging # of Logging
Description Version Statements Descriptions Total Distinct

Azure SDK Azure Tools for Visual Studio 20170301 2.1M 786 529 (67.3%) 1,804 474
CoreRT .NET Core Runtime 20180208 537.6K 677 413 (61.0%) 1,364 419
CoreFX .NET Core Foundational Lib. 20180208 3.6M 7.5K 4.7K (63.2%) 21,219 2,009
Mono .NET Framework 20180116 7.5M 14.1K 7.9K (56.4%) 26,457 3,681
Monodevelop Cross Platform IDE 20180103 2.2M 6.6K 3.0K (46.3) 13,540 2,067
Orleans Distributed Virtual Actor Model 20180228 242.6K 761 484 (66.2%) 2,342 529
Sharpdevelop Cross Platform IDE 20171221 701.5K 2.1K 1.1K (51.8%) 4,168 1,190
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Figure 1: Distributions of the length of logging descriptions.

These projects are supposed to have good logging practice, es-
pecially appropriate logging descriptions, for the following two
reasons. First, these projects are maintained by developers from
large organizations or companies, which provide important soft-
ware solutions powering modern IT industry. For example, Hadoop
is used by a large amount of companies to process large-scale data.
Second, these projects have been serving users globally for a long
time, and thus their logging statements have fulfilled the use of
daily development and maintenance.

We characterize the logging descriptions by both manual in-
spection and these evaluation metrics. To study the purpose of
logging descriptions, we first randomly sample a subset of logging
descriptions and their corresponding code snippets. After manually
exploring these samples in detail, we categorize logging descrip-
tions into 3 groups. Then, to further study the characteristics of
them, we evaluate the global and local repetitiveness in logging

Table 2: Categories from 383 sampled logging descriptions.

Samples
Completed 59/383 15.40%
Current 18/383 4.70%
Next 66/383 17.23%

Exception 96/383 25.07%
Value-Check 54/383 14.10%

Variable 40/383 10.44%
Function 15/383 3.92%
Branch 35/383 9.14%

0.00000 1.00000 1.00000

Categories

Program 
Opeartion

% of Samples

Error 
Message

Semantic 
Description

37.34%

39.16%

23.50%

descriptions by the evaluation metrics proposed in previous empir-
ical studies on source code [28, 53]. In all the experiments using
evaluation metrics, we regard the logging descriptions as plain text
and study them from the natural language perspective.

3 CATEGORIES OF LOGGING DESCRIPTIONS
To characterize the usage of natural language in logging descrip-
tions, the first step is to understand the purpose of these descrip-
tions. Thus, in this section, we manually inspect the logging de-
scriptions and summarize them into different categories.

Since the total number of logging descriptions is large, it is pro-
hibitive to manually inspect all the logging descriptions and analyze
the corresponding code snippets. Thus, we randomly sample a sub-
set of logging descriptions together with the corresponding code
snippets from all the projects in Table 1. Similar to existing studies
[20, 21], we calculate the number of samples by standard techniques
[35]. Specifically, the number of samples is determined by a desired
margin of error, confidence level, and the data size. There are to-
tally 82,476 logging descriptions in our study. Thus, we determine
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/*  Example 7: Function Description */
public void forget(Xid xid) throws XAException {
        LOG.debug("Forget: {}", xid);

... 
}

/*  Example 1: Completed Operation */
final lbmonitor monitorObj = lbmonitor.get(_netscalerService, 
nsMonitorName);
monitorObj.set_respcode(null);
lbmonitor.delete(_netscalerService, monitorObj);
s_logger.info("Successfully deleted monitor : " + nsMonitorName);

/*  Example 3: Next Operation */
LOG.info("Close consumer on A");
clientA.close();

/*  Example 4: Exception */
try {
      count = c.readAndProcess();
    } catch (InterruptedException ieo) {
       LOG.info(Thread.currentThread().getName() + ": readAndProcess 
caught InterruptedException", ieo);
       throw ieo;
}

/*  Example 5: Value-Check */
if (jobId == null) {
   s_logger.error("Unable to get a jobId");
   return null;
}

/*  Example 6: Variable Description */
String messageID = (String) element.get("JMSMessageID");
LOG.debug("MessageID: {}", messageID);

/*  Example 2: Current Operation */
while (nm.getServiceState() != STATE.STOPPED && waitCount++ != 20) {
      LOG.info("Waiting for NM to stop..");
      Thread.sleep(1000);
}

/*  Example 8: Branch Description */
if (blobItem instanceof CloudBlockBlobWrapper || blobItem instanceof 
CloudPageBlobWrapper) {
   LOG.debug("Found blob as a directory-using this file under it to     
infer its properties {}", blobItem.getUri());
...  
}

Figure 2: Real-world examples of logging statements.

the sample size as 383 after setting ±5% margin of error and 95%
confidence.

To figure out the purpose of logging descriptions, we assign
each logging statement and its surrounding code snippet to three
researchers with 6 years’ programming experience in average. Each
researcher labels the category of the logging description after man-
ual analysis. Then we compare the labels returned by different
researchers. If all the labels for a logging description are the same,
we regard it as the final label. Otherwise, the researchers re-visit
the case together and produce the final label after discussion. Table
2 shows the details of the categories and the number of samples
in each category. In particular, we summarize 3 main categories,
under which there are totally 8 mutually exclusive subcategories.
In addition, we provide a selected example from the studied project
for each subcategory in Figure 2. The details of these categories are
introduced as follows. In this study, we start with 7 subcategories
based on previous experience and preliminary inspection on the
logging statements. After exploring all the 383 samples, we find a
new subcategory (i.e., branch description) and finally summarize
with 8 subcategories in this paper.

Category 1: Program Operation. Logging descriptions in this
category summarize the detailed actions or intentions of the sur-
rounding program. Based on the position of the described program

statements, this category can be further divided into three subcate-
gories, including completed operation, current operation, and next
operation. In particular, a completed operation logging description
concludes the behavior of program statements preceding a logging
statement. This kind of logging statements are often placed at the
end of a function/block scope. Example 1 shows a completed op-
eration that deletes a monitor successfully. In current operation,
developers log the current status of a program to trace the progress
of an action. Typical usage of such description is in a while loop or
a for loop, as illustrated in Example 2. Compared with aforemen-
tioned two types, next operation is more widely utilized to forecast
the following behaviors of a program, which often indicates the
start of some operations. In Example 3, developers log the next
operation of closing the consumer on client A. In our study, more
than 37% of samples belong to the program operation category.

Category 2: Error Message. It is a common practice for devel-
opers to log the error message for maintenance. In this category,
logging descriptions mainly present the occurrence or the behind-
reasons of an error/exception. There are two types of logging de-
scription in this category: exception and value-check. Exception uses
the try-catch block and the logging description is often written in
the catch clause. Some error-related keywords (e.g., failed, error,
exception) are frequently employed and often indicate a failed ex-
ecution in the try block. Example 4 is a representative example.
Value-check logging descriptions explain errors without explicitly
employing the try-catch block. Instead, an if-statement is usually
applied to check the value of a variable in current program or the
return value of a specific function. For instance, Example 5 shows
the value checking of a variable against null. Other values such as
false, empty are also widely checked and the corresponding error
messages are then logged. Most samples (around 40%) in our study
are categorized into the error message category.

Category 3: Semantic Description. In this category, there are
three subcategories of logging descriptions according to the ob-
ject they describe, i.e., variable description, function description and
branch description. In particular, variable description records the
value of a pivotal variable during execution. As shown in Example
6, the detailed value of message ID is logged. Function description is
widely utilized to depict the functionality and usage of a function
and its arguments. Generally, function description is placed at the
beginning of a function body, as illustrated in Example 7. Branch
description describes the semantic meaning of a branch/path. Differ-
ent from program operation and error message, branch description
is mainly used in if-else blocks to indicate the execution path in
software runtime. Example 8 presents a logging description that
captures the semantic meaning of this branch. 23.50% of our studied
samples are in the semantic description category.
Finding 1: There are three main categories of logging
descriptions, i.e., description for program operation, description
for error condition, and description for high-level code
semantics.

4 LANGUAGE PATTERNS OF LOGGING
DESCRIPTIONS

In this section, we try to answer the following research questions:
• RQ1: Is there any repetitiveness in logging descriptions?
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• RQ2: Can the repetitiveness be captured by cross-project
n-gram models?
• RQ3: Are there any n-grams in logging descriptions appear-
ing in only one source file?
• RQ4: Are n-grams in logging descriptions locally specific to
a few source files?

By answering these research questions with quantitative analy-
sis of the open-source projects, we aim to facilitate better under-
standing of the current logging description usage by developers. In
addition, the answers to these questions demonstrate the potential
of automated logging description generation.

4.1 RQ1: Is There Any Repetitiveness in
Logging Descriptions?

The repetitiveness of n-grams in common English has already been
successfully used in various tasks, such as speech recognition, ma-
chine translation, and code completion. Thus, it would be of great
interest to explore whether logging descriptions are also repetitive
and predictable for potential applications (e.g., automated descrip-
tion generation). To answer this question, in this section, we try
to use n-gram language models to predict the next token in a log-
ging description. Intuitively, if there is observable repetitiveness
in logging descriptions, the models should have decent prediction
performance. In the following, we first introduce the n-gram lan-
guage model and the evaluation metric. After that, we analyze the
experimental results and summarize with a finding.

N-gram languagemodel. Language models are statistical mod-
els that predict the probability of sequences of words. N-gram mod-
els assume a Markov property, i.e., the probability of a token only
depends on the precedingn−1 tokens. For example, for 4-grammod-
els, the probability p of a token is calculated based on the frequency
counting of the previous 3 tokens, as the following:

p (a4 |a1a2a3) =
count (a1a2a3a4)

count (a1a2a3∗)
. (1)

If there is observable repetitiveness in logging descriptions, an n-
gram modelM should be able to learn the probability distributions
of n-grams from a corpus. In practice, the n-gram model often
encounters some unseen n-grams during prediction. This makes
the probability pM (ai |a1...ai−1) = 0. Smoothing is a technique
that can handle such cases, and assign reasonable probability to
the unseen n-grams. In this paper, we use Modified Kneser-Ney
Smoothing [34], which is a standard smoothing technique and can
give good results for software corpora [28].

Evaluation metric: cross-entropy.We use 10-fold cross vali-
dation, where 90% of the logging descriptions are the training data,
and the remaining 10% are the testing data. To evaluate the perfor-
mance of the n-gram models, we use cross-entropy, which is defined
as follows:

HM (s ) = −
1
n

n∑
i=1

logpM (ai |a1...ai−1) (2)

HM is the cross-entropy of the n-gram modelM; s is a logging
description of length n and s = a1...an ; and pM is the probabil-
ity that the next token is ai given the preceding token sequence

Table 3: English corpora.

Version Total Distinct
Brown 20171201 56,832 1,023,161 53,090

Gutenberg 20171201 98,326 2,136,001 53,253

Tokens
English Corpus Lines

a1...ai−1. A good model has low cross-entropy for logging descrip-
tions. For example, if a model can correctly predict all the tokens in
a logging description, the probability pM (ai |a1...ai−1) will be 1 for
all tokens ai , and hence the cross-entropy will be 0. We calculate the
cross-entropy for projects in Table 1. Specifically, for each project,
we calculate the cross-entropy for every logging description using
Equ. 2 and use their average as the cross-entropy for the project.

Results. The cross-entropy results of Java and C# projects are
demonstrated by the boxplots in Fig. 3. In this experiment, we
evaluate the projects with more than 1,000 logging descriptions. To
figure out the potential differences between logging descriptions
and common English, we also calculate the cross-entropy of two
common English corpora, which is demonstrated by the single
lines in Fig. 3. The details of these two corpora are illustrated in
Table 3. By doing so, we can have an intuitive understanding of the
repetitiveness of natural language in logging descriptions and in
common English. We analyze each project separately (boxplots),
while we analyze the two English corpora as a whole (a line).

We can observe that both the single lines and boxplots have
similar trends. The single lines start at 11 for 1-gram models and
trail down to about 8.5 for 8-gram models. This means that for both
logging descriptions and common English, using more preceding
tokens (i.e., larger n) can lead to more accurate results. Besides, ac-
cording to the figures, cross-entropy saturates around 3- or 4-grams.
Thus, 3- or 4-gram models are the best choice for the investigated
projects considering the trade-off between cross-entropy and model
complexity.

In addition, compared with common English, the cross-entropy
of the logging descriptions is generally smaller, which means the
tokens in logging descriptions are easier to predict. This phenome-
non is more obvious for logging descriptions in Java projects. We
think this is mainly because all the Java projects are collected from
Apache Project List, which share similar logging styles. The observ-
able repetitiveness in logging descriptions is encouraging, and it is
promising to utilize the repetitiveness for automated logging in the
future.
Finding 2: Compared with common English, the repetitiveness
of logging descriptions can be better captured by statistical
language models.

4.2 RQ2: Can the Repetitiveness be Captured
by Cross-project N-gram Models?

In this section, we further study the repetitive n-gram patterns in
logging descriptions. Specifically, does repetitiveness exist across
different projects, or does it lie in individual projects locally? To
answer this question, we conduct the cross-project experiments.
For each Java project, we train a 3-gram model based on 90% of
the project logging descriptions. Then, we use the model to predict
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Figure 3: Cross-entropy of natural language descriptions in
logging statements.

tokens in (1) the remaining 10% of the logging descriptions and (2)
the logging descriptions of all other 9 Java projects. We chose 3-
gram models because they do not require too much memory while
achieving decent performance. We mainly focus on Java projects,
because they are all Apache Java projects which may share more
cross-project similarities than C# projects.

The results are shown in Fig. 4. The x-axis lists all the projects
that are used to train the n-gram models. The single line illustrates
the cross-entropy of the models on the remaining 10% logging
descriptions (in-project), while the boxplot shows the cross-entropy
of the models on all other projects (cross-project). We can observe
that the cross-project cross-entropy is clearly larger than the in-
project cross-entropy. This indicates that the repetitive n-gram
patterns in different projects are quite different, and thus the n-
gram patterns can hardly be captured by cross-project models. The
in-project cross-entropy of project Synapse is very low because it
contains many identical logging descriptions.
Finding 3: N-gram models trained on other projects cannot
capture repetitive n-gram patterns well, indicating that the
n-gram patterns in different projects vary a lot.
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Figure 4: Cross-project cross-entropy versus in-project cross-
entropy of the 10 Java projects.

Table 4: Percentage of the endemic n-grams.

Lang. Freq. 1-gram 2-gram 3-gram 4-gram
>=1 2.83% 28.86% 57.62% 68.89%

Java Log >=2 1.32% 10.01% 16.86% 17.37%
>=1 2.84% 15.82% 31.54% 40.61%

Java Code >=2 2.54% 7.25% 12.05% 14.03%
>=1 8.85% 47.91% 67.23% 74.81%

C# Log >=2 4.87% 21.02% 25.28% 25.28%
>=1 2.71% 15.48% 31.52% 42.24%

C# Code >=2 2.43% 8.17% 13.87% 16.97%
>=1

4.3 RQ3: Are There Any N-grams in Logging
Descriptions Appearing in Only One Source
File?

Results in the previous section indicate that n-gram patterns tend to
appear locally inside the project. To further study the repetitiveness
in local context, in the following, we explore whether some n-grams
in logging descriptions can be found in only one source file. These
n-grams are called endemic n-grams. Table 4 demonstrates the
percentage of endemic n-grams in the studied projects. For example,
if the logging descriptions of a project have 100 2-grams and 20 of
them can only be found in one source file, the percentage of endemic
2-grams is 20%. We can observe that 28.86% 2-grams in Java logging
descriptions and 47.91% 2-grams in C# logging descriptions are
endemic. The percentage rapidly increases for settings with longer
n-grams, because it is more difficult to spot identical longer n-grams
in different source files. In addition, among the endemic n-grams,
16.86% endemic 3-grams and 17.37% endemic 4-grams are found
more than once in Java projects. For C# projects, the percentages are
even larger. These endemic, but locally repeating n-grams further
demonstrate the local repetitiveness in source file level.

Besides logging descriptions, we also calculate the percentage of
n-grams from all code statements that only appears in one source
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file. As illustrated in Table 4, the percentages of the endemic n-
grams in logging descriptions are generally larger than that in
source code, which indicates that logging descriptions are more
locally endemic than source code. As reported by a previous paper
[53], localness cannot be found in common English, so we regard it
as a special feature of the natural language in logging statements.
We think this feature can be utilized to improve the automated
logging method. For example, we can improve the performance of
language models with a cache mechanism similar to that proposed
in [53].
Finding 4: Logging descriptions are locally endemic. A number
of N-grams are repetitively used in the logging descriptions in
only one source file.

4.4 RQ4: Are N-grams in Logging Descriptions
Locally Specific to a Few Source Files?

We have studied the endemic n-grams that only appear in one
source file. In this section, we further explore whether the non-
endemic n-grams in logging descriptions also favor a specific local-
ity. By definition, each non-endemic n-gram can be found in a set of
files F , and thus, there is a discrete probability distribution p for F .
For example, if an n-gram is uniformly distributed, then each file in
F contains the same number of this n-grams. We hypothesize that,
if the non-endemic n-grams favor specific locality, the distribution
p will be skewed. For example, an n-gram, which is found in 100
source files, appears 20 times in one source file and once in the
remaining 99 source files. Inspired by [53], we use locality entropy
HL , which is defined as follows, to measure the skewness of the
distribution of an n-gram σ in F .

HL (σ ) = −
∑
f ∈F

p ( fσ ) log2 p ( fσ ), (3)

where p ( fσ ) is defined as follows:

p ( fσ ) =
count(n-gram) σ in f

count(n-gram) σ in project
(4)

Note f is a source file that contains the non-endemic n-gram σ ;
project is the collection of all the source files in a project; and count
calculates the number of n-grams. Intuitively, the more skewed
the distribution, the lower the entropy. For example, if an n-gram
is found only in the logging descriptions of one source file, the
entropy will be the lowest (i.e., 0). On the contrary, if an n-gram is
uniformly distributed in the logging descriptions of source files F ,
the entropy will be the highest. Thus, the lower the entropy, the
more the logging descriptions are locally specific.

The entropy of both Java and C# projects is shown in Fig. 5.
The x-axis is the number of files that contain the non-endemic
n-gram. We can observe that almost all non-endemic n-grams have
lower entropy than uniform distribution, which demonstrates their
locally specific property. Besides, the n-gram with varying orders,
which are marked by different colors, share similar trends. We can
also observe that some 1-grams have much lower entropy than the
others. This is because some common tokens are intensively used
in the logging descriptions of a file. For example, in project Hive,
token "writing" is found in the logging descriptions in 169 source
files (i.e., |F | = 169), which is non-endemic. While token "writing"
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Figure 5: Entropy of the file distributions for non-endemic n-
grams. "Uniform" denotes that the n-grams are distributed
uniformly in the files.

only appears once in most of these source files, it appears 366 times
in one source file, because logging description "Exception writing
to internal frame buffer" is repetitively used for 366 times locally in
that file.
Finding 5: Logging descriptions are locally specific. The
non-endemic n-grams are repetitively used in a few source files.

5 AUTOMATED LOGGING DESCRIPTION
GENERATION

Based on the experimental results in Section 3 and 4, it is valuable to
explore whether it is possible to automatically generate the logging
description for a logging statement. If shown possible, such an
automated tool will be of great help for developers, because it can
greatly accelerate the development process and potentially improve
the quality of their logging descriptions. In this section, we propose
a simple but effective automated logging description generation
method, in order to demonstrate the potential feasibility of logging
automation.
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5.1 Methodology
Our method is based on an assumption: similar code snippets tend
to contain similar logging descriptions. This assumption is trig-
gered by the results and findings in previous sections. In particular,
as explained in Section 3, all categories of logging descriptions are
used to describe certain code statements, thus the logging descrip-
tions should be closely related to the corresponding code snippets.
Additionally, in Section 4, the locality experiments demonstrate
that similar n-gram patterns are repetitively used in a local con-
text (source file-level), where code providing similar functionalities
gathers. Based on this assumption, we propose a simple informa-
tion retrieval-based method. In particular, to generate the logging
description for a logging statement, we extract its corresponding
code snippet, and search for the most similar code snippet in the
corpus (i.e., existing code). Then, we use the logging description
in the searched code snippet as the description for current logging
statement. The similarity is measured by Levenshtein distance [4],
which regards a code snippet as a string and calculate the distance
using character-based edit distance. For example, the Levenshtein
distance between "public boolean createFile();" and "public boolean
newFile();" is 5, because we need 5 substitutions (i.e., change "cr" to
"n" and "ate" to "w") to make them identical.

In this experiment, for each project, we use 10-fold cross vali-
dation. Specifically, we first extract the < code, loд > pairs from
the training data. Considering the code snippet, we study two code
ranges: Pre-10 and Sur-20, where Pre-10 indicates the 10 lines of
code preceding the logging statement and Sur-20 indicates the 10
lines of code preceding and succeeding the logging statement. We
generate the logging description for each code snippet in the testing
data by searching the most similar code snippet in the training data.

5.2 Evaluation Metrics
5.2.1 BLEU. To measure the accuracy of automated logging

description generation, we use BLEU [45], a popular evaluation
metric used in text summarization and machine translation tasks
[9, 41, 49, 50]. We use BLEU because it can measure the similarity
between the candidate and the reference. In our experiments, the
logging description generated by our method is regarded as the
candidate, while the original logging description written by the de-
veloper is regarded as the reference. Specifically, BLEU is calculated
as follows:

BLEU = BP · exp(
N∑
n=1

wn logpn ), (5)

where BP is a brevity penalty that penalizes overly short candidates;
N is the maximum number of grams used in the experiments; pn
is the modified n-gram precision; andwn is the weight of each pn .
BLEU-1 means the BLEU score considering only the 1-grams in the
calculation, wherew1 = 1 andw2 = w3 = w4 = 0. Specifically, BP
is calculated as follows:

BP =



1 if c > r

e (1−r /c ) if c ≤ r
(6)

where r is the length of the reference; c is the length of the candidate.
The modified n-gram precision is defined as follows:

pn =
#n-grams appear in the reference

#n-grams in the candidate
(7)

From the definition of BLEU, we know that the higher the BLEU,
the better the logging statement generation performance. The range
of BLEU is [0, 1], which is often presented as a percentage value
(i.e., [0, 100]). Thus, if none of the n-grams in the candidate appear
in the reference, BLEU score is 0. In the contrary, if the candidate
is exactly the same as the reference, BLEU score is 100.

5.2.2 ROUGE. BLEU measures how many n-grams in the gen-
erated logging statement appear in the reference, which enjoys
similar sense as "precision". Compared with BLEU, ROUGE [39] is
like "recall", which measures how many n-grams in the reference
appear in the generated logging statement.

Specifically, ROUGE is defined as follows:

ROUGE − N =

∑
S ∈Ref

∑
дramn ∈S countmatch (дramn )∑

S ∈Ref
∑
дramn ∈S count (дramn )

, (8)

wheren represents the length of the n-gram,дramn ; S is a reference;
Re f is the set of all references; countmatch (дramn ) is the maximum
number of n-grams co-occurring in the candidate and the reference;
and count (дramn ) is the number of n-grams in the reference. In our
experiments, we calculate ROUGE-1 to ROUGE-3, and ROUGE-L.
ROUGE-L does not require a predefined n-gram length. Instead,
it measures the longest matching sequence of words using LCS
(Longest Common Subsequence).

Similar to BLEU, the range of ROUGE is [0, 1], which is often
presented as a percentage value (i.e., [0, 100]).

5.3 Results
The BLEU scores and the ROUGE scores are shown in Table 5. We
run the experiments on 5 Java projects and 3 projects, which are
selected based on the number of logging descriptions. We can ob-
serve that the BLEU-1 scores on all the evaluated projects are larger
than 35, and the BLEU-1 score on CoreFx is 68.76, which means
that 68.76% of the tokens in the generated logging descriptions can
be found in the ground truth. The BLEU scores gradually decrease
as the n-grams become longer. For example, the BLEU-1 score on
Hadoop Pre-10 is 36.59, while the corresponding BLEU-4 score is
16.96. This is reasonable because BLEU-4 score considers the match
of consecutive 4 tokens. Besides, the BLEU scores and ROUGE
scores for Java projects (Hadoop, Cloudstack, Camel, Hbase, and
Hive) and C# (Mono, CoreFx, Monodevelop) are similar, which show
that the effectiveness of our approach is robust against different
programming languages.

In addition, previously we expect to obtain larger BLEU scores
and ROUGE scores with Sur-20 than with Pre-10, since we consider
more code statements in the information retrieval process. We are
surprised to observe that the BLEU scores and ROUGE scores with
Pre-10 are better in most cases. After manual inspection of the
corresponding code snippets, we think it is caused by two main
reasons. First, considering the succeeding 10 lines of code may
bring in some noises, which mislead the method. Recall the manual
categorization in Table 2, we can observe that only 17.23% of the
logging descriptions are used to explain the succeeding program

185



Characterizing the Natural Language Descriptions in Software Logging Statements ASE ’18, September 3–7, 2018, Montpellier, France

Table 5: Log generation results.

Code
Scope 1 2 3 4 avg L 1 2 3
Pre-10 36.59 25.57 20.98 16.96 24.02 36.24 36.88 24.26 19.99
Sur-20 35.30 23.06 18.02 13.93 21.26 35.31 36.14 22.40 17.52
Pre-10 47.60 36.35 31.17 27.57 34.92 46.05 47.11 34.64 28.97
Sur-20 45.33 33.41 28.09 24.29 31.88 43.94 45.19 32.07 26.43
Pre-10 51.98 41.98 36.41 30.74 39.53 49.62 50.23 38.57 33.53
Sur-20 50.45 39.25 33.21 27.51 36.67 48.46 49.37 36.46 30.79
Pre-10 37.69 27.05 22.40 18.28 25.42 37.71 38.47 26.76 22.76
Sur-20 37.36 25.88 20.93 16.69 24.11 37.55 38.37 25.29 20.69
Pre-10 40.78 31.26 26.97 23.04 29.83 40.08 40.58 29.83 25.41
Sur-20 41.42 31.07 26.28 22.37 29.49 40.91 41.55 29.93 25.12
Pre-10 40.54 31.99 26.27 18.65 28.23 35.95 36.10 27.28 24.69
Sur-20 38.08 28.54 22.60 15.49 24.83 34.15 34.32 24.63 21.66
Pre-10 68.76 60.69 55.26 49.04 57.99 62.10 62.30 53.12 49.17
Sur-20 65.28 55.87 50.05 44.00 53.23 57.74 57.96 46.15 41.86
Pre-10 40.74 31.40 25.68 20.07 28.48 37.86 38.14 29.88 26.95
Sur-20 41.43 31.75 26.05 21.12 29.14 36.57 36.92 28.25 25.05

ROUGE
Dataset

Hadoop

Cloudstack

Camel

Hive

Mono

CoreFx

Monodevelop

BLEU

Hbase

operation. Second, in this section, we propose a simple information
retrieval method based on Levenshtein distance, which gives equal
weights to the edit distances of all the tokens. However, in practice,
some tokens or statements are more important in this context. Thus,
the performance of our model is affected.

This paper presents the first step towards automated logging de-
scription generation, and thus there is no existing baseline method
to compare with. However, in software engineering, some similar
tasks also generate natural language text using corresponding code
snippets, such as code summarization, which aims to generate a line
of text to summarize a code snippet. The BLEU-4 scores reported
in the state-of-the-art code summarization papers [31, 40] range
from 6.4% to 34.3%. Meanwhile, the BLEU-4 scores of our simple
information retrieval-based method range from 16.96% to 49.04%
with the "Pre-10" setting, which is encouraging. Note that we do not
intend to directly compare the performance of methods for different
tasks. However, we want to provide an intuitive understanding of
the BLEU scores and ROUGE scores we achieve. Furthermore, we
vision plenty of space for improvement by adopting more mature
models or specialized feature engineering. However, this is not the
focus of this paper, so we leave it as our future work.

Finding 6: A simple information retrieval-based method, which
generates logging descriptions by finding similar code snippets,
can achieve decent performance in terms of BLEU score and
ROUGE score.

6 FUTURE DIRECTIONS
This paper aims to study the usage of natural language in logging
practice and further trigger follow-up research work in this field.
In this section, we present some potential directions based on our
study of software logs.

Improved Information Retrieval Models. To this end, we
use a simple character similarity-based method to find suitable nat-
ural language descriptions for logging statements, which demon-
strates decent performance. However, it has obvious limitations.
For example, as a reviewer mentioned, a method being called at
different program locations can have different logging descriptions,

which cannot be addressed by this model. There are several avenues
for extension. First, as explained in [28], very large bodies of code
can be readily parsed, typed, scoped, and even subject to simple
semantic analysis. Thus, all these data could be used to develop a
more sophisticated approach to search similar code snippets. Be-
sides, code clone detection [16, 33, 54] is a classical topic that has
been widely studied in software engineering area. Based on the re-
sults of our automated logging generation experiments, we believe
it is promising to adapt code clone detection methods to further
improve the generation performance.

Logging Statement Generation fromCode.Although the po-
tential of information retrieval-based logging description genera-
tion has been validated in the experiments, the model has some
limitations. In particular, it assumes that the current code snippet
can be described by an existing logging description. However, new
projects often contain only a few logging statements, which may
make the proposed model ineffective. This is also a typical problem
known as "cold start" in the field of information retrieval. Thus, it
will be of great help if we can generate the logging descriptions
based on the corresponding code snippets. We vision it is feasi-
ble because logging descriptions are mainly used to explain the
surrounding codes. To achieve this goal, existing work on code sum-
marization [31, 40], code comment generation [52], and commit
message generation [32] are good starting points.

Data Augmentation. Compared with most NLP (natural lan-
guage processing) applications in software engineering, such as
code completion [11, 38], the data volume of "what to log" is not
large. As illustrated in Table 1, the largest Java project in our ex-
periments (i.e., Hadoop) contains 1.9M LOC but only 13.9K logging
statements. The relatively small data volume could stay in the way
of the application of deep learning-based algorithms [14, 24], which
dominates many difficult research problems in recent years. We
think "what to log" is such a difficult problem, because researchers
need to understand the semantic meaning of the corresponding
code snippets. Thus, effective data augmentation techniques, which
aim at the generation of more training data, is in high demand.
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The basic idea of data augmentation for "what to log" is to gen-
erate more < code, loд > pairs using existing data. For example,
a simple data augmentation method is to change the identifier
names in a code snippet and keep the original log, which leads to a
new < code, loд > pair. Towards this end, researchers could start
with data augmentation methods in image processing field [29, 30],
which have been widely studied.

7 RELATEDWORK
7.1 Log Analysis
Software logs contain a wealth of runtime information, and thus
have been widely used in various software reliability enhancement
tasks, including anomaly detection [18, 57], fault diagnosis [55, 63],
program verification [17, 51], performance monitoring [27, 43, 61],
etc. Most of these tasks use data mining models to extract criti-
cal runtime information from a large volume of software logs. To
facilitate log analysis, researchers also focus on related log data
preprocessing topics, including log collection [12, 17] and log pars-
ing [25, 26, 42]. These existing papers study how to utilize logs
printed by existing logging statements in software. Instead, in this
paper, we focus on the design of logging statements, and thus can
potentially benefit these log analysis tasks.

7.2 Logging Practice
Current research has mostly focused on the usage of logs printed
by existing logging statements, but little on logging itself. Recently,
some empirical studies [10, 13, 19, 36, 46, 58, 59] have been con-
ducted to characterize logging practice. Specifically, Yuan et al.
[58, 59] study the logging practice of open-source software and
further propose proactive logging strategy. [13, 36] characterize the
logging practice of Java projects. Considering logging practice in
industry, Fu et al. [19] conduct an empirical study on the logging
practice of software used in Microsoft. Pecchia et al. [46] study
the logging practice in a critical software development process. All
these studies provide insightful findings on logging practice, which
shed lights into our study of the natural language descriptions in
software logs.

7.3 Improving Logging
Towards improving logging practice, there are two categories of
work: "where to log" [15, 62] and "what to log" [60]. "Where to log"
studies focus on strategic logging, which recommends developers
the suitable logging places. Specifically, Cinque et al. [15] propose
a logging method based on a set of rules about logging placement,
which makes the logs able to detect more software failures. Zhu et
al. [62] design a tool LogAdvisor that informs developers whether
they should place a logging statement in a code snippet or not.
Different from these methods, we focus on the contents of the
logging statements, which is the goal of "what to log" research
work, instead of logging placement. Yuan et al. [60] propose a
tool LogEnhancer that can enhance existing logging statements by
augmenting important variables. Li et al. [37] design a regression
model to recommend the log level in a logging statement. Our
paper also targets on improving the "what to log" part of logging
practice. Different from [37, 60], we focus on the natural language
descriptions in logging statements. Besides, we present a simple but

effective description generation tool. Thus, we believe our study
can complement existing logging improving work.

7.4 NLP in Software Engineering
Natural language widely exists in software artifacts, such as design
documents, user manuals, bug reports, source code comments, and
identifier names [23]. In recent years, various techniques have been
proposed by researchers to analyze natural language text for the
improvement of modern software engineering. Gabel and Su [20]
study the syntactic redundancy of source code, which reveals a
general lack of uniqueness in software. Hindle et al. [28] study the
naturalness of software, showing that repetitive and predictable
regularities of source code can be captured by a simple n-gram
language model. Tu et al. [53] further explore the localness char-
acteristics of software. These three studies regard source code as
natural language text and study the related characteristics of them.
Inspired by these studies, in this paper, we study the characteristics
of natural language in logging statements. Additionally, NLP meth-
ods have been adapted to many software engineering scenarios,
including defect prediction [48], code completion [44], program
synthesis [47], API recommendation [22], identifier/method name
suggestion [7, 8], etc. Different from these papers, we study "what
to log" with the focus on the natural language descriptions in log-
ging statements. We believe this study paves the path for the design
of NLP techniques for the "what to log" problem.

8 CONCLUSION
To facilitate software development and maintenance, developers
are expected to provide informative and appropriate logging de-
scriptions. However, there is currently a lack of investigations and
specifications on studying such descriptions in logging practice. To
fill this significant gap, this paper presents an empirical study on the
logging statements in 10 Java projects and 7 C# projects, with focus
on what to log. We summarize with 6 valuable findings, ranging
from the logging description’s categories, the globally and locally
repetitive usage of n-gram patterns, to an encouraging indication
towards automated logging description generation. In addition,
some valuable directions for improving current logging practice
are discussed. In summary, this paper systematically characterizes
the natural language descriptions used in logging practice, which
serves as the first work towards automated logging description
generation. With our datasets released, we hope to trigger related
research projects and push this field forward.
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