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Abstract In classifying samples by Gaussian clas-

si�er, the covariance matrix estimated with a small

number sample set becomes unstable, which leads

to degrading the classi�cation accuracy. In this pa-

per, we discuss the covariance matrix estimation

problem for small number samples with high di-

mension setting based on Kullback-Leibler Informa-

tion Measure. A new covariance matrix estimator

is developed, and a fast, rough estimating regular-

ization parameter formula is derived. Experiments

are performed to investigate the classi�cation ac-

curacy with developed covariance matrix estimator

and higher classi�cation accuracy results are ob-

tained.

Keywords: Classi�cation, Covariance matrix es-

timation, Small sample set with high dimension,

Smoothing Parameter Selection, Kullback-Leibler

Information Measure

1 Introduction

In classi�cation, when a set of samples is given,

the goal is to classify them into proper groups

according to some criterion of class member-

ship. In recent years, several classi�cation al-

gorithms have been developed to partition a

data set into pre-de�ned classes. When the

data are viewed as arising from two or more

clusters mixed in varying proportions, we can

use �nite Gaussian mixture distribution to an-

alyze the data set. The Gaussian mixture dis-
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tribution analysis method has been used widely

in a variety of important practical situations,

and the likelihood approach to the �tting of

Gaussian mixture models has been utilized ex-

tensively.

When classifying data with the Gaussian

mixture model, the mean vector and covari-

ance matrix of each component are not known

in advance, and they must be estimated from

the given data set. While a large size data set

is desirable for estimating the parameters more

accurately, in some real world situation, only a

small-size data set can be obtained because of

certain restriction, e.g, high cost in collecting

data set. For a relatively small number sam-

ple data set, if the dimension d of variable x

is comparable to the number of training sam-

ples nj in class j; the problem becomes poorly-

posed. Worse, if the number nj of training

samples is less than data dimensionality, the

problem becomes ill-posed. In the later case,

not all parameters can be properly estimated

and classi�cation accuracy is degraded.

There are two possible solutions for this kind

of problems: one is dimensionality reduction,

and the other is regularization[1]. Regulariza-

tion is the procedure of biasing parameters to-

wards what are thought to be more plausible

values, which reduces the variance of the es-

timates at the cost of introducing additional

bias. The regularization techniques have been

highly successful in classifying small number

data with some heuristic approximations[1, 2].

However, the heuristic method, for example

RDA[2], requires to select regularization pa-

rameters (or called model) with some statis-



tical techniques such as leave-one-out cross-

validation, which is computation-expensive.

Furthermore, recent studies show that cross-

validation does not always perform well in the

selection of linear models[3], therefore it is wor-

thy to develop new techniques to deal with this

kind of problems.

Kullback{Leibler information measure[4, 5]

can be considered as \distance" between two

probability density models, whereas this mea-

sure is also called as Kullback-Leibler diver-

gence. In this paper, based on the mixture

model analysis with Kullback-Leibler informa-

tion measure, we present the results of in-

vestigating covariance matrix estimation and

smoothing parameter selection in Gaussian

classi�er for the classi�cation problem of small

sample sets with high dimension.

2 Classi�cation

2.1 Classi�cation with Gaussian

Mixture Model

The data points to be classi�ed are assumed to

be samples from a mixture of k Gaussian den-

sities, in which the joint probabilistic density

is expressed as,

p(x;�) =
kX

j=1

�jG(x;mj;�j);

with �j � 0; and
kX

j=1

�j = 1 (1)

where

G(x;mj;�j) =
exp[�1

2
(x�mj)

T��1j (x�mj)]

(2�)d=2j�jj
1

2

(2)

is the multivariate Gaussian density function,

x denotes a random vector, d is the dimension

of x; and parameter � = f�j ; mj;�jg
k
j=1 is the

set of �nite mixture model parameter vectors.

Here �j is the prior probability, mj is the mean

vector, and �j is the covariance matrix of the j-

th component. Based on a given data set, these

parameters can be estimated by maximum like-

lihood(ML) learning with EM algorithm[6, 7].

The Bayesian decision rule is used to clas-

sify the x into class j with the largest posterior

probability. The posterior probability p(jjx)

represents the probability that a sample point

x belongs to class j. Now we use Bayesian de-

cision j� = argmaxj p(jjx) to classify x into

class j�: The densities p(jjx) are usually un-

known and have to be estimated from the train-

ing samples. With maximum likelihood esti-

mation, the posterior density can be written in

the form,

p(jjx) =
�jG(x;mj;�j)

p(x;�)
: (3)

If taking the logarithm of the above equation

and omitting the common factors of the classes,

we obtain the following classi�cation rule,

j� = argmin
j

dj(x); j = 1; 2; � � � ; k (4)

with

dj(x) = (x�mj)
T��1j (x�mj)+ln j�jj�2 ln�j

(5)

This equation is often called the discrimi-

nant score for j-th class in the literature. Fur-

ther more, if the prior probability �j is the

same for all classes, it becomes a discriminant

function when omitting the 2 ln�j term.

2.2 Covariance Matrix Estimation

based on Kullback-Leibler Infor-

mation Measure

When the sample number N is small, the esti-

mated covariance matrix becomes inaccurate,

and hence the classi�cation accuracy is re-

duced. To solve this problem, several tech-

niques are proposed. In this paper, we address

this problem by using Kullback-Leibler diver-

gence.

We consider that the system can be de-

scribed by a �nite Gaussian mixture model, on

the other hand, the data set can be consid-

ered as samples drawn from a nonparametric

density distribution ph(x)[8]. The \distance"

of these two probability density distribution

can be measured with the following Kullback-

Leibler (KL) divergence[4, 5],



KL(h; k;�) =

Z
ph(x) ln

ph(x)

p(x;�)
dx (6)

where ph(x) is assigned as Gaussian kernel den-

sity for given samples D = fxig
N
i=1;

ph(x) =
1

N

NX
i=1

G(x; xi; h
2Id): (7)

Here h is the smoothing parameter and Id is

a d� d dimensional identity matrix.

The ordinary EM algorithm[6, 7] can be

re-derived based on the minimization of the

Kullback{Leibler divergence function (6) with

the limit h! 0.

In the nonparametric kernel density func-

tion, the smoothing parameter h plays an im-

portant role in the estimating mixture model

parameter. To avoid integration di�culty,

when h is small, we can use Taylor expansion

for p(jjx) at x = xi and take up to the second

order approximation, i.e.,

p(jjx) � p(jjxi) + (x� xi)
Trxp(jjxi) (8)

+
1

2
(x� xi)

Tr2

xp(jjxi)(x� xi)

where the operator rx and r2

x are referred to

�rst and second order derivative, respectively.

With this approximation, the following co-

variance matrix estimation formula can be

obtained when minimizing the cost function

equation (6) for parameter learning. (It is

called KLIM in this paper.)

In the second order approximation, the co-

variance matrix estimation formula is

�j(2; h) � h2Id +
b�j

(1 + �)
+

�Q

(1 + �)
: (9)

When h is very small, it reduces into the �rst

order approximation,

�j(1; h) = h2Id + b�j : (10)

The following notations are used:

� =
h2

2nj
Trace[

NX
i=1

Hi(j)];

nj = �jN; Hi(j) = r2

xp(jjxi);

�j =
1

N

NX
i=1

p(jjxi); mj =
1

nj

NX
i=1

p(jjxi)xi;

�Q =
h2

2N

NX
i=1

[Trace[Hi(j)]](xi�mj)(xi�mj)
T ;

b�j =
1

nj

NX
i=1

p(jjxi)(xi �mj)(xi �mj)
T : (11)

The Hessian matrix can be computed as the
following,

Hi(j) = p(jjxi)f�
�1

j (xi �mj)(xi �mj)
T
�
�1
j

�

kX
j=1

p(jjxi)[�
�1

j (xi �mj)(xi �mj)
T
�
�1
j ]g

+p(jjxi)f

kX
j=1

p(jjxi)�
�1
j ��

�1
j g

+2p(jjxi)[

kX
j=1

p(jjxi)�
�1
j (xi �mj) (12)

���1j (xi �mj)]

kX
j=1

p(jjxi)(xi �mj)
T
�
�1
j

Since the quantity such as
Pk

j=1 p(jjxi)Q(j)

represents the averaged value Q(j) over all

classes, the above regularization term reects

the di�erence between single class quantity and

averaged quantity. If there is only one class

or the classes are well separated, this Hessian

matrix will be a null matrix and estimator the

�j(2; h) reduces into �j(1; h).

From the above, we can see that the

new kind of regularization form is obtained

based on Kullback{Leibler information mea-

sure, where the sole parameter h controls the

degree of regularization. Next we discuss how

an optimal value of smoothing parameter h can

be selected based on training samples.



2.3 Smoothing Parameter Selection

There are several ways to select smoothing pa-

rameter h; for example, with training samples

we can use cross validation statistical technique

to select the optimal smoothing parameter. As

we know, the goal in selecting smoothing pa-

rameter is to produce a model for the proba-

bility density which is as close as possible to

the unknown density p(x;�)[9]. According to

the principle ofKL information measure, when

h 6= 0; the smooth parameter h can be esti-

mated with minimized KL divergence,

h� = argmin J(h); J(h) = KL(k�;��; h)

(13)

where the parameters with an asterisk repre-

sent learnt parameters.

The integration can be approximated by

Monte Carlo method [10, 11]. For the sake of

less computation expense, we use second or-

der approximation for estimating the value of

smoothing parameter h in this work.

Using Taylor expansion to logarithmic term

in KL integration function, we can obtain,

J(h) = KL(h; k�;��) � J0(h) + Je(h) (14)

where the approximations are

J0(h) = �
1

N

NX
i=1

ln p(xi;�)+h
2Jr(xi;�) (15)

Jr(xi;�) = �
1

2N

NX
i=1

Trace[r2

x ln p(xi;�)]

(16)

Je(h) =
1

N

NX
i=1

ln ph(xi)+
h2

2N

NX
i=1

Trace[r2

x lnph(xi)]

(17)

Now the function J(h) can be computed

based on the original samples with summation

instead of integration.

For very sparse data distribution, we can use

the following approximation to estimate the

smoothing parameter.

ph(x) lnph(x) �
1

N

NX
i=1

G(x; xi; h
2) ln

1

N
G(x; xi; h

2Id):

Under this approximation, the rough esti-

mation formula is obtained as,

h2 �
d

2Jr(xi;�)
: (18)

2.4 Comparison of KLIM with Other

Discriminant Analysis Methods

When the class membership of training sam-

ples is known, the hard-cut version of p(jjx) is

used in the mean vector and covariance matrix

estimation,

p(jjxi) =

(
1;

0;

If xi 2 class j

If xi =2 class j
(19)

In this case, the sample based ML estimator

is (h = 0);

mj =
1

nj

Xnj

i=1
xi (20)

b�j =
1

nj

Xnj

i=1
(xi �mj)(xi �mj)

T ; (21)

where xi is a sample from class j; and nj is the

training sample number of class j:

Using the classi�cation rule equations (4)

and (5) with the above covariance estimator is

called quadratic discriminant analysis (QDA).

When the class sample size nj is approxi-

mately equal to or smaller than the dimension

d, the covariance estimation with equation (21)

will become highly variable, and it becomes a

poorly-posed or an ill-posed classi�cation prob-

lem. To improve such kind of problem, regu-

larization is one of the solution.

One of the regularization methods to deal

with the poorly-posed problem is linear dis-

criminant analysis (LDA). In LDA, the �j in

equation (5) is replaced with a pooled covari-

ance matrix

� =
1

N

kX
j=1

nj�j (22)



This applies a considerable degree of regular-

ization by substantially reducing the number of

parameters to be estimated.

Regularized discriminant analysis (RDA) is

another regularization method which was pro-

posed by Friedman[2]. RDA is designed for

the small number sample case, where the co-

variance matrix takes the following form:

�j(�; ) = (1� )�j(�) + 
Trace[�j(�)]

d
Id

(23)

where

�j(�) =
(1� �)nj�j + �N�

(1� �)nj + �N
(24)

The two parameters � and ; which are re-

stricted to the range between 0 and 1; are regu-

larization parameters to be selected according

to the maximum of the leave-one-out classi�-

cation accuracy. � controls the amount of the

�j that is shrunk towards �; while  controls

the shrinkage of the eigenvalues towards equal-

ity as Trace[�j(�)]=d is equal to the average of

the eigenvalues of �j(�):

The KLIM is derived under the frame of

Kullback{Leibler information measure, while

RDA is heuristicly proposed. KLIM and RDA

are similar in that they both consider ML esti-

mated covariance matrix and the addition of

extra matrices. Namely, they both have an

identity matrix multiplied by a scalar; however,

the scalar term is di�erent from each other.

There is a term of weighted parameter with

regularized ML estimation in KLIM, which re-

lates to the di�erence between averaged classes

quantities and single class quantities. RDA, on

the other hand, considers LDA estimation.

In KLIM, the regularization parameter is the

smoothing parameter in kernel density estima-

tion, which can be selected based on KL di-

vergence with total training samples. While in

RDA, we have to use some statistical method,

such as bootstrap, leave-one-out cross valida-

tion, to optimize the regularization parameter.

At this point, RDA requires much more com-

putation than KLIM.

Another advantage of KLIM is that it can

be used to classify total un-labeled samples

since it was related to mixture model analy-

sis. The so-called smoothed EM algorithm[12]

is the �rst order approximation of KLIM with

ordinary EM algorithm.
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Figure 1: Typical curve for determining the

smoothing parameter h using equations (13)

and (14). corresponding local minima of J(h)

is proper h value.

3 Experiments

In order to investigate the performance of

KLIM, we use both synthetic data and real

world wine data set1 to conduct experiments.

In the experiments, the synthetic data

set was generated under di�erent conditions.

Three experiments with various distributions

adapted from Friedman' paper[2] and four di-

mension (d = 6; 10, 20, 40) were performed.

The 15 training samples in each class were ran-

domly drawn from three di�erent Gaussian dis-

tribution, and the mean and covariance matrix

were estimated based on these training sam-

ples. Additional 100 independent test samples

from each class were generated to verify the

classi�cation accuracy.

In the experiments, the smoothing parame-

ter h was estimated using equations (13) and

1This data set was obtained from
ftp://ftp.ics.uci. edu/pub/machine-learning-databases/



Table 1: Mean classi�cation accuracy for experiment 1

d = 6 d = 10 d = 20 d = 40

LDA 84.5(3.58) 75.3(6.86) - - - - - -

QDA 84.5(3.58) 75.3(6.88) - - - - - -

RDA 90.2(1.43) 88.57(5.37) 87.16(2.58) 91.2(2.09)

KLIM 90.2(1.43) 91.73(1.29) 88.4(1.4) 91.26(1.29)

Table 2: Mean classi�cation accuracy for experiment 2

d = 6 d = 10 d = 20 d = 40

LDA 98.1(0.9) 100(0.01) - - - - - -

QDA 98.1(0.9) 100(0.01) - - - - - -

RDA 98.9(0.8) 100(0.0) 100(0.0) 100(0.0)

KLIM 99.88(0.16) 100(0.0) 100(0.0) 100(0.0)

(14). Figure 1 is a typical J(h) vs. h curve.

We select h value corresponding to local min-

ima of J(h). In the case nj > d; we can use

equation (18) for quick estimation of h as an

initial value. In RDA, the values of both �

and  were sampled over a very coarse grid,

(0.0, 0.25, 0.50, 0.75, 1.0), resulting in 25 data

points.

In experiment 1, the covariance matrices of

all three classes were equal to the identity ma-

trix, that is, the equal spherical covariance ma-

trices. The means of the classes are hardly dif-

ferent from each other. In experiment 2, all

three classes had identical, highly ellipsoidal

covariance matrices, but classes are well sep-

arated. In experiment 3, the mean vector of

all three classes was the same, but the class

covariance matrices were unequally highly el-

lipsoidal. Here the results of experiments were

shown in tables 1-3, respectively. In the ta-

bles, the value in parentheses represents the

standard deviation and dashed lines indicate

the covariance matrix is singular in which case

reliable results cannot be obtained.

In the experiments 1 and 2, in most cases,

KLIM led to higher classi�cation accuracy

than LDA, QDA, and was nearly the same as

RDA. In the experiment 3, the KLIM classi�-

cation accuracy is higher than others' except

in one case ( d = 20).

The real world wine data set is 13-

dimensional with three classes. This well-

posed data set is large with 59, 71 and 48

training samples per class. In order to study

the performance of regularized methods, 15

training samples were randomly drawn from

each class, whereas the remaining samples were

used to verify classi�cation accuracy. Based

on this split data set, the result for RDA gives

an averaged classi�cation accuracy 94.6. The

corresponding measure for LDA is 87.37, and

for QDA is 94.9. With a roughly estimated

smoothing parameter, the classi�cation accu-

racy for KLIM is 95.2.

From these experiments, we also know that

the smoothing parameter value for KLIM de-

pends on training samples distribution, and it

is not an accurate requirement. In most cases

the smoothing parameter selection method

work well, and the experimental results indi-

cate that the KLIM covariance matrix estima-

tor can lead to a high classi�cation accuracy.



Table 3: Mean classi�cation accuracy for experiment 3

d = 6 d = 10 d = 20 d = 40

LDA 38.8(4.79) 42.2(4.25) 43.16(4.5) 39.64(5.2)

QDA 84.2(3.77) 84.1(6.3) - - - - - -

RDA 84.0(3.27) 84.9(5.78) 89.73(2.62) 74.2(8.6)

KLIM 85.8(2.26) 92.7(2.65) 85.84(3.15) 81.75(3.47)

4 Summary

In this paper, based on Kullback{Leibler in-

formation measure, the KLIM covariance ma-

trix estimation is investigated for classi�cation

problems. An e�cient smoothing parameter

approximation formula was derived, and the

approximation was found from experiments to

be valid for most cases. With the Kullback{

Leibler information measure, all training sam-

ples can be used to estimate the smooth-

ing parameter without the need of validation

samples, which is less computation expensive

than using the leave-one-out cross-validation

method. With the KL information measure

based estimation method, all experiments show

that the obtained estimator works well, and

can lead to a higher classi�cation accuracy

than QDA, LDA and RDA estimators.
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