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Abstract 

The use of the statistical technique of mixture model 
analysis as a tool f o r  early prediction of fault-prone pro- 
gram modules is investigated. The Expectation-Maximum 
likelihood (EM) algorithm is engaged to build the model. 
By only employing software size and complexity metrics, 
this technique can be used to develop a model f o r  predict- 
ing software quality even without the prior knowledge of 
the number offaults in the modules. In addition, Akaike In- 
formation Criterion (AIC) is used to select the model num- 
bec which is assumed to be the class number the program 
modules should be class$ed. The technique is successful 
in classifying software into fault-prone und non fault-prone 
modules with a relatively low error rute, providing a reli- 
able indicator for  software quality prediction. 

1 Introduction 

Software reliability engineering is one of the most im- 
portant aspect of software quality [ I ] .  The interest of the 
software community in program testing continues to grow 
-as does the demand for complex, and predictively reliable 
programs. It is no longer acceptable to postpone the assur- 
ance of software quality until prior to a product’s release. 
Delaying corrections until testing and operational phases 
may lead to higher costs 121, and it may he too late to im- 
prove the system significantly. Recent research in the field 
of computer program reliability has been directed towards 
thc identification of software modules that are likely to be 
fault-prone, based on product and/or process-related met- 
rics, prior to the testing phase, so that early identification of 
fault-prone modules in  the life-cycle can help in channel- 
ing program testing and verification efforts in the productive 
direction. 

Software metrics represent quantitative description of 
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program attributes and the critical role they play in pre- 
dicting the quality of the software has been emphasized by 
Perlis et a1 [3]. That is, there is a direct relationship between 
some complexity metrics and the number of changes at- 
tributed to faults later found in test and validation [4]. Many 
researchers have sought to develop a predictive relationship 
between complexity metrics and faults. Crawford et a1 [5] 
suggest that multiple variable models are necessary to find 
metrics that are important in addition to program size. Con- 
sequently, investigating the relationship between the num- 
ber of faults in programs and the software complexity met- 
rics attracts researchers’ interesting. 

Several different techniques have been proposed to de- 
velop predictive software metrics for the classification of 
software program modules into fault-prone and non fault- 
prone categories. These techniques include discriminant 
analysis [6, 71, factor analysis [8], classification trees 19, 
IO], pattern recognition (Optimal Set Reduction (OSR)) 
[6, 111, feedforward neural networks [12], and some other 
techniques [ 131. Most of these techniques are classification 
models and they partition the modules into two categories, 
namely, fault-prone and not fault-prone. With these pre- 
dictive models, the troublesome modules can he identified 
earlier in the life-cycle of a software product. The advan- 
tage of these fault prediction models are multi-fold; how- 
ever, when building the models, they require to know the 
number of changes (faults) at the same time. That is, we 
have to know the target value first to build .the model, us- 
ing neural network terminology to describe this - the model 
parameters need to he estimated with a supervised learning 
procedure [14]. As we know, to obtain the dependent crite- 
rion variable, we will need to a long time for the feedback of 
test and validation results. For example, for the software of 
Medical Imaging System (MIS) presented later in this pa- 
per, the actual number of changes (faults) in that program is 
collected during three-year observation period. As software 
complexity metrics can be obtained relatively early in the 
software life-cycle, it is worthy to explore new techniques 
for early prediction of software quality based on software 
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complexity metrics. 
In this paper we present one such new approach - using 

a finite mixture model with Expectation-Maximum (EM) 
algorithm [ 15, 161 to investigate the predictive relationship 
between software metrics and the classification of the pro- 
gram module. With the mixture model analysis, we can 
develop a prediction model without the need to know the 
number of changes (faults) in advance. Namely, it is only 
based on software complexity metrics to build the model. 
The model parameters are estimated by using EM algo- 
rithm, which is a procedure of unsupervised learning since 
the class membership of those metrics is unknown and the 
metrics are treated as un-labeled vectors. 

The mixture model analysis is mainly a probabilistic 
classification procedure. It is used to assign program mod- 
ules to classes of modules of similar characteristics without 
the knowledge of fault rate in advance. By this statistical 
technique, we can identify a program or a program mod- 
ule as a class of low or high fault rate in the early stage of 
program development. In addition, we also show that the 
discriminant analysis is a special case of the mixture model 
analysis. 

2 Modeling Methodology 

We propose to use the finite mixture model analysis with 
EM algorithm technique in software quality prediction to 
classify fault-prone and non fault-prone modules. In the 
following we will briefly review the mixture model with EM 
algorithm, and Akaike Information Criterion (AIC) model 
selection criterion. 

The mixture distribution, particular in Gaussian (normal) 
analysis method, has been used widely in a variety of im- 
portant practical situations, where the likelihood approach 
to the fitting of mixture models has been utilized extensively 
[17, 18, 19, 201. The application of the finite mixture model 
to software quality prediction is based on the assumption 
that the software complexity metrics in a vector space can 
be considered as a sample arising from two or more models 
mixed in varying proportions. 

2.1 Finite Gaussian Mixture Model With EM Al- 
gorithm 

A mixture model can be of any mixed distribution func- 
tion, but the mostly-used model is the Gaussian distribution 
model. Hence, in this paper we only investigate the Gaus- 
sian density case. In the software complexity metrics vector 
space, one module can be considered as one point, and alto- 
gether N points consistent of N modules can form a given 
data set D. The data set D = {xi}zl ready for classifica- 
tion is assumed to be samples from a mixture of IC Gaussian 

densities with joint probability density 

where 

is multivariate Gaussian density function, x denotes random 
vector (which integrates a variety of software metrics), d is 
the dimension of x, and parameter 0 = {a j ,  mj, Ej}:=l 
is a set of finite mixture model parameter vectors. Here aj 

is the mixing weights, mj  is the mean vector, and Cj is the 
covariance matrix of the j - th  component. In fact, as these 
parameters are unknown, using how many Gaussian den- 
sity components can best describe the probability density of 
the system is also unknown. Usually with a pre-assumed 
number k ,  the mixture model parameters are estimated by 
the maximum likelihood learning (ML) with EM algorithm 
[15, 161. 

The log likelihood function of the system to be explored 
is 

N k  

l ( O ( z )  = InL(O(z) = ~ l n ( ~ a , G ( x , , m : , , C : , ) )  (3) 
1=1 J = 1  

Maximizing this function will re-derive the EM algo- 
rithm, which we show in two steps. 

I .  E-step:(Expectation step) 
Calculate the posterior probability p(jlx,) according to 

2. M-step:(Maximum step) 
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The two steps are iterated until convergence to one local 
minima is obtained. 

Unlike supervised learning, the ML with EM algorithm 
can be used for a totally un-labeled data set; that is, the case 
of sample class membership is unknown. 

In practical implementation, the problem to be handled 
first is the mixture parameter initialization. It is a common 
practice that the parameter values are random initialized 
since no a priori information is available. In this paper, 
we use the following methods to initialize mixture model 
parameters: 

(8) 
1 a9 = - 
k '  

where I d  represents the d x d dimension identity matrix. 
This initialization method can guarantee that the mean vec- 
tors are within the range of the data set D. The alternative 
method used is an addition of a small random value on the 
above equations. 

2.2 Model Selection Criterion 

When the software complexity metric data are to be clas- 
sified into several classes, each class contain the data sam- 
ples with similar characteristics. With prior knowledge, we 
usually divide the modules into two classes: one is fault- 
prone and the other is non fault-prone. However, by the 
mixture model approach, how many classes the metric data 
should be divided is not known. Consequently, the num- 
ber of Gaussian density components can best describe the 
probability density of the system is unknown. Nevertheless, 
we can use some model selection criterion to determine a 
proper number of model components. 

Following Akaike's pioneering work [21] in selecting the 
number of components in the mixture model analysis, a lot 
of researchers have developed some modified and newly 
proposed criteria such as AICB [22] ,  CAIC [23], SIC [24]. 
These criteria combine the maximum value of the likelihood 
function with the number of parameters used in achieving 
that value. Here we list the corresponding AIC formula for 
a convenient use afterwards, in which L(k)  means likeli- 
hood function of the number k model with other parameters 
like 0 has been estimated by using the equation (3): 

AZC(k) = -2ln[maxL(k)] + 2mk, (11) 

where the mh = kd + ( k  - 1) + k d ( d  + 1)/2 is a penalty 
term. The other criteria such as AICB, CAIC and SIC are 
similar to AIC, with the difference at the penalty term. 

From the above AIC(k) ,  we can select the model num- 
ber k' simply by k* = argminr, AIC(k)  with ML obtained 
parameter O*. In practice, we start with k = 1, estimate pa- 
rameter @*, and compute AIC(k  = l ) .  Then by iterating 
IC -+ k + 1, we compute AIC(k = 2), and so on. After 
getting a series of AIC(k) ,  we choose the minimal one and 
get the corresponding k*. This IC* is assumed as the number 
of classes of the program modules should be partitioned. 

2.3 Bayesian Probabilistic Classification 

In the mixture model case a Bayesian decision rule is 
used to classify the vector x into class j with the largest 
posterior probability. The posterior probability p(jlx) rep- 
resents the probability that sample x belongs to class j .  The 
probabilities of p(jlx) are usually unknown and have to be 
estimated from the training samples. With the maximum 
likelihood estimation, the posterior probability can be writ- 
ten in the form of equation (4). 

For a given xi, we can obtain k probabilities p ( j  = 
l Jx i ) ,  p ( j  = 2Jxa), . . ., p ( j  = klxa). Now we use the 
Bayesian decision rule to classify xi into one of the non- 
overlapping class j *  by the solution of 

j' = argmaxp(jIxi), f o r j  = 1 , 2 , . . . , k  . (12) 

If j *  is corresponding to maximum p(jlxi), the i th  pro- 
gram module will be classified into class j *  with probability 

When we take the logarithm to equation (4) and omit 
the common factors of the classes, such as lnp(z ,@) ,  
d / 2  In 2n, the classification rule becomes 

J 

P(j*lxi). 

j' = argmindj(x) ,  f o r j  = 1,2; . . , k  (13) 
3 

with 

This equation is often called the discriminant score for 
the jth class in the literature [25]. Furthermore, if the prior 
density aj is the same for all classes (an equal sample num- 
ber in each class), it becomes discriminant function when 
omitting the term 2 In aj.  If a pooled covariance matrix is 
used, it is called linear discriminant analysis (LDA), which 
was used by Munson and Khoshgoftaar for detection of 
fault-prone programs [7 ] .  

If the class membership relation of the sample as well 
as the number Nj of each class is known, which is assumed 
in the discriminant analysis application [ 7 ] ,  the mean vector 
mj and the covariance matrix Ej can be evaluated based on 
given samples with maximum likelihood estimation. They 
take the following forms: 
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,. 1 N. 
Ej = -E. (xi - mj)(xi - mj)*. (16) Nj - 1 a=1 

They are called sample mean and sample covariance ma- 
trix, respectively [26]. Here we can see they are differ- 
ent with EM estimate. In a supervised learning case, each 
sample has determined class membership, while in EM es- 
timate, each sample can belong to every class at the same 
time with a certain probability value. 

3 Data Description and Analysis Procedure 

In this section, we present a real project to which we ap- 
ply the finite mixture model with EM algorithm for qual- 
ity prediction and data analysis. The data used for the 
application of the mixture model represents the results of 
an investigation of software for a Medical Imaging System 
(MIS). The total system consisted of about 4500 modules 
amounting to about 400,000 lines of code written in Pascal, 
FORTRAN, assembler and PL/M. A random sample of 390 
modules, from the ones written in Pascal and FORTRAN 
were selected for analysis. These 390 modules consists of 
approximately 40,000 lines of code. The software was de- 
veloped over a period of five years, and was in commercial 
use at several hundred sites for a period of three years[ 121. 

The number of changes made to a module, documented 
as Change Reports (CRs), was used as an indicator of 
the number of faults introduced during development[27]. 
The changes made to the routines were analyzed, and 
only those that affected the executable code were counted 
as faults (aesthetic changes such as comments were not 
counted)[28]. 

In addition to the change data, the following 11 software 
complexity metrics were developed for each of the modules: 

Total lines of code (TC) -Total number of lines in the 
routine including comments, declarations and the main 
body of the code. 

Number of code lines (CL) - Number of lines of ex- 
ecutable code in the routine excluding the declaration 
and comment lines. 

Number of characters (Cr) -All characters in the rou- 
tines. 

Number of comments (Cm) - For the Pascal routines, 
a comment is either a line beginning with test %%, 
or text in comment brackets, either of the form { < 
comment > } or (* < comment >*). For FORTRAN 
routines, a comment consists of the text on a line after 
either I, C or *. 

Number of comment characters (CC) -The amount of 
text found in the routines comments. 

Number of code characters (CO)- The amount of text 
which makes up the executable code in the routine. 

Halstead’s Program Length (N‘  ), where N‘ = Ni + 
Ni  and N; represents a total operator count and Ni  
represents a total operand count [29] 

Halstead’s Estimate of Program Length Metric (Ne) ,  
where Ne=q1 log, q1 + q~ log, q 2 ,  and q1 and q 2  
represent the unique operator and operand counts, 
respectively[29]. 

where JE=log, VI! + log, qz!  [30]. 

McCabe’s Cyclomatic Complexity Metric ( M ) ,  where 
M = e - n + 2, and e represents the number of edges 
in a control flow graph of n nodes [3 11. 

Belady’s bandwidth metric (BW), where: 

Jensen’s Estimate of Program Length Metric (JE), 

and Li represents the number of nodes at level i in a 
nested control flow graph of n nodes [30]. This metric 
indicates the average level of nesting or width of the 
control flow graph representation of the program. 

By using these independent metrics as integrated com- 
plexity metrics, the random vector x is a I I-dimension vec- 
tor with each metric as one component. Each vector xi rep- 
resents one sample point in the metric space, and we can 
apply the mixture model analysis in this high-dimension 
vector space to partition data samples into proper classes. 
When estimating mixture model parameters, we do not need 
to know the change requests (faults). 

Principal Components Analysis(PCA): In a software 
development application, the independent variables (com- 
plexity metrics) may be strongly interrelated as they demon- 
strate a high degree of multicollinearity. We first examine 
the relationship of metric TC with other metrics, as shown 
in Figure I .  

It is clearly seen in Figure 1 that the metric TC has nearly 
linear relationship with some metrics such as LOC, Cr and 
Co. Several independent variables demonstrating a high de- 
gree of multicollinearity will have a negative effect on the 
regression model. One distinct result of multicollinearity in 
the independent variables is that the statistical models de- 
veloped from them have highly unstable regression coeffi- 
cients [7]. To reduce the interrelated effect, we adopt PCA 
(also called Karhunen-LoCve transformation) to transform 
the original complexity metrics space into an orthogonal 
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. .' 

(a) LOC vs. TC (b) Cr vs. TC 

(c)Cm vs. TC (d) CC vs. TC 

(e) CO vs. TC (0 N' vs. TC 

.,. .. " .. :. 

(9 )  Ne vs. TC (h) JE vs. TC 

I . : : 

(i)  M vs. TC (i) BW vs. TC 

Figure 1. The relationship of metric TC with 
other metrics. From (a) to (j): horizontal axis 
is metric TC, vertical axes are metric LOC, Cr, 
Cm, CC, CO, N' ,  Ne, JE, M and BW respec- 
tively. There are several metrics that exhibit 
multicollinearity. 

vector space. The principle of PCA is simple. Let us as- 
sume the data set has a covariance matrix E, which is a real 
symmetric matrix and can he decomposed as follows: 

E = UAUT (18) 

where U is a matrix whose column i is the eigenvector ui, 
and A is a diagonal matrix of eigenvalues. Note that each of 
the eigenvectors is called a principal component. The vec- 
tors x are projected onto the eigenvectors to give the com- 
ponents of the transformed vectors x'. That is, 

XI= UTX. (19) 

PCA can he used to reduce the dimension of the data 
space by taking M < d eigenvectors corresponding to the 
first M largest eigenvalues to construct the transform ma- 
trix. The error introduced by a dimensionality reduction 
using PCA can he evaluated using 

1 
EM = - Xi, 

i=M+l 
2 

where the smallest d - M eigenvalues X i  and their corre- 
sponding eigenvectors are discarded. 

The eigenvalues for the MIS data set are shown in the 
Table I .  

When using PCA to reduce the dimension of data space, 
we know from Table 1 that the first 7 components can rep- 
resent main feature of the data set with a relatively small 
error (EM =46.6338). However, some patterns are sepa- 
rable in high dimension space, but they become insepara- 
ble when projected into low dimension space. Therefore, 
we just apply PCA to transform data into an orthogonal 
set, using all 1 1-dimension in the data analysis. The re- 
sults presented in this paper are based on PCA transformed 
data space, which is a 1 1-dimensional vector space. Fig- 
ure 2 shows data distribution when projected onto first two 
principal components space and third-fourth principal com- 
ponents space. 

For such a data space, each point represents one pro- 
gram module, which is characterized by its complexity met- 
rics. These points can he assumed as samples arising from 
two or more models mixed in varying proportions. When 
the mixture model analysis with EM algorithm was ap- 
plied to the 390 program modules in the PCA de-correlated 
1 1-dimensional vector space, the most probable results are 
shown in Figure 3 for log likelihood function vs. model 
component number k as well as AIC vs. k .  

In Figure 3a, we can see that the log likelihood function 
of the system increases as the model number increases. In- 
creasing model number makes finer classification for given 
software modules, and each model represents a subset of 
the data in which samples have similar characteristics. The 
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Table 1. The eigenvalues for the MIS data set 

Component 1 2 3 4 5 
Eigenvalue 1 . 2 8 ~ 1 0 ~  6 . 0 5 ~ 1 0 ~  1 . 7 1 ~ 1 0 ~  1 . 3 4 ~ 1 0 ~  4 . 7 7 ~ 1 0 ~  

Eigenvalue 1 . 7 8 ~  IO2 47.2 31.5 13.5 0.98 
Component 7 8 9 10 11 

6 
2 . 4 1 ~ 1 0 ~  

6oool 
U $ 4000 

U 

U 

* -2000 

* a . .  ' A  . . . ... :. +?: :. 0.. 
# I * . .  * .. . . . * '  

. .  
I. I 

-25000 -20000 -15000 -10000 -5000 0 
first component 

-400 . 
t h i r d  component 

(b) 

Figure 2. Data distribution in vector space (a) 
first two principal components and (b) third- 
fourth principal components. 

Figure 3. (a) The log likelihood function vs. 
model number. With the increase of the 
model number k ,  the function tends to in- 
crease too. (b) Typical results for AIC's vs. 
model number IC for PCA de-correlated data 
set. The minima occurs at IC' = 2. 

AIC model selection criterion in Figure 3b shows that with 
PCA de-correlated data set, classifying the modules into 
two groups is a proper selection. This gives us an in- 
sight into some intrinsic properties of the PCA de-correlated 
complexity metrics data set. 

With two-class classification, the experimental results as 
obtained from Eq. (12) show that the module number in 
each group is N I  = 264 and Nz = 126, respectively. Note 
there are unequal sample numbers for the two-group classi- 
fication. 

The estimated mixture model parameters with EM algo- 
rithm for the case k = 2 are as the following: 

Mixture weights: a1 x 0.673, and a2 x 0.327. Recall 
N N 

that aj = ,E p(jlxi), then Nj = E p(jlxi) = a j N .  
2 = 1  i=l 

This should be the possible module number in class j .  The 
obtained results are NI  x 0.673 x 390 = 262 and N2 M 
0.327 x 390 = 128, respectively, which is agreeable with 
the experimental results obtained by using equation (12). 
As the mixture weights are a rough indication of module 
number distribution, this implies a high confidence in our 
results. 

Mean vector: With two-class partition, the mean vector 
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for each group is shown in Table 2 for the original com- 
plexity metrics. The maximum and minimum values are 
also listed in Table 2 for reference. Notice that for the sake 
of readability, the values listed in Table 2 are transformed 
back from the PCA de-correlated space to the original data 
space. 

The positions of the mean for each metric (i.e., ml and 
mz) show the information to partition modules using single 
metric. Note that for all the 11 metrics, m~ > ml. This 
means class two consistently has a higher value than class 
one for all the metrics. 

Covariance matrix: The covariance matrix is a sym- 
metric matrix. Its diagonal element is the variance of each 
metric, while off-diagonal elements reflect the correlation 
between the metrics. (Refer to Eq.(7).) Here Table 2 only 
shows diagonal elements of the covariance matrices in the 
last two columns. Some metrics show high variance with 
two classes partition, implying that two-class partition is not 
the hest choice from the point of view of minimal variance 
reduction. 

The total module number is 390 in the given data set. 
With the two mixture models approach, the first group has 
264 modules, while the second group has 126 modules, and 
the ratio is about 2/3 and 1/3 respectively. By the mixture 
model analysis, we now know that there are two classes for 
the given program modules: class one has more modules 
than class two for this data set. Furthermore, class two has 
higher complexity metrics values than class one. 

Although at this stage we do not have failure data, we 
can pretty much determine that class one is non fault-prone 
while class two is fault-prone. The reason is two-fold. The 
first reason is that class two has consistently higher values 
of the complexity metrics, indicating its fault-prone nature. 
The second reason is that most (80%) of faults are found in 
a small portion (20%) of the software code, so we can label 
that the class with larger number of modules as non fault- 
prone class, and the class with less number modules as fault- 
prone class. Here we can see that very little prior knowledge 
about the number of faults is needed to develop this predic- 
tive model using mixture model with EM algorithm. This is 
the major advantage of our approach compared with previ- 
ous model classification techniques published in the litera- 
ture. 

4 Quality Prediction Results and Discussion 

4.1 Misclassification errors 

The above analysis of program metrics with a mixture 
model can be obtained in early software develop stage. 
When the change of requests (CRs) become available later, 
we can use the CRs to assess the merit of the mixture model. 
The data analysis results arc shown in Table 3. 

There are two types of errors that can he made in the par- 
tition. A Type I error is the case where we conclude that a 
program module is fault-prone when in fact it is not. A Type 
I1 error is the case where we believe that a program mod- 
ule is non fault-prone when in fact it is fault-prone. Of the 
two types of errors, Type 11 error has more serious implica- 
tions, since a product would he seem better than it actually 
is, and testing effort would not be directed where it would 
be needed the most. 

When we consider module with 0 or 1 CRs to he non 
fault-prone, those with CRs from 18 to 98 to be fault-prone, 
then Type I error is 8.8% and Type I1 error is 12.8%. When 
modules with CRs from 10 to 98 are considered as fault- 
prone, then Type I1 error will rise to 28.1%. It is noted that 
in supervised learning such as feedforward neural network 
approach, the data set is partitioned into two parts: training 
samples and validation samples. The method of partition 
data set can have an effect on the prediction accuracy, as 
shown in the following experiment. 

For MIS data set, there are 89 modules with CRs from I O  
to 98, which are considered as fault-prone modules. Now 
let us randomly draw 30 modules (i.e., one third) from this 
subset of MIS data set. From mixture model analysis re- 
sults, we can know the Type I1 error computed from these 
30 modules. The Table 4 shows the experimental results of 
randomly drawing 30 samples from 89 modules without rc- 
placement, where the experiments arc repeated 50 times. It 
can be known that the best result for Type I1 error is about 
13%, which is the same as that of discriminant analysis 
method [7]. The statistical mean for Type I1 error is 27.1 %, 
which is nearly the same as 28.1 % obtained by the mixture 
model analysis based on all 89 modules. 

4.2 Classification Probability 

As stated in Section 2.3, assigning a module as either 
fault-prone or non fault-prone is based on Bayesian classi- 
fication rule. 

In two-model mixed case, the joint density of the system 
can be written in the form, 

P(x,@) = alG(X,ml,&) + (1 -m)G(x,mz,&).  
(21) 

The posterior probabilities become 

Figure 4 shows the two-component probability distri- 
bution of the joint density projected at each principal 
component axis. The solid line depicts the component 
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Table 2. Mean vector component as well as maximum and minimum value for each metric, and the 
diagonal values of covariance matrices obtained by ML with EM algorithm. 

TC 
LOC 
Cr 

min max ml m2 Cl(diag.) &(diag.) 
3 944 68.04 260.01 1565.7 26771 
2 692 52.28 210.23 1125.9 18132 
59 21266 1458 5620 766272 1 . 2 8 4 ~ 1 0 ~  

Table 3. The classification for MIS data set by mixture model analysis. 

CRs I 0,l 1 2,3 I 4 3  I 6,7 I 8,9 1 10,11 1 12,13 I 14,15 I 16.17 1 18-98 
Number of group 1 I 104 I 66 I 33 1 25 I 11 I 9 1 6  I 1  1 4  1 5  - . ,  
Total modules I 114 I 7 8  I 4 9  I 3 6  I 2 4  I 19 I 12 I 10 I 9 I 39 
Percent ofgroup 1 I 91.2 I 84.6 I 67.3 I 69.4 I 45.8 I 47.4 I 50 I 10 I 44 I 12.8 

a l G ( x , m l , X l ) ,  while the dashed line depicts the com- 
ponent (1 - al)G(x,  m2, &). At each point, the value of 
each probability component is proportional to the value of 
the posterior probability. When we use Bayesian decision to 
classify program module i into class j ,  the misclassification 
risk can be obtained with Figure4. If the position of a mod- 
ule is at or near the position at which the values of the two 
components are nearly equal, (i.e., where the solid line and 
the dashed line intersect in each figure) the misclassification 
risk will be high. 

Each principal component metric is a linear combination 
of the original complexity metrics. When we predict that 
one program module is possible of either fault-prone or non 
fault-prone, the decision is made by combining all principal 
components together, not just a single metric. Combining 
all metrics to predict the software quality is one of the way 
to reduce the risk of misclassification. 

4.3 Advantages of Mixture Model Analysis 

Building model to support the prediction of software 
quality based on software complexity metrics can be quite 
challenging due to various inherent constraints. Sometimes 
the values of complexity metrics are not complete because it 
needs a long time collecting them, and building models re- 
quires the use of complete data types of variables. The EM 

algorithm was originally developed for incomplete data set, 
therefore the approach described above can handle the types 
of variables with partial missing values. Other methods 
such as regression tree modeling [32], feedforward neural 
networks [ 121 requires to know the target value (fault num- 
ber) in advance, and regression tree modeling also needs to 
assign a threshold to split the data set. On the other hand, in 
the mixture model analysis with EM algorithm, only little 
prior knowledge is needed to predict the module character- 
istics based on the complexity metrics. 

The mixture model analysis method also does not require 
an equal class number, so it is a more general model and 
classification rule used than that discriminant analysis [7]. 
In the linear discriminant analysis, the covariance matrices 
are assumed the same for all classes, which is seldom the 
case in the real world. 

Furthermore, if we suppose that the mixture model clas- 
sification result is correct, from the results shown in Table 
3, we know that the most non fault-prone modules should 
have no more than 3 CRs, which has the percentage greater 
than 88%. Furthermore, the modules with CRs from 4 to 17 
should be mediately fault-prone modules, and the modules 
with CRs 18 to 98 is the fault-prone group. This shows that 
the mixture model can help us gain an insight in the rela- 
tionships between the software complexity metrics and the 
number of faults in the module. 
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(0 U) (k) 

Figure 4. The plot for two components of the joint density projected at principal axis, the figures from 
(a) to (k) is corresponding to the 11 principal component axes in order. 

I min. I max. I mean 1 std. 
misclass. rate 1 0.133 1 0.40 I 0.271 I 0.064 

5 Conclusion 

the experimental results, this modeling approach provides 
an effective way to predict software quality in a very early 

Software metrics can reveal a lot of information about 
the code at several stages of develooment. Thev can iden- " 
tify the routines which need to be redesigned due to higher 
complexity, routines which may require thorough testing, 
and features which may require more support. The mix- 
ture model with EM algorithm is a novel way to analyze 
software metrics, to understand the involved relationships 
amone them, to identifv the fault-arone modules. and thus 

Table 4* Misclassification rate for randomly 
drawing 30 samples out of 89 modules with- 
out replacement. The mean and standard de- 
viation are computed based on 50 times re- 
peated experiments. 
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