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Abstract—Strongly promoted by the leading industrial com-
panies, cloud computing becomes increasingly popular in re-
cent years. The growth rate of cloud computing surpasses even
the most optimistic predictions. A cloud application is a large-
scale distributed system that consist a lot of distributed cloud
nodes. How to make optimal deployment of cloud applications
is a challenging research problem. When deploying a cloud
application to the cloud environment, cloud node ranking is one
of the most important approaches for selecting optimal cloud
nodes for the cloud application. Traditional ranking methods
usually rank the cloud nodes based on their QoS values,
without considering the communication performance between
cloud nodes. However, such kind of node relationship is very
important for the communication-intensive cloud applications
(e.g., Message Passing Interface (MPI) programs), which have
a lot of communications between the selected cloud nodes. In
this paper, we propose a novel clustering-based method for
selecting optimal cloud nodes for deploying communication-
intensive applications to the cloud environment. Our method
not only takes into account the cloud node qualities, but also
the communication performance between different nodes. We
deploy several well-known MPI programs on a real-world
cloud and compare our method with other methods. The
experimental results show the effectiveness of our cluster-based
method.

Keywords-Cloud nodes; Quality-of-Service; Cloud deploy-
ment; Communication-Intensive; Clustering Analysis.

I. INTRODUCTION

Cloud computing is Internet-based computing, where

shared resources (e.g., infrastructure, platform, software,

data, etc.) are provided to users on-demand, like a public

utility [1], [2]. Cloud applications are usually large-scale

and very complex, involving a number of distributed cloud

nodes. How to make optimal deployment of cloud applica-

tions is a challenging and urgent required research problem.

Similar to traditional component-based systems [3], cloud

application is also composed by a number of components.

When deploying a cloud application in a cloud, the appli-

cation user need to select a number of cloud nodes (e.g.,

servers or a virtual machines) to run the cloud applica-

tions (usually software components). There are two types

of common cloud applications, i.e., computation-intensive

applications and communication-intensive applications. In

a computation-intensive application (e.g., BOINC [4]), the

cloud nodes do not communicate with each other frequently.

To select the optimal cloud nodes for deployment pur-

pose, the application designer can simply rank the available

cloud nodes based on their QoS values and select the best

performing ones. On the contrary, in a communication-

intensive application (e.g., Message Passing Interface (MPI)

applications [5]), there are a lot of communications between

different distributed cloud nodes. Therefore, performance of

communication-intensive application is greatly affected by

the network connections between the selected nodes. For

such kind of applications, selecting optimal cloud nodes

using ranking-based methods is not proper, since commu-

nication performance between cloud nodes needs to be

considered. Designing efficient and effective cloud node

selection approaches that considers node capacity as well

as communications between nodes is an important task for

building high-quality communication-intensive cloud appli-

cations.

Quality-of-Service (QoS) is usually employed to describe

the non-functional performance of the cloud nodes, e.g., the

size of free memory, number of CPUs, network bandwidth,

response time, and so on. In the cloud environment, there

are usually a lot of available cloud nodes. When selecting

optimal cloud nodes from a set of available cloud nodes

for deployment purpose, ranking-based method [6] ranks the

available nodes based on their QoS values and selects the

best performing ones. A drawback of the ranking methods

is that these methods cannot reflect the relations between

different cloud nodes. Therefore, such kind of methods

cannot be applied to the communication-intensive cloud

applications, whose performance is greatly influenced by the

communications between the nodes in the application. For

example, assuming a user wants to deploy a MPI program

on a cloud and needs to select two cloud nodes for this

MPI application. As illustrated in Figure 1, there are totally

four available cloud nodes in the cloud. These four node

candidates form a communication matrix, where each entry

in the matrix is the response time between a pair of nodes.

If we rank these available node candidates via their average

response time, then nodes A and D will be selected as the

best performing nodes for the MPI application. However,

2011 IEEE 4th International Conference on Cloud Computing

978-0-7695-4460-1/11 $26.00 © 2011 IEEE

DOI 10.1109/CLOUD.2011.54

460

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 10:43:50 UTC from IEEE Xplore.  Restrictions apply. 



6/4

7/4

7/4

6/4

     

0123

1042

2401

3210

�

D

C

B

A

DCBA

 

Figure 1. Cloud Node Ranking by Average Response Time

from the communication matrix we can see that the response

time between A and D is 3 seconds, if the user (designer

of the MPI application) selects A and D, he/she may get

a poor performance, since the MPI application may have a

large delay time between these two selected nodes.

To attack this challenge, we propose a clustering-based

selection method for communication-intensive cloud appli-

cations. Our method considers not only the QoS ranking

of nodes, but also the communication relations between

them. Our approach takes advantages of the cluster analysis

and QoS ranking for making optimal deployment for the

communication-intensive cloud applications. The contribu-

tion of this paper is two-fold:

• We identify the critical problem of selecting optimal

cloud nodes for communication-intensive cloud appli-

cations and propose a clustering-based method to ad-

dress this problem. Based on our method, optimal cloud

nodes can be efficiently and effectively determined for

communication-intensive cloud applications.

• Real-world experiments are conducted to compare our

method with other methods. We deploy several well-

known MPI programs on a real-world cloud, i.e., Plan-

etLab 1. The experimental results show the effectiveness

of our proposed approach.

The rest of this paper is organized as follows: Section

2 introduces motivation and system architecture; Section 3

presents our clustering-based selection method; Section 4

describes experiments; Section 5 discusses related work and

Section 6 concludes the paper.

II. SYSTEM ARCHITECTURE

We first introduce the cloud node selection problem.

As shown in Figure 2, there are a number of available

distributed nodes in the cloud. Cloud user need to deploy

their cloud applications on a number of optimal cloud nodes

and use it. Since cloud nodes are usually distributed in

different geographic locations, deploying the application on

different set of nodes may obtain different level of quality.

How to select a subset of optimal cloud nodes to satisfy the

requirement of cloud user is an important research problem.

To attack this critical challenge, we propose an optimal

cloud node selection framework. Our framework includes a

centralized server managing a number of cloud nodes. The

1http://www.plant-lab.org
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Figure 2. Motivating Example

server serves as a scheduler for different users. The server is

in charge of receiving user requests, collecting the status of

the nodes and scheduling cloud nodes for users. As shown

in Figure 3, the steps of our optimal cloud nodes selection

framework are as follows:

• Step 1: The cloud user submits a cloud node selec-

tion request to the server with related information,

e.g., application type (i.e., computation-intensive or

communication-intensive), size of memory, CPU time,

number of components, etc.

• Step 2: The request listener gets the request from the

cloud user and transmits it to the scheduler.

• Step 3: The scheduler sends a request to the status

database for getting available cloud nodes and their

details QoS information.

• Step 4: The scheduler receives all the currently avail-

able cloud nodes from the status database, and selects

the appropriate nodes by using our cluster-based cloud

nodes select method, which will be introduced in Sec-

tion III.

• Step 5: The scheduler configures the selected cloud

nodes, and changes the status of nodes from free to

busy.

• Step 6: The system send back the selected cloud nodes

to the cloud user who submitted the request.

• Step 7: Each cloud node runs an agent program,

which takes charge of monitoring the status of the

cloud nodes (e.g., the size of free memory, free CPU

time, etc). In addition, to get the exactly communicate

information, the monitor measured the response time

between nodes periodically, since the response time

between nodes vary dynamically with a large range.

The status received by agent will be send to the status

database.

III. CLUSTER-BASED METHOD

This section presents our clustering-based cloud node se-

lection method, which is designed as a three-phase process.
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Figure 3. Component Selection Architecture

In phase 1, we introduce the method for selecting initial

centroids. Then, in phase 2, the cluster analysis method is

introduced. Finally, in phase 3, we present our solution for

selecting cloud nodes from the generated clusters. Details of

these phases are presented in Section 3.1 to 3.3, respectively.

A. Select Initial Centroid

Choosing proper initial centroids is a key step of the

cluster analysis procedure. Although it is easy to choose

initial centroids randomly, the cluster results are often poor.

The major challenges of the random method is that the

noises and outliers (e.g., cloud nodes with large response

time) may be selected, which will greatly influence the

quality of clusters. In general, in a data space, data objects in

a lower density area are usually regarded as noise objects [7].

In this paper, we select centroids by using a density-based

method, which selects the initial centroids from high-density

areas.

In our approach, we use the response time between two

nodes to represent the distance between them. If a node has

lower response times to other nodes, it means that the node

has shorter distances to the other nodes and may be in the

high-density area. We define neighborhood of a cloud node

p as:

Definition 1: The neighborhood of a cloud node p, de-

noted by N(p), is defined by N(p) = {q ∈ D|dist(p, q) <
DIST}, where DIST is a threshold of response time

between two cloud nodes, D = {pi|i = 1, . . . , n} is a set of

existing cloud nodes, and dist(pi, pj) denotes the distance

(i.e., response time) between two components pi and pj .

Based on this definition, whether a node p is in the high-

density area can be defined as:

Definition 2: A cloud node p that in the high density area

should satisfy the following condition

Num(N(p)) > NUMBER

where NUMBER is a threshold of the number of neigh-

borhood nodes, and Num(N(p)) denotes the number of

neighborhood nodes of node p.

Based on Definition 2, we can get a set of cloud nodes

that are in the high-density areas and discard those cloud

nodes in the low-density areas.

Let H = {yi|1 ≤ i ≤ m} be the set of cloud nodes in the

high-density areas. The initial centroids will be selected from

H . The impacts introduced by noise nodes will be eliminated

by this approach. The cloud node which has the largest

number of neighbors is selected as the first cnetroid z1. In

other words, the first selected centroid z1 should satisfy the

following condition:

Num(N(z1)) ≥ max{Num(N(yi))|yi ∈ H}. (1)

We select second centroid z2 is the node that has the

greatest distance from z1, and the third one z3 has the

greatest distance from z1 and z2, which should satisfy the

below condition:

min{dist(z3, z1), dist(z3, z2)} =

max{min{dist(yi, z1), dist(yi, z2)}|yi ∈ H}.

Similarly, the kth centroid zk needs to satisfy:

min{dist(zk, zi)|1 ≤ i < k} =

max{min{dist(yj , zi)|1 ≤ i < k}|yj ∈ H}. (2)

where k ≥ 2. The Eq.(2) imply that in high-density area, we

select these initial centriods that far distribute each other.

B. Cluster Analysis

Cluster analysis is useful for discovering groups and

identifying interesting distributions in the underlying data.

Cluster analysis can group objects (e.g., cloud nodes) based

on the information found in the data describing the objects

and their relations [8].

In our approach, we divide the cloud nodes into different

clusters based on the response time between different nodes.

Assume there are n cloud nodes distributed in a cloud, the

response times between nodes can be represented as an n
by n matrix, where xij is the response time between node

i and node j. Apparently, xij equals to xji.









0 x12 · · · x1n

x21 0 · · · x2n
...

...
. . .

...

xn1 xn2 · · · 0









(3)

Matrix (3) is called the response time matrix. We use pi to

represent the vector of response times from node i to other

nodes. i.e., pi = (xi1, xi2, . . . , xin).

A cluster analysis algorithm is designed to divide

the cloud nodes into K clusters, denoted by C =
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{C1, C2, . . . , CK} and K ≥ 2. The obtained clusters satisfy

the following conditions:















Ci 6= ∅ i = 1, 2, . . . ,K
Ci ∩ Cj = ∅ i, j = 1, 2, . . . ,K and i 6= j
K
⋃

i=1

Ci = D
(4)

To determine which cluster a cloud node pi belonged to,

we need to calculate the distances between pi and different

clusters. In our approach, we use the average distance

between pi and all the cloud nodes of one cluster to represent

the distance between a node and a cluster. We calculate the

average distance between the pi to cluster Ck by:

E =
1

d

∑

j:pj∈Ck

xij , 1 ≤ k ≤ K (5)

where d is the number of cloud nodes in the kth cluster Ck.

Employing Eq.(5), we can get the distances between pi and

all clusters and put cloud node pi to the cluster that has the

shortest distance value.

Our clustering algorithm for finding K clusters as shown

in Algorithm 1 includes the following steps:

• Step 1 (line 1-3): select the first centriod by Definition

1,2 and Eq.(1), where F stores the initial centroids.

• Step 2 (line 4-12): Use Eq.(2) to select other centroids.

For each cloud nodes in E, calculate the distance

between to the cloud nodes that in F , and store the

smallest distance in T (line 6-9), then select the cloud

nodes as the centroid, which have the biggest value in

T .

• Step 3 (line 15-18): C used to stores all K cluster

sets. Before iterate, in line 13, we set C = F for

use the initial centroid to represent cluster. Eq.(5) used

to calculate the distance between the cloud nodes and

all clusters, then assign the cloud nodes to the closest

cluster e.

• Step 4 (line 18-20): calculate the new center of every

cluster by Eq.(7), and use the new center to replace the

interrelated cluster. Step 2,3 and 4 are repeated until

the RTT of every cluster don’t change.

In Algorithm 1, the average response time (RTT ) of

cluster represents the average communication performance

of cluster and calculated by:

RTT =
1

n

n
∑

i=1

C̄ki, (6)

where C̄k is the center of the kth cluster and represented by

a n-dimension vector. C̄ki the ith value of C̄k. C̄k defined

as

C̄k =
1

d

∑

i:pi∈Ck

pi (7)

Algorithm 1: The algorithms of cluster analysis

Input: Cloud nodes set I , high-density area cloud

nodes set E
Output: K clusters

F = ∅;1

t=arg maxi∈ENum(pi);2

F = {t};3

repeat4

T = ∅;5

foreach i ∈ E do6

d=arg minj∈F dist(pi, pj);7

T = T + {d};8

end9

t=arg maxi∈T T (i);10

F = F + {t};11

until |F | = K ;12

C = F ;13

repeat14

foreach i ∈ I do15

e=arg minj∈Cdist(pi, cj);16

e = e + {pj};17

end18

foreach j ∈ C do19

cj = avg(cj)20

end21

until RTT of every cluster don’t change ;22

C. Selection

After clustering, these cloud nodes are assigned to differ-

ent clusters. Therefore, we can select the cluster by the RTT
of every cluster that user require. According to the RTT of

each cluster, One or more suitable clusters can be selected

according to the number of the requested cloud nodes.

After selecting clusters, we can rank the nodes in selected

cluster by their performance, which is a tradeoff between the

computing power and the communication ability:

perf = λ × calc + (1 − λ) × comm, (8)

where perf is the performance of a cloud node, and calc
is the value of computing power of a node, which can be

calculated by the size of free memory, free CPU time, etc.

In this paper the value of calc is the calculated by the values

of free memory and CPU:

calc = memory + cpu

The value of comm is the average response time of

the cloud nodes in selected cluster, which is calculate by

Eq.(9). Please note that values of calc and comm should be

standardized into the range of [0,1]. For a set of cluster that

selected S and a cloud node pi in S, comm is calculate by:
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comm =
1

|S|

n
∑

j=1

I(xij), (9)

where |S| is the number of cloud nodes in S and |S| > 1,

and I(xij) defined as:

I(xij) =

{

xij , pj ∈ S
0, pj /∈ S

(10)

In Eq.(10) pj ∈ S means pi and pj are the candidate cloud

nodes that will be selected. Based on Eq.(8), a number of

cloud nodes that may have the best performance are selected

for the user.

IV. EXPERIMENTS

In this section, we evaluate our cluster-based method by

real-world experiments and give a comprehensive perfor-

mance comparison against other ranking methods. We first

describe our experiment setup along with the benchmark,

followed by the evaluation results.

A. Experiment Setup

We have deployed our experiments on PlanetLab [9],

which is a global overlay network for developing and ac-

cessing broad-coverage network services. Since the nodes in

PlanetLab are real machines and connected by the Internet,

we can carry out our experiments in realistic real world

environment. Our experimental environment consists of 100

distributed nodes which serve as cloud nodes. Our approach

is implemented with JDK 1.6. The schedule node and

database server are also deployed on PlanetLab nodes. In

out experimental we partition cloud nodes in 4 cluster and

use the following parameter settings: λ = 0.5 (Eq.(8)).

DIST = 100ms, NUMBER = 25 (Definition 1 and 2).

The impact of different settings of these parameters will be

provided at Section 4.3 and 4.4.

In the experiments, we run different cloud node selection

approaches for a MPI benchmark, called NASA NPB [10].

The reason why we choose programs in a MPI benchmark

is that performance of a MPI program not only depends

on the computing power of the nodes that the program

runs on, but also the communication ability between the

nodes. NPB is a widely used MPI benchmark, which consists

of programs designed to help evaluate the performance of

parallel supercomputers. The benchmark is derived from

computational fluid dynamics (CFD) applications. To com-

pare the performance of Cluster-based method against other

schedule algorithm, we use the following metric via NPB:

• Makespan: The makespan of a job is defined as the

duration between sending out a job and receiving a

correct result.

• Throughput: The throughput of a job is defined as the

total million operations per second rate (Mop/s) rate

over the number of processes.

B. Performance Comparison

To study the cluster-based method performance, we com-

pare our method with the following four methods:

• Random : Random-based cloud nodes selection

method.

• RankRes: Ranking cloud nodes with respect to the free

memory and CPU time. For this method, we can use

the Eq.(8) by taking the value of λ = 1. Using Eq.(8)

we select the k-highest nodes, where k is the number

of the nodes that the user requires.

• RankComm : Ranking cloud nodes with respect to

communication performance. Same as the RankRes

method, we also use Eq.(8) but the value of λ is 0.

• RankAll : using Eq.(8) to ranking cloud nodes with re-

spect to both the computing power and communication

ability.

NPB applications are need to be compiled for a specific

number of cloud nodes, and a given problem size. Some

benchmarks (e.g., CG, MG, LU, IS, EP) can only run on a

power-of-2 number of cloud nodes. The rest (SP and BT)

can only run on a square number of cloud nodes. We run the

experiments on 8 or 9 cloud nodes for different benchmarks

and 16 cloud nodes for all the benchmarks.

Table I and Table II show the running of the different

benchmarks. The numbers 8, 9 and 16 indicate the numbers

of the used cloud nodes. From Tables I and Table II, we can

get the following result:

Tables I and Table II show that:

• Among all the methods, our clustering-based method

obtains the best performance (less execution time and

high throughput). In some case, the result of clustering-

based is more better than other methods (e.g., on the

MG, SP, BT benchmark).On the contrary, in most case,

the random select cloud nodes method got the worst

result.

• In most cases, the results of RankAll or RankComm

method are only worse than the clustering-based

method. RankAll or RankComm cannot consider the

relations between cloud nodes but is can consider

one or more factors and rank it. And the result of

Ranking method not stable (in some case RankAll better

than RankComm, other cases RankComm better than

RankAll). For these reasons, RankAll or RankComm

method receives a less quality than clustering-based

method.

• With increase the cloud nodes, the performance of MPI

program will be increase, However, in some cases,

the performance of 16 cloud nodes is lower than 8

cloud nodes, since the nodes in PlanetLab are deployed

over internet, therefore the cost of communication may

increase greatly with more internet connect.

• In most cases, the performance of RankRes method only

better than Random method, since RankRes method
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Table I
COMPARISON OF MAKESPAN (S)

EP IS MG CG LU SP BT

8 16 8 16 8 16 8 16 8 16 9 16 9 16

Random 215.9 160.7 10977.8 5560.7 441.6 773.24 1806.0 949.9 1756.7 3495.3 506.5 519.8 498.5 230.9

RankRes 69.0 65.3 1833.4 1627.7 905.8 685.8 2063.0 1396.1 3567.3 2594.4 428.7 326.8 595.0 295.6

RankComm 122.1 176.5 1574.7 521.1 784.9 313.8 1345.2 528.0 1730.9 2037.5 401.9 154.0 276.9 113.4

RankAll 90.2 55.4 890.6 487.6 392.4 290.4 1503.4 689.4 2871.3 1739.9 326.3 258.1 354.4 394.1

Cluster 53.2 52.3 696.4 321.7 220.4 67.2 604.9 352.6 1587.2 1128.3 53.1 139.1 51.9 73.1

Table II
COMPARISON OF THROUGHPUT (MOP/S)

EP IS MG CG LU SP BT

8 16 8 16 8 16 8 16 8 16 9 16 9 16

Random 10.29 16.2 0.01 0.02 8.90 5.03 0.83 1.58 67.91 34.13 0.19 0.22 0.46 0.99

RankRes 31.14 36.7 0.08 0.05 4.3 5.68 0.73 1.07 33.44 45.98 0.23 0.39 0.38 0.77

RankComm 12.81 12.2 0.09 0.16 4.96 12.4 1.11 2.83 69.24 58.55 0.24 0.64 0.82 2.01

RankAll 23.81 38.9 0.10 0.17 11.77 13.40 1.0 2.17 41.56 68.56 0.3 0.46 0.64 0.58

Cluster 43.1 45.6 0.12 0.57 25.33 57.91 2.56 4.24 80.12 105.75 1.82 0.74 4.4 3.12

not consider the communication performance (λ = 1),

which is important to communication-intensive appli-

cation.

C. Compare of initial centroids selection method

In this section, we compare our method of selecting

initial centroids to random selection method. To study the

impact of NUMBER and DIST respectively, we conduct

three experiments. The first (second column of Table III),

NUMBER is 25 and DIST by vary from 50ms to 230ms

with a step value of 20. The second (third column of

Table III), DIST is 100ms, NUMBER by vary from

15 to 33 with a step value 2. The third (fourth column

of Table III), use random method. For effective compare

different methods, every experiment conduct 10 times and

the benchmark is EP. Table III show the result of these

experiments, in Table III we represent the execute time of

different method.

Table III shown in most case, our initial centroids selec-

tion method get the best performance (less execute time).

In the eleventh row of Table III, represent the average

makespan of all methods, the result also show that our

approach get the better performance.

D. Impact of Parameters

1) Impact of Class number: In this section, we will

analyze the impact of different number of clusters by vary

it from 2 to 10 with the step value 1 (the cluster number

should be more than 2), and other parameters are set same

as in section 4.1. The used benchmark is EP and deployed

on 8 cloud nodes. We compare the performance of using the

cluster-based method with the RankAll method.

Figure 4 shows the makespan and throughput results when

using different cluster numbers, respectively. Figure 4(a)

shows that the makespan of the cluster-based method is

gradually decreased and becomes stable, and the values are

Table III
COMPARE OF INITIAL CENTROIDS SELECTION METHOD (S)

DIST NUMBER Random

1 95.5 41.5 65.4

2 66.8 41.3 97.3

3 64.4 44.0 61.1

4 69.6 45.3 53.9

5 46.5 42.9 85.7

6 48.2 76.8 63.4

7 52.7 57.9 75.1

8 81.1 72.2 95.0

9 77.9 84.2 117.9

10 70.6 75.6 104.1

Average 67.3 64.9 81.9

01 02 03 04 05 06 07 08 09 0
2 3 4 5 6 7 8 9 1 0M ak espan N u m b e r o f C l u s t e r

V a l u s e o f M a k e s p a n c l u s t e rr a n k a l l
(a) Makespan

01 02 03 04 05 06 07 08 0
2 3 4 5 6 7 8 9 1 0Th rough put N u m b e r o f C l u s t e r

V a l u e s o f T h r o u g h p u t c l u s t e rr a n k a l l
(b) Throughput

Figure 4. Impact of Cluster number
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all in 50-60 seconds. Form both Figures, we can observe

that: when the cluster number equals 2, the makespan and

the throughput of two methods are closer. The reason is

when cluster number equals 2, the most cloud nodes may be

partitioned in one cluster, therefore the result of clustering-

based method closer to RankAll method. In addition, in

both figures, the clustering-based method outperforms the

RankAll method.

2) Impact of λ: We change the value of λ from 0 to 1

with a step value of 0.1. Besides, we set the cluster number

as 4 in this experiment. The used benchmark is EP, and the

compared method is also the RankAll method.

Figure 5 shows the experimental results. Both methods

will have the worst performance when λ is 0. The reason is

only communication ability is considered, and the RankAll

method equals the RankComm method when λ is 0. When

λ from 0.2 to 0.4, both methods have the best performance.

When λ increase from 0.4 to 1, the makespan of the cluster-

based method becomes increase. In addition, we can observe

that the value of λ influences the performances of both

methods greatly than cluster number.
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Figure 5. Impact of λ

V. RELATED WORK AND DISCUSSION

Nodes or Components schedule and recommendation have

been widely employed for volunteer computing systems,

Grid systems, P2P systems, component-based systems and

cloud systems [11] [12] [13] [14] [6]. QoS can be em-

ployed for describing the non-functional performance of

cloud nodes[15]. Based on the cloud node QoS performance,

a number of selection and schedule strategies have been

proposed in the recent literature. The major approaches can

be divided into three types: (1) Random appraoches (use

random methods to select components). Random strategies

have been employed in BOINC [4]. (2) Ranking or rating

approaches (cloud nodes is ranked by the order of QoS

performance). Ranking strategies have been employed in

RIDGE [16] and GridEigenTrust [17]. (3) Matching ap-

proaches (matching algorithms are employed to compare the

users’ requirements and the QoS values of cloud nodes).

Matching strategies have been employed in Condor [18].

These previous methods just consider the order of the node

performance, and not consider the relationship between

nodes, which is important to the communication-intensive

cloud applications. In this paper, we focus on analyzing

the relationship between cloud nodes to achieve optimal

deployment of communication-intensive cloud applications.

To improving the performance of communication-

intensive applications, a number of systems and infrastruc-

tures have been proposed [19][20][21]. Match algorithm

is one of the most widely used approaches for selecting

resources according to user requirements. Denis et al. [14]

propose a method to select available nodes for users. How-

ever, this methods may select a number of low quality

components and users should be responsible for managing

node failures.

Recently, scientific applications (e.g., MPI applications)

in cloud have attracted great interests, since clouds promise

to be an alternative to clusters, grids and supercomputers

for scientists. Christina [22] indicates the communication

performance is important to scientific applications in cloud

computing. There are a number of literature introducing

experiences of using cloud computing for scientific ap-

plications [23] [24]. Simon Ostermann [25] analyzes the

performance of EC2 cloud computing services for scientific

computing. Different from these previous work, our work

provides a comprehensive study on how to provide optimal

deployment for the communication-intensive cloud applica-

tions.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a clustering-based cloud node

selection approach for communication-intensive cloud ap-

plications. By taking advantage of the cluster analysis, our

approach not only considers the QoS values of cloud nodes,

but also considers the relationship (i.e., response time)

between cloud nodes. Our approach systematically combines

cluster analysis and ranking methods. The experimental

results show that our approach outperforms the existing

ranking approaches.

In a communication-intensive application, nodes connect

each other with special topology structure (e.g., a node

have more connect to a certain nodes, and littler connect

to other nodes).Currently, we have not considered the topol-

ogy structure of communication-intensive application. More

investigations are needed to consider the topology structure
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in future work. In addition, the response time between nodes

may depends on the sum communication load between the

nodes or the state of computing and applications in each

nodes. For this reason, Our future work will also include

load balance for cloud nodes and fault tolerant cluster.
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