
Making Services Fault Tolerant

Pat. P.W. Chan1, Michael R. Lyu1, and Miroslaw Malek2

1 Department of Computer Science and Engineering
The Chinese University of Hong Kong

Hong Kong, China
{pwchan, lyu}@cse.cuhk.edu.hk

2 Department of Computer Science and Engineering
Humboldt University Berlin, Germany
malek@informatik.hu-berlin.de

Abstract. With ever growing use of Internet, Web services become in-
creasingly popular and their growth rate surpasses even the most opti-
mistic predictions. Services are self-descriptive, self-contained, platform-
independent and openly-available components that interact over the net-
work. They are written strictly according to open specifications and/or
standards and provide important and often critical functions for many
business-to-business systems. Failures causing either service downtime or
producing invalid results in such systems may range from a mere incon-
venience to significant monetary penalties or even loss of human lives.
In applications where sensing and control of machines and other devices
take place via services, making the services highly dependable is one of
main critical goals. Currently, there is no experimental investigation to
evaluate the reliability and availability of Web services systems. In this
paper, we identify parameters impacting the Web services dependability,
describe the methods of dependability enhancement by redundancy in
space and redundancy in time and perform a series of experiments to
evaluate the availability of Web services. To increase the availability of
the Web service, we use several replication schemes and compare them
with a single service. The Web services are coordinated by a replication
manager. The replication algorithm and the detailed system configura-
tion are described in this paper.

Keywords: Web service, availability, redundancy, reliability.

1 Introduction

As the use of Web services is growing, there is an increasing demand for de-
pendability. Service-oriented Architectures (SOA) are based on a simple model
of roles. Every service may assume one or more roles such as being a service
provider, a broker or a user (requestor).

The use of services, especially Web services, became a common practice. In
Web services, standard communication protocols and simple broker-request ar-
chitectures are needed to facilitate an exchange (trade) of services, and this

D. Penkler, M. Reitenspiess, and F. Tam (Eds.): ISAS 2006, LNCS 4328, pp. 43–61, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



44 P.P.W. Chan, M.R. Lyu, and M. Malek

model simplifies interoperability. In the coming years, services are expected to
dominate software industry. As services begin to permeate all aspects of hu-
man society, the problems of service dependability, security and timeliness are
becoming critical, and appropriate solutions need to be made available.

Several fault tolerance approaches have been proposed for Web services in
the literature [1,2,3,4,5,6,7,8], but the field still requires theoretical foundations,
appropriate models, effective design paradigms, practical implementations, and
in-depth experimentations for building highly-dependable Web services.

In this paper, related work on dependable services is presented in Section
2, in which the problem statement about reliable Web services is presented. In
Section 3, a methodology for reliable Web services is described, in which we
propose experimental settings and offer a roadmap to dependable Web services.
Experimental results and reliability modeling are presented in Sections 4 and 5.
Finally, conclusions are made in Section 6.

2 Related Work

It is a well-known fact that fault tolerance can be achieved via spatial or temporal
redundancy, including replication of hardware (with additional components),
software (with special programs), and time (with the diversified of operations)
[9,10,11].

Spatial redundancy can be dynamic or static. Both use replication but in sta-
tic redundancy, all replicas are active at the same time and voting takes place to
obtain a correct result. The number of replicas is usually odd and the approach
is known as n-modular redundancy (NMR). For example, under a single-fault
assumption, if services are triplicated and one of them fails, the remaining two
will still guarantee the correct result. The associated spatial redundancy cost
is high (i.e., three copies plus a voter). The time overhead of managing redun-
dant modules such as voting and synchronization is also considerably large for
static redundancy. Dynamic redundancy, on the other hand, engages one active
replica at one time while others are kept in an active or in a standby state. If one
replica fails, another replica can be employed immediately with little impact on
response time. In the second case, if the active replica fails, a previously inactive
replica must be initialized and take over the operations. Although this approach
may be more flexible and less expensive than static redundancy, its cost may
still be high due to the possibility of hastily eliminating modules with transient
faults. It may also increase the recovery time because of its dependence on time-
consuming error-handling stages such as fault diagnosis, system reconfiguration,
and resumption of execution. Redundancy can be achieved by replicating hard-
ware modules to provide backup capacity when a failure occurs, or redundancy
can be obtained using software solutions to replicate key elements of a business
process.

In any redundant systems, common-mode failures (CMFs) result from failures
that affect more than one module at the same time, generally due to a common
cause. These include design mistakes and operational failures that may be caused



Making Services Fault Tolerant 45

externally or internally. Design diversity has been proposed in the past to pro-
tect redundant systems against common-mode failures [12,13] and has been used
in both firmware and software systems [14,15,16]. The basic idea is that, with
different design and implementations, common failure modes can be reduced. In
the event that they exist and are manifested, they will probably cause different
failure effects. One of the design diversity techniques is N-version programming,
and another one is Recovery Blocks. The key element of N-version program-
ming or Recovery Blocks approaches is diversity. By attempting to make the
development processes diverse it is anticipated that the independently designed
versions will also contain diverse faults. It is assumed that such diverse faults,
when carefully managed, will minimize the likelihood of coincident failures.

Based on the discussed techniques, a number of reliable Web services tech-
niques appeared in the recent literature. A Web Services Reliable Messaging
Protocol is proposed in [1], which employs flooding and acknowledgement to en-
sure that messages are delivered reliably among distributed applications, in the
presence of software component, system, or network failures.

WS-FTM (Web Service-Fault Tolerance Mechanism) is an implementation of
the classic N-version model with Web services [2] which can easily be applied to
systems with a minimal change. The Web services are implemented in different
versions and the voting mechanism is in the client program.

FT-SOAP [3], on the other hand, is aimed at improving the reliability of the
SOAP when using Web services. The system includes different function repli-
cation management, fault management, logging/recovery mechanism and client
fault tolerance transparency. FT-SOAP is based on the work of FT-CORBA [4],
in which a fault-tolerant SOAP-based middleware platform is proposed. There
are two major targets in FT-SOAP: 1) to define a fault-tolerant SOAP service
standard recommendation, and 2) to implement an FT-SOAP service prototype.

FT-Grid [5] is another design, which is a development of design-diverse fault
tolerance in Grid. It is not specified for Web services but the techniques are
applicable to Web services. The FT-Grid allows a user to manually search
through any number of public or private UDDI repositories, select a number
of functionally-equivalent services, choose the parameters to supply to each ser-
vice, and invoke those services. The application can then perform voting on the
results returned by the services, with the aim of filtering out any anomalous
results.

Although a number of approaches have been proposed to increase the Web
service reliability, there is a need for systematic modeling and experiments to
understand the tradeoffs and verify reliability of the proposed methods.

3 Problem Statement

There are many fault-tolerant techniques that can be applied to Web services
including replication and diversity. Replication is one of the efficient ways for
creating reliable systems by time or space redundancy. Redundancy has long
been used as a means of increasing the availability of distributed systems, with



46 P.P.W. Chan, M.R. Lyu, and M. Malek

key components being re-executed (replication in time) or replicated (replication
in space) to protect against hardware malfunctions or transient system faults.
Another efficient technique is design diversity. By independently designing soft-
ware systems or services with different programming teams, diversity provides
an ultimate resort in defending against permanent software design faults.

In this paper, we focus on the systematic analysis of the replication techniques
when applied to Web services. We analyze the performance and the availability of
the Web services using spatial and temporal redundancy and study the tradeoffs
between them. A generic Web service system with spatial as well as temporal
replication is proposed and experimented with.

4 Methodologies for Reliable Web Services

4.1 Failure Response Stages of Web Services

Web services go through different operation modes, so when failures occur and
the failure response of Web services can be classified into different stages [17].
When a failure occurs, the Web service should confine the failure by applying
fault detection techniques to find out the failure causes and the failed components
should be repaired or recovered. Then, reconfiguration, restart and reintegration
should follow. The flow of the failure response of a Web service is shown in
Figure 1 and the details of each stage are described as follows:

Fault confinement. This stage limits the fault impact by attempting to con-
tain the spread of fault effects in one area of the Web service, thus preventing
contamination of other areas. Fault-confinement can be achieved through the

Fig. 1. Flow of the failure response of Web services



Making Services Fault Tolerant 47

use of fault detection within the Web services, consistency checks, and multiple
requests/confirmations.

Fault detection. This stage recognizes that something unexpected has oc-
curred in a Web service. Fault latency is the period of time between the occur-
rence of a fault and its detection. Techniques fall here into two classes: off-line
and on-line. With off-line techniques, such as diagnostic programs, the service is
not able to perform useful work while under test. On-line techniques, such as du-
plication, provide a real-time detection capability that is performed concurrently
with useful work.

Diagnosis. This stage is necessary if the fault detection technique does not pro-
vide information about the fault location. Typically, fault diagnosis encompasses
both fault detection and fault location.

Reconfiguration. This stage occurs when a fault is detected and located. The
Web service can be composed of different components. When providing the ser-
vice, there may be a fault in individual components. The system may reconfigure
its components either to replace the failed component or to isolate it from the
rest of the system.

Recovery. This stage utilizes techniques to eliminate the effects of faults. Three
basic recovery approaches are available: fault masking, retry and rollback. Fault-
masking techniques hide the effects of failures by allowing redundant information
to outweigh the incorrect information. Web services can be replicated or imple-
mented with different versions (NVP). Retry undertakes a second attempt at
an operation and is based on the premise that many faults are transient in na-
ture. Web services provide services through a network, and retry would be a
practical approach as requests/replies may be affected by the state of the net-
work. Rollback makes use of the fact that the Web service operation is backed
up (checkpointed) at some point in its processing prior to fault detection and
operation recommences from that point. Fault latency is important here because
the rollback must go back far enough to avoid the effects of undetected errors
that occurred before the detected error.

Restart. This stage occurs after the recovery of undamaged information.

– Hot restart: resumption of all operations from the point of fault detection
and is possible only if no damage has occurred.

– Warm restart: only some of the processes can be resumed without loss.
– Cold restart: complete reload of the system with no processes surviving. The

Web services can be restarted by rebooting the server.

Repair. At this stage, a failed component is replaced. Repair can be off-
line or on-line. Web services can be component-based and consist of other
Web services. In off-line repair, either the Web service will continue if the
failed component/sub-Web service is not necessary for operation or the Web



48 P.P.W. Chan, M.R. Lyu, and M. Malek

services must be brought down to perform the repair. In on-line repair, the
component/sub-Web service may be replaced immediately with a backup spare
or operation may continue without the component. With on-line repair, the Web
service operation is not interrupted.

Reintegration. At this stage the repaired module must be reintegrated into
the Web service. For on-line repair, reintegration must be performed without
interrupting the Web service operation.

4.2 Proposed Technique

In the previous section, we describe a general approach in system fault tolerance
which can be applicable to Web services. In the following section, we propose
a replication Web service system for reliable Web services. In our system, the
dynamic approach is considered and its architecture is shown in Figure 2.

Scheme details. In the proposed system, one Web server works as the active
server and others are used for backup purpose to tolerate a single server failure.
The Web service is replicated on different machines, but only one Web service
provides the requested service at a time, which is called the primary Web service.
The Web service is replicated identically on different machines; therefore, when
the primary Web service fails, the other Web services can immediately provide
the required service. The replication mechanism shortens the recovery time and
increases the availability of the system.

Fig. 2. Proposed architecture for dependable Web services



Making Services Fault Tolerant 49

The main component of this system is the replication manager, which acts as
a coordinator of the Web services. The replication manager is responsible for:

1. Creating a Web service.
2. Choosing (with anycasting algorithm) the best (fastest, most robust, etc.)

Web service [18] to provide the service which is called the primary Web
service.

3. Registering the Web Service Definition Language (WSDL) with the Universal
Description, Discovery, and Integration (UDDI).

4. Continuously checking the availability of the primary Web service by using
a watchdog.

5. Selecting another Web service provider if the primary service fails, so as to
ensure fault tolerance.

When the primary Web service fails, the replication manager selects the most
suitable Web service again to continue providing the service. The replication
manager maps the new address of the new primary Web service to the WSDL,
thus the clients can still access the Web service with the same URL. This failover
process is transparent to the users. The detailed procedure is shown in Figure 2.

The workflow of the replication manager is shown in Figure 3. The replication
manager is running on a server, which keeps checking the availability of the
Web services by the polling method. It sends messages to the Web services
periodically. If it does not get the reply from the primary Web service, it will
select another Web service to replace the primary one and map the new address
to the WSDL. The system is considered failed if all the Web services have failed.
If a Web service replies with the logging, the replication manager will record the
information of the Web service.

4.3 Roadmap for Experimental Research

We take a pragmatic approach by starting with a single service without any
replication. The only approach to fault tolerance in this case is the use of re-
dundancy in time. If a service is considered as an atomic action or a transaction
where the input is clearly defined, no interaction is allowed during its execution
and the termination has two outcomes: correct or incorrect. In this case, the only
way to make such service fault tolerant is to retry or reboot it. This approach
allows tolerance of temporary faults, but it will not be sufficient for tolerating
permanent faults within a server or a service. One issue is how much delay can
a user tolerate, and another issue is the optimization of the retry or the reboot
time; in other words, deciding when a current request should be timed out. By
handling services as atomic transactions, exception handling does not help in
dealing directly with inherent problems of a service. Consequently, continuous
service is only possible by performing re-execution using a retry or reboot at the
termination points or after a timeout period.

If redundancy in time is not appropriate to meet dependability requirements
or time overhead is unacceptable, the next step is redundancy in space. Redun-
dancy in space for services means replication where multiple copies of a given



50 P.P.W. Chan, M.R. Lyu, and M. Malek

Fig. 3. Workflow of the Replication Manager

service may be executed sequentially or in parallel. If the copies of the same ser-
vices are executed on different servers, different modes of operation are possible:

1. Sequentially, meaning that we await a response from a primary service and
in case of timeout or a service delivering incorrect results, we invoke a backup
service (multiple backup copies are possible). It is often called failover.

2. In parallel, meaning that multiple services are executed simultaneously and
if the primary service fails, the next one takes over 1. It is also called a
failover. Another variant is that the service whose response arrives first is
taken.

3. There is also a possibility of majority voting using n-modular redundancy,
where results are compared and the final outcome is based on at least �n/2
+ 1� services agreeing on the result.

4. If diversified versions of different services are compared, the approach can
be seen as either a Recovery Blocks (RB) system where backup services are
engaged sequentially until the results are accepted (by an Acceptance Test),
or an N-version programming (NVP) system where voting takes place and
majority results are taken as the final outcome. In case of failure, the failed
service can be masked and the processing can continue.

NVP and RB have undergone various challenges and vivid discussions. Crit-
ics would state that the development of multiple versions is too expensive and
dependability improvement is questionable in comparison to a single version,
provided the development effort equals the development cost of the multiple ver-
sions. We argue that in the age of service-oriented computing, diversified Web
services permeate and the objections to NVP or RB can be mitigated. Based on
market needs, service providers competitively and independently develop their
services and make them available to the market. With abundance of services
for specific functional requirements, it is apparent that fault tolerance by design

1 In such case service parameter compatibility must be checked or aligned. Services
are assumed to have equivalent functionality.



Making Services Fault Tolerant 51

diversity will be a natural choice. NVP should be applied to services not only
for dependability but also for higher performance purpose.

Finally, a hybrid method may be used where both space and time redundancy
are applied, and depending on system parameters, a retry might be more effective
before switching to the backup service. This type of approach will require a
further investigation.

We also need to formulate several additional quality-of-service parameters to
service customers. We propose a number of fault injection experiments showing
both dependability and performance with and without diversified Web services.
The outlined roadmap to fault-tolerant services leads to ultra reliable services
where hybrid techniques of spatial and time redundancy can be employed for op-
timizing cost-effectiveness tradeoffs. In the next section, we describe the various
approaches and some experiments in more detail.

4.4 Experiments

A series of experiments are designed and performed for evaluating the reliability
of the Web service, including single service without replication, single service
with retry or reboot, and a service with spatial replication. We will also per-
form retry or failover when the Web service is down. A summary of five (1-5)
experiments is stated in Table 1.

Table 1. Summary of the experiments

None Retry/Reboot Failover Both(hybrid)

1 Single service, no retry 1 – – –
2 Single service with retry – 2 – –
3 Single service with reboot – 3 – –
4 Spatial replication – – 4 –
5 Spatial replication – – – 5

Our experimental system is implemented with Visual Studio .Net and runs
with .Net framework. The Web service is replicated on different machines and
the primary Web service is chosen by the replication manager.

In the experiments, faults are injected in the system and the fault injection
techniques are similar, for example, to the ones referred in [6,22]. A number of
faults may occur in the Web service environment [20,21], including network prob-
lem, resource problem, entry point failure, and component failure. These faults
are injected in the experimental system to evaluate the reliability of our pro-
posed scheme. Our experimental environment is defined by a set of parameters.
Table 2 shows the parameters of the Web service in our experiments.

Experimental results. We compare five approaches for providing the Web
services. The details of the experiments are described as follows:



52 P.P.W. Chan, M.R. Lyu, and M. Malek

Table 2. Parameters of the experiments

Parameters Current setting/metric

1 Request frequency 1 req/min
2 Polling frequency 10 per min
3 Number of replicas 5
4 Client timeout period for retry 10 s
5 Failure rate λ number of failures/hour
6 Load (profile of the program) percentage or load function
7 Reboot time 10 min
8 Failover time 1 s

1. Single service without retry and reboot. The Web service is provided
by a single server without any replication. No redundancy technique is ap-
plied to this Web service.

2. Single service with retry. The Web service provides the service and the
client retries another Web service when there is no response from the original
Web service after timeout.

3. Single service with reboot (restart). The Web service provides the ser-
vice and the Web service server will reboot when there is no response from
the Web service. Clients will not retry after timeout when there is no re-
sponse from the service.

4. Spatial replication with failover. We use a generic spatial replication:
The Web service is replicated on different machines and the request is trans-
ferred to another machine when the primary Web service fails (failover). The
replication manager coordinates among the replicas and carries out a failover
in case of a failure. Clients will only submit the request once and will not
retry.

5. Spatial replication with failover and retry. This is a hybrid approach.
Similar to the Experiment 4 where the Web service is replicated on different
machines and the request is transferred to another one (failover) when the
primary Web service fails. But the client will retry if there is no response
from the Web service after timeout.

The Web services were executed for 720 hours generating a total of 720x60
req/hr = 43200 requests from the client. A single failure is counted when the
system cannot reply to the client. For the approach with retry, a single failure
is counted when a client retries five times and still cannot get the result. A
summary of the results is shown in Table 3 and the Figures 4 to 7 depict the
number of failures as the time increases.

The reliability of Web services is tested under different scenarios, including
normal operation, resource problem by increasing the load of the server, entry
point failure by rebooting the server periodically, and a number of faults by fault
injection techniques.

In the fault injection, WS-FIT fault injection is applied. The WS-FIT fault in-
jection method is a modified ofNetworkLevel Fault Injection. WS-FIT differs from



Making Services Fault Tolerant 53

Table 3. Experimental results

Experiments over 720 hour Normal Resource Problem Entry Point Failure Network Level
period (43200 reqs) Fault Injection

Exp1 4928 6130 6492 5324
Exp2 2210 2327 2658 2289
Exp3 2561 3160 3323 5211
Exp4 1324 1711 1658 5258
Exp5 1089 1148 1325 2210

Fig. 4. Number of failures when the server operates normally

Fig. 5. Number of failures under resource problem

standard Network Level Fault Injection techniques in that the fault injector de-
codes the SOAP message and injects faults into individual remote procedure call
(RPC) parameters, rather than randomly corrupting a message, for instance by
bit-flipping. This enables API-level parameter value modification to be performed
in a non-invasive way as well as the standard Network Level Fault Injection.



54 P.P.W. Chan, M.R. Lyu, and M. Malek

Fig. 6. Number of failures under entry point failure

Fig. 7. Number of failures under Network Level Fault Injection

Discussion. The experiments barely indicate rather linear increase of the num-
ber of failures in all categories. Therefore, the ratio of the number of failures to
the amount of time is almost constant for each type of experiments and each
type of failures. The ratio α (number of failures divided by time t) is given for
each type of experiments and each type of failures in Figures 4 to 7. So the
communicative number of failures f at time t can be approximate by f = α× t.

When there is no redundancy techniques applied on the Web service system
(Exp 1), it is clearly shown that the failure rate of the system is the highest.
Consequently, we try to improve the reliability of the Web service in two different
ways, including spatial redundancy with replication and temporal redundancy
with retry or reboot.

Resource Problem and Entry Point Failure. Under different situations, our ap-
proach improves the availability of the system differently. When the system is



Making Services Fault Tolerant 55

under resource problem and entry point failure, the experiment shows that the
temporal redundancy helps to improve the availability of the system.

For the Web service with retry (Exp 2), the percentage of failures of the system
(number of failed requests/total number of requests) is reduced from 11.97% to
4.93%. This shows that the temporal redundancy with retry can significantly
improve the availability of the Web service. When there is a failure occurrence
in the Web service, on the average, the clients need to retry twice to get the
response from the Web service.

Another temporal redundancy is Web service with reboot (Exp 3). From the
experimental result, it is found that the failure rate of the system is also reduced:
from 11.97% to 6.44%. The improvement is good, but not as substantial as the
temporal redundancy with retry. It is due to the fact that when the Web service
cannot be provided, the server will take time to reboot.

Spatial redundancy is applied in the system in Exp 4, which is the approach we
have proposed. The availability of the system is improved even more significantly:
the failure rate of the system is reduced from 11.97% to 3.56%. The Web service
performs failover when the Web service cannot respond. The replication manager
keeps checking the availability of the Web services. If the primary service fails,
the replication manager selects another Web service to provide the service. The
replication manager sends a message to the Web server to check the availability
every 5 ms. It shortens the potential downtime of the Web service, thus the
failure rate is reduced. In the experiment, on the average, the replication manager
detects that there are around 600 failures in the Web services and performs the
failovers accordingly.

To further improve the reliability of the Web service, both spatial and tempo-
ral redundancy is applied in the system in the Experiment 5. The failure rate is
reduced from 11.97% to 2.59%. In the experiment, the Web service is replicated
on five different machines and the clients will retry if they cannot get response
correctly from the service. It is demonstrated that this setting results in the
lowest failure rate. This shows that spatial and temporal redundancy (a hybrid
approach) achieve the highest gain in reliability improvement of the Web service.

Network Level Fault Injection. When the system is under network level fault
injection, the temporal redundancy reduces the failure rate of the system from
12.32% to 5.12%. When there are fault injected into the SOAP message, the
system cannot process the request correctly, which will cause error in the system.
However, with temporal redundancy, the clients can resubmit the result to the
system when there is a fault injected into the previous message; thus, the failure
rate of the system is reduced. However, the spatial redundancy approach cannot
improve the availability of the system. It is because even the message has injected
faults and it will not trigger a failover of the system.

Failure Rate. The failure rate of a system is defined as:

λ = lim
Δ−→0

F (t + Δt) − F (t)
Δt

(1)



56 P.P.W. Chan, M.R. Lyu, and M. Malek

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

R
(t

)

System without redundancy
Proposed approach

Fig. 8. Reliability of the system over time

The failure rate of our system, using a specific scenario, has improved from
0.114 to 0.025. The reliability of the system can be calculated with

R(t) = e−λ(t)t (2)

and Figure 8 shows the reliability of the discussed system.
Availability of the system is defined as:

A =
MTTF

MTTF + MTTR
(3)

And in our case

MTTF =
1

λ(t)

=
1

0.025
= 40

MTTR = 3s

A =
40

40 + 3
= 0.93

which is quite of an improvement from A = 0.75 but still not up to standards of
today’s expectations.



Making Services Fault Tolerant 57

5 Reliability Modeling

We develop the reliability model of the proposed Web service paradigm using
Markov chains [23]. The model is shown in Figure 9. The reliability model is
analyzed and verified through applying the reliability evaluation tool SHARPE
[25].

Fig. 9. Markov chain based reliability model for the proposed system

In Figure 9(a), the state s represents the normal execution state of the system
with n Web service replicas. In the event of an error, the primary Web service
fails, and the system will either go into the other states (i.e., s−j which represents
the system with n − j working replicas remaining, if the replication manager
responds on time), or it will go to the failure state F with conditional probability
(1−c1). λ∗ denotes the error rate at which recovery cannot complete in this state
and c1 represents the probability that the replication manager responds on time
to switch to another Web service.

When the failed Web service is repaired, the system will go back to the previ-
ous state, s−j+1. μ∗ denotes the rate at which successful recovery is performed
in this state, and c2 represents the probability that the failed Web service server
reboots successfully. If the Web service fails, it switches to another Web service.
When all Web services fail, the system enters the failure state F . λn represents
the network failure rate.

In Figure 9, (s − 1) to (s − n) represent the working states of the n Web ser-
vice replicas and the reliability model of each Web service is shown in Figure 9(b).



58 P.P.W. Chan, M.R. Lyu, and M. Malek

Table 4. Model parameters

ID Description Value

λN Network failure rate 0.01
λ∗ Web service failure rate 0.025
λ1 Resource problem rate 0.142
λ2 Entry point failure rate 0.150
μ∗ Web service repair rate 0.286
μ1 Resource problem repair rate 0.979
μ2 Entry point failure repair rate 0.979
C1 Probability that the RM responds on time 0.9
C2 Probability that the server reboots successfully 0.9

0 0.5 1 1.5 2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

R
el

ia
bi

lit
y

Reliability over Time with repair rate 0.286

failure rate 0.005
failure rate 0.025
failure rate 0.01

Fig. 10. Reliability with different failure rate and repair rate is 0.286

There are two types of failures simulated in our experiments: P1 denotes recourses
problem (server busy) and P2 denotes entry point failures (server reboot). If a fail-
ure occurs in the Web service, either the Web service can be repaired with μ1 (to
enter P1) or μ2 (to enter P2) repair rates with conditional probability c1, or the er-
ror cannot be recovered, and the system enters the next state (s− j − 1) with one
less Web service replica available. If the replication manager cannot respond on
time, it will go to the failure state. From the figure, two formulas can be obtained:

λ∗ = λ1 × (1 − C1)μ1 + λ2 × (1 − C2)μ2 (4)

μ∗ = λ1 × μ1 + λ2 × μ2 (5)

From the experiments, we obtain the error rates and the repair rates of the
system, and the values are shown in Table 4.

According to the parameters obtained from the experiments, the reliability
of the system over time is calculated with the tool SHARPE. In Figure 10, the



Making Services Fault Tolerant 59

0 0.5 1 1.5 2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

R
el

ia
bi

lit
y

Reliability over Time with repair rate 0.572

Failure rate 0.005
Failure rate 0.025
Failure rate 0.01

Fig. 11. Reliability with different failure rate and repair rate is 0.572

repair rate μ∗ is 0.286 failure/s (from the experiment), the reliability is plotted
under different failure rate λ∗. Note that the failure rate obtained from the
experiments is 0.025 failure/s. This failure rate is measured under an accelerated
testing environment. By considering the test compression factor [26], the failure
rate of the system in a real situation will be much less. A similar reliability curve
is plotted in Figure 11 with repair rate μ∗ equal to 0.572 failure/s.

6 Conclusions

In the paper, we surveyed and addressed applicability of replication and de-
sign diversity techniques for reliable services and proposed a hybrid approach
to improving the availability of Web services. Our approach reduces the num-
ber of failures in comparison to normal singular method by a factor of about
5. Furthermore, we carried out a series of experiments to evaluate the availabil-
ity and reliability of the proposed Web service system. From the experiments,
we conclude that both temporal and spatial redundancy are important to the
availability improvement of the Web service. In the future, we plan to test the
proposed schemes with a wide variety of systems, environments and fault injec-
tion scenarios and analyze the impact of various parameters on reliability and
availability. Moreover, we will evaluate effectiveness of the schemes with design
diversity techniques in handling permanent design faults in Web services.

Acknowledgement

We would like to thank Prof. Kishor Trivedi for providing SHARPE for our
reliability analysis. The work described in this paper was fully supported by
two grants: One from the Research Grants Council of the Hong Kong Special



60 P.P.W. Chan, M.R. Lyu, and M. Malek

Administrative Region, China (Project No. CUHK4205/04E), and another from
the Shun Hing Institute of Advanced Engineering (SHIAE) of The Chinese Uni-
versity of Hong Kong.

References

1. R. Bilorusets, A. Bosworth et al, “Web Services Reliable Messaging Protocol
WS-ReliableMessaging,” EA, Microsoft, IBM and TIBCO Software, http://
msdn.microsoft.com/library/enus/dnglobspec/html/ws-reliablemessaging.asp,
Mar. 2004.

2. N. Looker and M. Munro, “WS-FTM: A Fault Tolerance Mechanism for Web
Services,” University of Durham, Technical Report, 19 Mar. 2005.

3. D. Liang, C. Fang, and C. Chen, “FT-SOAP: A Fault-tolerant Web Service, ”
Institute of Information Science, Academia Sinica, Technical Report 2003.

4. D. Liang, C. Fang and S. Yuan, “A Fault-Tolerant Object Service on CORBA,”
Journal of Systems and Software, Vol. 48, pp. 197-211, 1999.

5. P. Townend, P. Groth, N. Looker, and J. Xu, “Ft-grid: A fault-tolerance system for
e-science,” Proc. of the UK OST e-Science Fourth All Hands Meeting (AHM05),
Sept. 2005.

6. M. Merideth, A. Iyengar, T. Mikalsen, S. Tai, I. Rouvellou, and P. Narasimhan,
“Thema: Byzantine-Fault-Tolerant Middleware for Web-Service Application,”
Proc. of IEEE Symposium on Reliable Distributed Systems, Orlando, FL, Oct.
2005.

7. A. Erradi and P. Maheshwari, “A broker-based approach for improving Web ser-
vices reliability”, Proc. of IEEE International Conference on Web Services, vol. 1,
pp. 355-362, 11-15 Jul. 2005.

8. W . Tsai, Z. Cao, Y. Chen, Y and R. Paul, “Web services-based collaborative and
cooperative computing,” Proc. of Autonomous Decentralized Systems, pp. 552-556,
4-8 Apr. 2005.

9. D. Leu, F. Bastani and E. Leiss, “The effect of statically and dynamically replicated
components on system reliability,” IEEE Transactions on Reliability, vol.39, Issue
2, pp.209-216, Jun. 1990.

10. B. Kim, “Reliability analysis of real-time controllers with dual-modular temporal
redundancy,” Proc. of the Sixth International Conference on Real-Time Computing
Systems and Applications (RTCSA) 1999, pp.364-371, 13-15 Dec. 1999.

11. K. Shen and M. Xie, “On the increase of system reliability by parallel redundancy,”
IEEE Transactions on Reliability, vol.39, Issue 5, pp.607-611, Dec. 1990.

12. A. Avizienis, and L. Chen, “On the implementation of N-version programming for
software fault-tolerance during program execution,” Proc. of First International
Computer Software and Applications Conference, pp.149-155, 1977.

13. A. Avizienis, and J. Kelly, “Fault Tolerance by Design Diversity: Concepts and
Experiments,” IEEE Transactions on Computer, pp. 67-80, Aug. 1984.

14. M.R. Lyu and A. Avizienis, “Assuring Design Diversity in N-Version Software: A
Design Paradigm for N-Version Programming,” in Fault-Tolerant Software Sys-
tems: Techniques and Applications, H. Pham (ed.), IEEE Computer Society Press
Technology Series, pp. 45-54, Oct. 1992.

15. J. Lala, and R. Harper, “Architectural principles for safety-critical real-time appli-
cations,” Proc. of the IEEE, vol. 82, no.1, pp.25-40, Jan. 1994.

http://msdn.microsoft.com/library/enus/dnglobspec/html/ws-reliablemessaging.asp
http://msdn.microsoft.com/library/enus/dnglobspec/html/ws-reliablemessaging.asp


Making Services Fault Tolerant 61

16. R. Riter, “Modeling and Testing a Critical Fault-Tolerant Multi-Process System,”
Proc. the 25th International Symposium on Fault-Tolerant Computing, pp.516-521,
1995.

17. M. Lyu and V. Mendiratta, “Software Fault Tolerance in a Clustered Architecture:
Techniques and Reliability Modeling,” Proc. of 1999 IEEE Aerospace Conference,
Snowmass, Colorado, vol.5, pp.141-150, 6-13 Mar. 1999.

18. M. Sayal, Y. Breitbart, P. Scheuermann, and R. Vingralek, “Selection algorithms
for replicated web servers,” Proc. of Workshop on Internet Server Performance 98,
Madison, WI, Jun. 1998.

19. N. Looker, M. Munro, and J. Xu, “Simulating Errors in Web Services,” Interna-
tional Journal of Simulation: Systems, Science and Technology, vol.5, pp.29-38,
2004.

20. Y. Yan, Y. Liang and X. Du, “Controlling remote instruments using Web services
for online experiment systems,” Proc. of IEEE International Conference on Web
Services (ICWS) 2005, 11-15 Jul. 2005.

21. Y. Yan, Y. Liang and X. Du, “Distributed and collaborative environment for online
experiment system using Web services,” Proc. the Ninth International Conference
on Computer Supported Cooperative Work in Design 2005, vol.1, pp.265-270, 24-26
May 2005.

22. N. Looker and J. Xu, “Assessing the Dependability of SOAP-RPC-Based Web
Services by Fault Injection,” Proc. of the 9th IEEE International Workshop on
Object-oriented Real-time Dependable Systems, pp.163-170, 2003.

23. K. Goseva-Popstojanova and K. Trivedi, “Failure correlation in software reliability
models,” IEEE Transactions on Reliability, vol.49, Issue 1, pp.37-48, Mar. 2000.

24. H. Guen, R. Marie and T. Thelin, “Reliability estimation for statistical usage test-
ing using Markov chains,” Proc. of the 15th International Symposium on Software
Reliability Engineering (ISSRE) 2004, pp.54-65, 2-5 Nov. 2004.

25. R. Sahner, K. Trivedi, and A. Puliafito, “Performance and Reliability Analysis
of Computer Systems. An Example-BasedApproach Using the SHARPE Software
Package,” Kluwer, Boston, MA (1996).

26. M. Lyu, “Handbook of Software Reliability Engineering,” IEEE Computer Society
Press and McGraw-Hill Book Company.


	Introduction
	Related Work
	Problem Statement
	Methodologies for Reliable Web Services
	Failure Response Stages of Web Services
	Proposed Technique
	Roadmap for Experimental Research
	Experiments

	Reliability Modeling
	Conclusions



